
Enhancing Expression Recognition in the Wild
with Unlabeled Reference Data

Mengyi Liu1,2, Shaoxin Li1,2, Shiguang Shan1, Xilin Chen1

1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China

2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
{mengyi.liu, shaoxin.li, shiguang.shan, xilin.chen}@vipl.ict.ac.cn;

Abstract. Facial expression recognition is an important task in human-
computer interaction. Some methods work well on ”lab-controlled” data.
However, their performances degenerate dramatically on real-world data
as expression covers large variations, including pose, illumination, occlu-
sion, and even culture change. To deal with this problem, large scale data
is definitely needed. On the other hand, collecting and labeling wild ex-
pression data can be difficult and time consuming. In this paper, aiming
at robust expression recognition in wild which suffers from the mentioned
problems, we propose a semi-supervised method to make use of the large
scale unlabeled data in two steps: 1) We enrich reference manifolds using
selected unlabeled data which are closed to certain kind of expression.
The learned manifolds can help smooth the variation of original data and
provide reliable metric to maintain semantic similarity of expression; 2)
To elevate the original labeled set for enhanced training, we iteratively
employ the semi-supervised clustering to assign labels for unlabeled data
and add the most discriminant ones into the labeled set. Experiments
on the latest wild expression database SFEW and GENKI show that the
proposed method can effectively exploit unlabeled data to improve the
performance on real-world expression recognition.

1 Introduction

Facial expressions play important roles in our daily communications. Recognizing
these expressions automatically has therefore become an active topic of research
[1, 2]. After decades of development, facial expression recognition under con-
trolled laboratory conditions is well solved by various promising methods [3–6].
However, when they were applied to unconstrained real-world data (e.g. internet
images or personal photo albums), the performance may degrade dramatically.
For this situation, study on realistic data is now regarded as a prospective issue
which receives more and more attention.

The major challenge of real-world data analysis is handling the intra-class
variation (e.g. pose, illumination, image resolution), which results in significant
appearance change. To cope with the problem, in face recognition field, many
recent researches [7–10] resort to an extra reference dataset. They construct
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certain similarity relationship between the query and the images in reference
set, then process the recognition utilizing the corresponding labels of reference
data. Ideally, if the large reference library exhaustively covers the data variation
under different imaging conditions, the “associated” images found in the library
can help transfer the face settings and decompose the large variation among
probes.

This framework seems also feasible to real-world expression recognition. How-
ever, it is hard to find an extra reference set which has unambiguous expression
definition as well as diverse appearance variation. Currently most of the expres-
sion datasets have been generated under constrained lab environments. Such
“posed” expression data lacking of complex appearance variation is not capable
in depicting the “spontaneous” expression data recorded in real-world. On the
other hand, the labeling process of wild expression data can be expensive and
time consuming. While collecting, without labeling, a large scale realistic data
vary in different imaging conditions is not as difficult. Inspired by the strategy
proposed in [7–10], we exploit data from such unlabeled set based on similarity
relationships for smoothing the variation.

However unlabeled data have the limitation that they cannot provide the
supervised information of categories to help recognition. Some related work, Co-
hen et al [11, 12] and Abdel et al [13] have proposed semi-supervised learning to
effectively utilize the unlabeled data. In [12], the authors introduced a classifi-
cation driven search algorithm for learning the best structure of the classifier.
The unlabeled data in their work were collected from human posed expression.
More recently, [13] applied co-training strategy using Tri-class SVM to predict
unlabeled data that would be selected to enlarge the co-training set. However
these two methods still coped with constrained expression recognition, and their
unlabeled data are neither spontaneous nor in the wild. At this point, our prob-
lem is much more challenging and practical compared to these former works.
In this paper, aiming at robust expression recognition in the wild, which suffers
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Fig. 1. The pipeline of the proposed method.

from the large intra-class variation and lack of real-world training data, we re-
sort to a large scale unlabeled data to enhance the recognition in two steps: 1)
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We construct reference manifolds using selected unlabeled data which are likely
to be under certain kind of expression. The learned manifolds can help smooth
the variation of original data and provide reliable metric to maintain semantic
similarity of expression; 2) To augment the original labeled set for enhanced
training, we iteratively employ the semi-supervised clustering to assign labels
for unlabeled data, and add the most discriminant ones in the updated labeled
set to boost the performance of our classification model. The whole procedure
of our method is demonstrated in Fig. 1.

