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Abstract. In this paper, we address the problem of hand posture recog-
nition with a binocular camera. As bare hand has a few landmarks for
matching, instead of using accurate matching between two views, we
define a kind of mapping score—Disparity Cost Map. The disparity cost
map serves as the final hand representation for recognition. As we use
the disparity cost map, an explicit segmentation stage is not necessary.
Local Binary Pattern (LBP) is used as feature for classification in this
paper. In order to align the LBP feature, we further design an annular
mask to deal with the problem of scaling, rotation, translation (RST) and
search for an accurate bounding box of hand. The experimental results
demonstrate the efficiency and robustness of our method. For 15 hand
postures in varies cluttered background, the proposed method achieves
an average recognition rate of 95% with a SVM classifier.

1 Introduction

Hand posture recognition attracts more and more researchers from both academy
and industry as it has many applications, such as TV remote control, computer
game navigation, sign language recognition [1], virtual navigation, etc. However,
it is still a challenging problem due to the variability of hand shapes, orientations,
etc.

Erol et al. provide a comprehensive review on hand posture recognition until
2005 [2]. Lockton et al. [3] propose a method providing a real-time performance
by a combination of exemplar-based recognition and a deterministic boosting
algorithm which can allow for fast online retraining. The correct rate is up to 99%
for 46 postures. However, in Lockton’s work, the backgrounds and shapes of these
hand postures must be strictly the same. Similarly, the background in [4, 5] is just
white wall. The hand can been perfectly segmented from the strongly constricted
background and their feature can been easily extracted. Unfortunately, accurate
hand segmentation is very challenging in real-world scenario. This limits the real
application of many advanced technologies of hand posture recognition.

To deal with posture recognition in cluttered background, depth could be a
useful cue for segmentation. Fujimura and Xia use Time of Flight (ToF) camera
for gesture / sign language recognition [6,7]. As TOF camera can only provide
limited resolution, Van den Bergh and Van Gool [8] propose to combine RGB and
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ToF cameras for 3D hand posture interaction with 6 hand postures. Recently,
Kinect shows a significant advantage on capturing both color and depth images
simultaneously with low cost. More and more researchers begin to explore action
recognition including posture recognition with it. Oikonomidis et al. do a series
of work on full DoF tracking of hand using Kinect [9-11]. However, such cameras
can only be used in in-door environment and at a certain distance.

Compared with depth sensor, binocular camera simply captures a scene from
different view angles. The disparity from two views provides an equivalent of
depth. As the resolution can be very high, and the baseline of the binocular
camera can be adjusted to fit the distance, the binocular camera can be used
for more flexible scenarios. When a pair of rectified stereo images is prepared,
disparity map, i.e., the depth cue, can be obtained by searching the correspon-
dence of the pixels in the right image to the pixels in the left image on each
epipolar lines. Among the state of the art, there is stereo matching algorithm
that can provide enough accurate disparity map where hand segmentation is
easy by simple threshold method. However, there is still a dilemma to be trade-
off between accuracy and computational cost. As one of the best results, Wang
et al. [12] present a stereo matching algorithm based on inter-regional coopera-
tive optimization. A processing with 4 iterations costs about 20s for one image
pair. Felzenszwalb et al. [13] propose a method that substantially improves the
running time of the belief propagation approach. However, it still takes approxi-
mately 1s to obtain the results. This is still far from the requirement of real-time
processing.

The requirement of real-time processing makes some researchers incline to a
low quality disparity map. Many of them think that, even with a low quality
disparity map, accurate hand segmentation could still be possible by combining
appearance cues [14, 15]. However, the perceived color of skin varies significantly
depending on the user’s skin color and the light condition of background. What’s
more, uncontrolled background may give rise to numerous false alarms. So, the
number of hand posture class is limited. For example, Hadfield and Bowden [14]
extract features in both the appearance and depth channel for 3 static postures
recognition. Similarly, Grzeszczuk et al. [15] conduct their experiment on only
6 kinds of hand postures using the feature combining depth and skin color. In
addition, introducing of skin color increases the chance of these methods being
sensitive to lighting variance and confusing background.