2 Reference Manifold Learning

In this section, we propose to extract similar expression samples from unlabeled
set for reference manifold learning. Generally, one N-pixel face image can be
considered as a point in the N-dimensional image space, and the variations of
face images can be represented as low-dimensional manifolds embedded in the
original image space [14]. Since the facial expression changes continuously in
real-world, it is reasonable to assume that all expression images of an individual
make a smooth manifold in the space [15].

Intuitively, face images with similar expressions should be lying in the local
neighborhood on the expression manifold. However, in the original image space,
due to significant variation caused by different poses, illumination and identities
in real-world, the different expression images under the same condition may be
“nearer” than the same expression images under different conditions (see Fig. 2,
on the left, the red arrow stands for the distance between intra-class samples
while the yellow arrow stands for the distance between inter-class samples).
Obviously such data cannot help to learn the intrinsic structure of expression
manifold. Following the idea in [8], we propose to select a certain number of
most similar faces from the reference set to smooth the variation in original
space. Given a reference set R = {r1, r2, ..., rM} and labeled expression data

Fig. 2. The original “sparse” data have large intra-class scatter. After embedding in the
reference manifold, each labeled data is surrounded by a number of unlabeled neighbors
which can smooth the variation.

of c categories, represented as E1, E2, ..., Ec. We attempt to find similar faces
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in R according to the images of each expression category respectively. Suppose
Et = {et1, et2, ..., etnt

}(t ∈ {1, 2, ..., c}), where nt is the number of expression data
in Et. St

i is a set consist of the k nearest neighbors of eti (i ∈ {1, 2, ..., nt}) found in
R. Based on the intuition that the more a reference image rj is selected as nearest
neighbor of images in Et, the higher probability rj has the t-th expression, we
select expression data from these sets based on a frequency score,

F t
j =

nt∑
i=1

I(rj ∈ St
i ), (1)

where I(x) is an indicator function that I(x) = 1 if x is ture, and 0 otherwise.
Then for each category Et, we obtain a ranked list of rj ordered by its frequency
score F t

j decreasingly. Only the first pt images in the list are considered as the
similar expression set of Et, denoted as Ωt. Finally, the whole selected set can be
represented as Ω =

⋃c
t=1Ω

t, from which our reference manifold can be learned.
Since the manifold can help smooth the variation and provide reliable metric to
keep the semantic similarity of expression, the samples with the same expression
are more likely to be grouped together after being projected on the manifold, as
it demonstrates in Fig. 1.

For facial expression recognition, LPP/SLPP were successfully applied by
[16, 17] to achieve better performance. Locality Preserving Projections (LPP)[18]
shares similar data topology properties with nonlinear techniques (e.g. Isomap
[19], LLE [14], and LE [20]). More crucially, LPP is defined throughout the
space rather than just on training data, so that it has significant advantage in
locating and explaining new data [16]. In this paper, we also explore LPP to
learn the structure of the expression manifold. Unlike the works in [16, 17], we
have separately learned multiple manifolds for global face and each local patch.
Since the variations of local patches are relatively smaller compared to global
image. It is more likely to find the most similar neighbors using patch-based
searching. Additionally, the patch-based operation makes the added data of each
patch coming from various samples in reference set, which further emphasize the
information complementarity. Thus we can obtain much “denser” samples in
the image space to construct smooth manifold. Fig. 3 shows the procedure of
multiple reference manifold construction.

3 Discriminant Unlabeled Data Enhanced Training

Due to the diversity and large variation of real-world expression, training a ro-
bust classifier requires much larger amount of labeled data. As manually labeling
wild expression data can be difficult and time consuming, we propose to aug-
ment the training set using unlabeled data with automatically assigned labels.
However, currently available labeled samples are not sufficient for learning re-
liable classification model. Applying the model only trained on labeled set to
assign labels for unlabeled data, the results may be severely biased to labeled
set, thus cannot provide valuable information to enhance the original model.
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Fig. 3. The procedure of multiple reference manifolds construction (The figure only
display the local manifold constructed with overlapping patches).

More crucially, since the distributions of both labeled and unlabeled data may
not completely match each other, such bias model applied on selecting unlabeled
data may cause performance degrading as increasing unlabeled data are added
to training set. In this consideration, We employ semi-supervised clustering to
assign labels for unlabeled data. Besides original training data’s supervision, this
framework also make use of large scale unlabeled data to obtain more accurate
estimation of data distribution.

In this section, we first introduce the semi-supervised clustering algorithm SS-
NMF [21], which is employed for our method. Then we formulate our algorithm
of selecting discriminant unlabeled data according to their cluster label assigned
by SS-NMF. Finally the enhanced training process is presented to explain how
the unlabeled data work.

3.1 Semi-supervised clustering

There have been prior efforts on using provided class information to improve
clustering [22]. In this paper, we applied Semi-Supervised Non-negative Matrix
Factorization (SS-NMF) for its promising clustering performance as well as the
low time complexity. Essentially, NMF can model widely varying data distribu-
tions and accomplish both hard and soft clustering simultaneously [21].

In our method, we cluster labeled and unlabeled data jointly using “must-
link” and “cannot-link” constraints provided by the given class label. Suppose
the labeled and unlabeled data consists of m and n objects respectively, with k−
dimension features extracted from each one (after manifold reduction introduced
in section 2). Correspondingly, the data can be represented as two matrix XL ∈
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Rm×k and XU ∈ Rn×k. For the whole data matrix X = [XL;XU ], it performs
symmetric non-negative tri-factorization of the similarity matrix A = XXT ∈
R(m+n)×(m+n) as,

A ≈ GSGT , (2)

where G ∈ R(m+n)×c is the cluster assignment matrix, S ∈ Rc×c is the cluster
centroid matrix that gives a compact c × c representation of X, and c is the
number of clusters equals to the original expression class number.

Supervision is provided as two sets of pairwise constraints: must-link con-
straints CML and cannot-link constraints CCL, which are accompanied by asso-
ciation violation cost matrix W . Here we use the class labels to construct CML

and CCL. For each pair (xiL, x
j
L) in XL,

(xiL, x
i
L) ∈ CML, s.t. y

i
L = yjL,

(xiL, x
i
L) ∈ CCL, s.t. y

i
L 6= yjL.

(3)

The corresponding association violation cost matrix Wreward and Wpenalty are
defined as,

Wreward = {wij = Aij −max{Aij}|(xiL, x
j
L) ∈ CML, s.t. g

i
L = gjL},

Wpenalty = {wij = min{Aij} −Aij |(xiL, x
j
L) ∈ CCL, s.t. g

i
L = gjL},

(4)

where yiL is the class label of labeled data xiL, giL is the cluster label of xiL,

and wij is the penalty cost for violating the constraint between xiL and xjL. The
objective function of SS-NMF is as follows:

JSS−NMF = min
S>0, G>0

‖ (A−Wreward +Wpenalty)−GSGT ‖2 . (5)

An iterative procedure was proposed for the minimization by updating one
factor Sih(or Gih) while fixing the others. Then we obtain the clustering results
G for the further steps.

3.2 Discriminant unlabeled data selection

After SS-NMF clustering, we coarsely group the labeled and unlabeled data
based on the structures of reference manifolds. However not all of these unlabeled
data can be added for training, the reason is that besides the misclassified data,
some data with correct cluster labels may be outliers or lie on boundary, thus
the learned hyperplane may be bias due to the trade-off between maximizing
the margin and minimizing the errors. For this situation, we propose to only
select discriminant data to augment the training set according to the cluster
labels assigned by SS-NMF. Here we define the “discriminant” data as which
can enlarge the within-class similarity and reduce the between-class similarity
of the original training data. Such data can adjust the original data distribution
to help find the optimal hyperplane for classification.
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We continue to use the representations that XL ∈ Rm×k and XU ∈ Rn×k

denote the labeled and unlabeled data respectively. L ∈ Rm×c is the class as-
signment matrix of labeled data. By exploring SS-NMF clustering, we obtain
the cluster assignment matrix of unlabeled data GU ∈ Rn×c.

As initialization, we calculate the mean within-class similarity meanw and
mean between-class similarity meanb (Here we first compute the mean similarity
(within-class or between-class) for each sample, then sum these similarities and
normalize by the number of samples, i.e. m).

meanw =
1

m
tr(λwXLX

T
L (LLT )T ), (6)

meanb =
1

m
tr(λbXLX

T
L (HL − LLT )T ), (7)

where HL = 1m×m, and λw, λb are normalization matrices for averaging the
similarities. Suppose ki (i ∈ {1, 2, ..., c}) is the number of labeled samples in
each class, i.e.