To achieve real-time and more efficient hand posture recognition, we need
other binocular visual cue rather than accurate disparity map or the combi-
nation of low quality disparity map and appearance cues. We found that the
disparity cost map of hand, which is derived by matching the hand region in
right view with that in the left view according to a series of disparities, can pro-
vide significant information about hand posture. Based on this observation, we
propose to recognize hand posture directly from disparity cost map. The related
work is Deselaers et al.’s [16], where they use disparity cost slice, similar to our
disparity cost map, to find the correct depth for the hand. Different from their
work, we utilize disparity cost map directly for hand posture recognition.
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The rest of this paper is organized as follows: Section 2 presents the proposed
method and the experimental results in section 3 demonstrate the efficiency
of the proposed method. Section 4 concludes this paper and gives the future
directions.

2 Proposed Method

We propose a method to recognize hand postures directly from disparity cost
map without requiring accurate segmentation of hand. Besides, our method takes
scaling, rotation and translation variance into consideration. Experimental re-
sults show that our method is robust and fast.

2.1 The Basic Idea

In our work, we denote the right view as I,. and the left view as I;. The binoc-
ular camera is horizontally aligned. Therefore only horizontal displacement is
relevant, and we can set m(x,y, d) as a measurement of similarity between pixel
(z,y) in the right view and corresponding pixel (z + d,y) in the left view. We
use a simpler Birchfield-Tomasi sub-pixel metric from [17] as the dissimilarity
measurement.

m(x,y,d) = 1min 1 \Ir(ac,y) *Il($l+d,y)|, (1)
z—5<z<T+35
m(x,y,d) servers as the value of points in disparity cost map. Let R be a rect-
angle region and d be a specific disparity in the right view. We define

M(Rv d) = {m(z,y,d)|(x, y) € R}’ (2)

as a 2D patch in the disparity cost map. If both hand posture region Rj and its
disparity dj, are obtained, the patch M (Ry, dy) is thus determined. Fig. 1 shows
the construction of disparity cost map M and patch M (R, d,) of hand posture.

Then, let’s explain the reason why M (R}, dy,) can contribute to hand posture
recognition. Different from accurate segmentation, M (R, dy), which is only a
patch of disparity map, can not indicate one pixel belongs to hand or back-
ground. What M (Ry,dy) is able to indicate is the potential of pixels satisfying
the disparity dy. Although so, it is enough for the hand posture to emerge from
M(Rp, dy) since most of the hand pixels satisfy the disparity dj while most of
background pixels do not, as seen from Fig. 1.

There must be ambiguous pixels in M (Ry, d},), especially in the case of the
hand in the background with similar appearance in both color and texture. How-
ever,statistical prior can help to clarify this ambiguous. In the sense of statistics,
ambiguous pixels would become a kind of white noise due to the uncertainty
compare with hand. What’s more, due to the different angles of light, positions
of shade and other imaging factors, the non-texture regions between fingers or
even at the edge of fingers can not match well between two views. It is also
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M(Ry,dy)

Right view

Fig.1. The basic idea of hand posture from disparity cost map. Gray levels in
M (R, dh) indicate the value of matching costs.

notable that the hand posture would emerge more clearly with cluttered back-
ground since the background behind the hand would have high matching cost
in M(Rp,dy). It means that, different from other methods which require clean
background, M (R}, dy) would be able to contribute more clear information un-
der cluttered background. In general case, cluttered background is one of the
main obstacles to accurate hand segmentation.

In a word, M(Ry,dy) provides more information than non-segmented map
but less than accurate segmented map. Based on the above reasons, we propose
a framework for hand posture recognition. The main steps are shown in Fig. 2
and a brief explanation is as follows.

Step 1: Disparity map is calculated with fast block matching.

Step 2: Similar to the method proposed by Song et al. [18], we locate the
hand by human face detection combined with a generative model of the human
upper body. Different from [18], to raise the accuracy, the detection step also
have an assumption that hand is usually the foremost part in HCI scene. Finally,
we obtain the region R; and the average disparity value dj of hand.

Step 3: M (Rp,dp,) is then determined through Eq. (2).

Step 4: To extract LBP feature, a refinement of R and d; must be con-
ducted. Then, the label of the hand posture is obtained by feature extraction
and classification

This paper emphasize constructing M (Ry,,dp,) and extracting LBP feature
from M (Rp,dy,) for the purpose of hand posture recognition, i.e., step 3 (section
2.1) and step 4 (section 2.2).

2.2 Recognize Hand Posture Using LBP Feature

After obtaining M (R, dy) at step 3 in the proposed method, a more accurate
bounding box of hand is derived with the following searching method in this
section. The scaling, rotation and translation of hand are taken into account at



Hand Posture Recognition from Disparity Cost Map 5

Step 2:
Step 1: . .
i t vi 4:
Right and left view = N —>| Hand detection and tracking Step
Disparity map (Obtain Ry and dj of hand) 1. Refinement

in Ryand dj
2. LBP feature
extraction
% 3. Classification

Fig. 2. The procedure of proposed method for hand posture recognition.

the same time. Following that, a LBP feature is extracted from the bounding
box.

2.2.1 Bounding Box for LBP Feature Extraction

We discover that M (Rp,dy) is not an ideal bounding box for extracting LBP
feature since the size of Ry, is too large for hand and a single dj, is not robust.
So, a refinement of d, and Ry, is necessary.

Refinement of dj. By considering that it is not common for all pixels belong
to hand posture to satisfy disparity dj; well, we replace the single M (R, dp)
with the triple of (M (Rp,dn—1), M(Rp,dp), M(Rp,dp41)). The utilization of
this triple would increase the robustness and efficiency for extracting feature. In
fact, we simply combine the triple through Eq. (3) to produce a new M (Ry,, dy,)
for successive feature extraction.

M (R, dp) = min{M (Ry,,dp_1), M(Rp,dr), M(Rp, dpy1)} (3)

Refinement of Rj. LBP feature is widely used in human face recognition
and requires faces to be aligned. However, hands are not aligned in M (R, dp,)
and Ry, is not the perfect bounding box of hand. In general case, in problems
of face recognition, the eyes, nose and mouth always appear in the same config-
uration, with similar proportions and contrasts. However, robust hand posture
recognition is a more difficult problem due to the high number of degrees of free-
dom. In this paper, we propose to extract a special annular region from hand.
The annular region is to hand what the eye or nose is to human face. To be
specific, we design a rectangle with a annular mask in it to search for a more
accurate bounding box of hand in M(Ry,dy), considering the scaling, rotation
and translation at the same time.

In order to achieve the best discriminative ability, the annular region changes
its radius 7y, and 7,4, automatically and so does the corresponding bounding
box (see Fig. 3). We represent the pixel in annular region as p(rcos @, sin 6)
in polar coordinates. At this step, we only consider the pixels on the annulus
between 7., and Ty,q.. We define Hpyean(r) as the mean of pixels’ values along
the radius and Vj;cqn(0) as the mean of pixels’ values along the circle. H,q, and
Vyar are their corresponding variances.
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2
Hynean(r) = [z P(r cose,rsma)] / (Bume=buis 4 1] i <7 < 1y (4)
0=0

Tmax

Vinean(6) = { > p(rcos@,rsin@)]/[’““‘“A:min + 1} 0<#<2m, (5)

T=Tmin

Tmax 27

Hew= »_ > [p(rcost,rsin6) — Hyean(r)], (6)

T=Tmin =0

2T Tmax
Vir =Y Y [p(rcost,rsin6) — Vinean(0))%, (7)

0=0 r=rmin
In experiment, we set ryax = Tmin X 1.5, radius step length Ar = 1 and radian
step length A9 = 0.01. Intuitively, on one hand, H,,, has its local maximum
in one range of 7, (in Fig. 3, the range is [5, 15]), where the annulus covers
the edge of palm. Keep expanding the annular region, H,,, decreases to a local
minimum, which indicates that the annular region no longer covers the palm.
On the other hand, V., should have kept increasing when the annulus expands.
However, it decreases after r,,;, = 15 in Fig. 3. That is because the number
of ambiguous pixels increases when the annulus expands. Experimentally, we

design a D as the criteria to search the best r,,;, as follows:

)\Vvar
D = max

Tmin Hvar

: (8)

where A = 0.9 in our experiment. The solid (red) curve in Fig. 3 (a) shows the
values of D with its corresponding 21 r,,;, candidates. Experimental results also
demonstrate the robustness of this method.

Dealing with the problem of RST. The changing radius of annulus de-
cides the size of the bounding box and further solves the problem of scaling.
When refer to variable translation, disparity map has already provided a coarse
location of hand. However, our annular region needs a center of palm and we
have to solve the problem as follows. In the training step, the accurate center
of palm is labeled manually. In the testing step, the center of the annular re-
gion moves in a small range and chooses the best one. The best one is chosen
as follows. We just simply move a window in the bounding box to search the
region with maximum density. The center of the window is determined as the
center of annulus. In order to take rotation of hand into consideration, we obtain
the principal direction using the ultimate optimal annular region, which theo-
retically and experimentally covers the wrist or parts of lower arm nearby. The
principal direction is determined by the position of wrist. A simple clustering in
the annular region locates the wrist (see Fig. 3 (d)). Following that, the annulus
is kept still and the bounding box is rotated according to the principal direction.
Attention, the rotation angle in our work is no larger than 45 degree.
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Fig. 3. (a) Red curve in diagram shows the values of D with its corresponding 21 7yin
candidates. (b) Samples with 7nin = 5, 15,20 around the palm to search for a bounding
box of hand in M (R}, dp). (c) Rotation method. (d) Principal direction for rotation.

2.2.2 LBP Feature and Classification

For feature extraction, LBP texture feature is selected. It is originally proposed
for gray-scale and rotation invariant texture classification [19]. In our work, it is
performed in the refined bounding box of hand. We divide the bounding box to
cells. For each pixel in a cell, compare the pixel to each of its 8 neighbors along a
circle, i.e., clockwise. The label of each pixel is thus determined by its neighbors
as follows:

7 .
2" P > P,
LBP __ A c
Pc _2{0Pi<Pc’ (9)

where P; are the neighbors of P.. For each hand posture image, we divide it
into 49 cells. In each cell, a 10 bin normalized histogram is developed. The final
feature vector concatenates normalized histograms of LBP in all cells and its
total dimension is 490.

In our work, we use SVM for classification. The standard SVM targets to
maximum the boundary of two classes. In this paper, given a set of training
examples, a multi-class SVM model is trained. The model is the classifier we
need to predict new examples to a category based on which side of the gap
they fall on. Experimental result demonstrates that the correct recognition rate
increases when the number of training data becomes larger.
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3 Experiments

This section reports results of our proposed method in static hand posture recog-
nition.

Dataset. The test vocabulary includes 15 classes of hand postures. We col-
lect hand posture samples by sampling all the 15 postures against 10 different
backgrounds under 2 different lighting conditions. Each posture is sampled 5
times at each situation. So, we obtain altogether 1500 = 15 x 10 x 2 x 5 hand
posture samples, in other words, each posture has 100 samples. In order to eval-
uate our method against variable illumination and background, two datasets
were developed for each task. In dataset I, 50 samples from almost same lighting
condition are set as training data and 50 samples in different lighting condition
are set as testing data for each hand posture. In dataset II, 50 samples from 5
kinds of background are set as training data and the rest 50 samples from other 5
kinds of background are set as testing data. The size of input image is 512 x 384
for each view. Fig. 4 shows all the 15 postures and also the typical M(Ry,dp,)
related to each posture.

Fig. 4. 15 hand postures in cluttered lab environment and M (Ry,ds) of each corre-
sponding hand posture in our experiment. They have already been aligned and scaled
according to the annular masks.

Optimal radius of annular region. By expanding the annular region from
the center of palm, we obtain an optimal radius and further obtain the optimal
bounding box of hand. For the purpose of comparison, an additive dataset of
ground truth is labeled manually. They are scaled to equal size. The optimal
radiuses are nearly 25, which are also estimated manually. The purpose of this
experiment is to find the optimal radius of hand in the additive dataset au-
tomatically for comparing with the ground truth. The result demonstrates the
robustness and efficiency of our method proposed in section 2.2. The histogram
of the optimal radiuses from 750 samples is shown in Fig. 5.

The histogram shows that most samples obtain their optimal radiuses at
nearly 25, which is accord with the ground truth. Some ”errors” are mainly
occurred in hand postures like No. 1 and No. 12, which have no long fingers
spread and thus obtain the optimal radius at nearly 14. However, such small
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number of samples

18 22 24 26
radius

Process Dataset I Dataset 11

Before refinement (%) 87.73 81.35
After refinement (%) 91.07 86.00

Fig. 5. The histogram of the optimal radius from 750 samples and the results compar-
ison.

bounding box is big enough to include all the pixels of such hand postures like
No. 1 or No. 12 and still performs correct recognition.

Result with variable illumination and background. To evaluate our
method against variable illumination, the classifier I is trained from training data
in dataset I by SVM. The testing data of dataset I is then predicted by classifier
I. The result confusion matrix is shown in Table 1. The average recognition rate
is 91.07%.

To evaluate our method against variable background, we did the same ex-
periment in dataset II. The result confusion matrix is shown in Table 1 and
shows that the average recognition rate is 86.00%, which is comparable to the
performance of classifier I. See from Table 1, hand posture No.11 and No.12 have
the lowest correct recognition rate. Because, No. 11 is very similar to No. 2, No.
12 is similar to No.7. Confusion pixels, which may be mis-recognized as fingers,
have large probability to lead to error recognition in those situations. We will
address this issue in our future work.

Table 1. The confusion matrix of result from dataset I (Left) and dataset II (Right).
Numbers in bold are hand posture index.

No.01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 No.01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
0.02 01 [Eo.04 0.06 0.04
0.06 0.02 02
0.02 03 0.02
0.02 04

0.04 0.08 0.08 0.06 0.02 0.02 05
0.04 0.04 06

07 0.020.02 0.04 0.08 o7 0.04

08 0.02 0.04 08

09 0.04 09

10 10

11 11

12 0.06 12

13 0.02 0.02 13 [ 0.04
14 14 0.02 [EL0.04

15 0.02 0.02 0.14 0.1 0.02 [Ohrg
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Training data in dataset. Performance is also measured using SVM in
other datasets with random split of training data and testing data. It is notable
that the correct recognition rate increases when the number of training data
becomes larger (see Fig. 6). This is because in the sense of statistics, confusing
pixels would become white noise due to the uncertainty of their positions. The
correct recognition rate of 96.33% is comparable to some results using ToF cam-
era or Kinect [8, 6,20]. What’s more, our method requires much less constraints.

Correct recognition rate (%)

&0 + Dataset | ]
3 —+—Dataset 1]
50 1 I I 1 I

1
10 20 30 40 50 60 70 80
Training data of each class (100 in total}

Fig. 6. The correct recognition rate with the number of training data

Feature comparison. To the best of our knowledge, there is no feature
directly extracted from thus 3D matching cost map. In order to choose the best
feature fit for the disparity map, we mainly compare the performance of LBP
with Gray Level, Gradient and HOG. For each hand posture image, we divide it
into 49 cells. Features of LBP, Gray Level, Gradient and HOG are individually
concatenated to normalized histograms in all cells and their final feature vector
are all 490. It is notable that Gaussian filter is also used to resist the confusion
pixels in M (Ry,dy). We do this experiment both in dataset I and dataset II by
SVM and the results are shown in table 2.

Table 2. The correct rate of different features and time cost for feature extraction

Features Gray HOG LBP Gradient

Dimension 490 490 490 490
Variable illumination (%) 70.19 83.87 91.07 73.11
Variable background (%) 84.40 88.67 86.00 66.67
Time cost (s/per frame)  0.2052 0.2120 0.2078 0.2090

From table 2, we may see that LBP feature is the best feature in dataset
I. This is because LBP label is calculated depending on its neighbors, which
makes LBP feature robust to the variable illumination. However, HOG feature
has a slightly better performance than LBP feature in dataset II. But HOG
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feature is sensitive to confusion pixels in the M (R}, d,), which is preprocessed
by Gaussian filter. In experiment, we discovered that a small change of the
filter vastly decreases HOG feature’s performance while LBP feature does not.
A trivial example is simply using the raw M (R, dy) without preprocessing. The
correct recognition rate of HOG feature is 67.07% while the rate of LBP feature
is 81.33%.

Method comparison. As there is no dataset can be used for comparison in
this field, the only way for comparison is to re-implement theirs’ methods and
test on our datasets.

In [16], in order to segment foreground from background, learning approach
is employed. The background is manually segmented for training. They even
train backgrounds under different lighting conditions and camera positions. They
also uses fusing feature, including appearance, shape and depth. Same hand
postures with different depths are regarded as different classes in the work of
[16]. However, depth is not considered in the task of hand posture recognition in
this paper. Besides, see from Fig. 4, it is not wise to extract shape information
of hand postures. To this end, appearance is the only cue we can use to re-
implement their methods on our datasets.

It is more convenient to compare our method with [14] on our datasets since
both of us use binocular cameras in office environment. The difference is that
we have 15 classes of hand postures while they have only 3 classes. See Table 3
for details.

Table 3. The correct recognition rates of 3 methods

Class Number 15 classes 8 classes 3 classes
Our method 0.93 0.93 0.99
Hadfield et al.[14] 0.84 0.88 0.96
Deselaers et al.[16] 0.88 0.91 0.96

4 Conclusion and Future Work

This paper presents a method to recognize hand posture with binocular camera
from disparity cost map. The proposed method avoids segmenting hand accu-
rately, and it works well even in cluttered background. Our experimental results
demonstrate that the proposed method is efficiency and robustness. Besides,
annular region is applied to deal with hand changing in scaling, rotation, and
translation. This helps to align the LBP feature and improve the performance.
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