∑c
i=1 ki = m. Then we have:

λw = diag{k−1
1 , k−1

1 , ..., k−1
1︸ ︷︷ ︸, ..., k−1

c , k−1
c , ..., k−1

c︸ ︷︷ ︸},
k1 kc

(8)

λb = diag{(m− k1)−1, ..., (m− k1)−1︸ ︷︷ ︸, ..., (m− kc)−1, ..., (m− kc)−1︸ ︷︷ ︸}.
k1 kc

(9)

According to the clustering results, we can also calculate the within-class and
between-class similarity matrices between each unlabeled data and the whole
labeled set, denoted as Simw and Simb,

Simw = λ∗wXUX
T
L (GUL

T )T , (10)

Simb = λ∗bXUX
T
L (HU −GUL

T )T , (11)

where HU = 1n×m, and λ∗w, λ
∗
b are normalization matrices which have the similar

forms as λw, λb respectively. Then the discriminant unlabeled data can be added
in based on the rules that its within-class similarity is larger than meanw while
its between-class smaller than meanb . Please note that, after each iteration, the
added unlabeled data will be treated as “labeled” ones, then new constraints will
be constructed and the similarity matrix Ã in SS-NMF, meanw , meanb will
be updated at the same time. In this way we can perform the selection process
iteratively until these variables unchanged. The detailed selecting procedure are
summarized in Algorithm. 1.

Finally, we have obtained the selected discriminant unlabeled data with their
cluster labels to augment even refine the training set. In the enhanced training,
global classifier and local classifiers are trained separately using SVM with o-
riginal labeled data and each discriminant unlabeled data jointly. As it is men-
tioned in section. 1, the local training strategy makes the added data of each set
coming from various samples in reference set, which further emphasizes the in-
formation complementarity. At last we apply weighted sum rule combining these
sub-classifiers into one ensemble classifier to further improve the performance.
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Algorithm 1 : Discriminant Unlabeled Data Selection Using SS-NMF

Input
Expression feature matrix of labeled data XL = [x1

L;x2
L; ...;xm

L ] ∈ Rm×k;
Expression feature matrix of unlabeled data XU = [x1

U ;x2
U ; ...;xn

U ] ∈ Rn×k;
Class assignment matrix of labeled data L ∈ Rm×c;

Output
Selected discriminant unlabeled data XUS = [xs1

U ;xs2
U ; ...;x

sd
U ] ∈ Rd×k;

The corresponding cluster assignment matrix GUS = [gs1U ; gs2U ; ...; g
sd
U ] ∈ Rd×c;

Algorithm
1. Initialize similarity matrix A = XXT , where X = [XL;XU ];
2. Using the labeled data to construct Wpenalty and Wreward, then

Ã = A−Wreward + Wpenalty;
3. Obtain the cluster assignment matrix G:

G← JSS−NMF (Ã−GSGT ) (G = [GL;GU ]),
where GU is cluster assignment matrix of unlabeled data.

4. Calculate mean similarities meanw and meanb .
5. Calculate similarity matrices Simw and Simb .
6. if (Simw(i, i) > meanw)&&(Simb(i, i) < meanb)

Adding discriminant unlabeled data {xi
U , g

i
US} to labeled set.

end if
7. Update Ã, and repeat steps 1-7 until Ã unchanged.

4 Experiments

4.1 Experiments on SFEW

The Static Facial Expression in the Wild (SFEW) [23] which has been extracted
from movies (see Fig. 4(a)) is the first attempt to build database depicting
real-world or simulated real-world conditions for expression analysis. According
to Strictly Person Independent (SPI) Protocol [23] for SFEW, the database is
divided into two sets and the experiment is set to be two-fold. Each set contains
seven subfolders corresponding to the seven expression categories. The sets were
created in strict person independent manner that there is no overlap between
training and testing set. The evaluation metrics for measuring performance are
accuracy, precision, recall and specificity (see definitions in [23]).

In the SPI baseline, the faces are localized using the Viola-Jones [24] face
detector. Here we use the same way for fairly comparison. For classification, we
use SVM [25] with RBF kernel as same as that in [23]. To demonstrate the ef-
fectiveness of our method, we simply apply HOG features [26] on the cropped
face (size: 80x64). The unlabeled reference set in our experiments is LFW [27],
which contains 13233 samples recorded in real-world conditions. χ2 distance is
employed for similarity computing during the searching in reference set. In the
experiments, we first demonstrate the necessity of our two strategies (reference
manifold learning in Sec. 2 and discriminant data selection in Sec. 3) in the
whole procedure. In Fig. 4(b) the proposed method is denoted as “RM+DUS”
(Reference Manifold + Discriminant Unlabeled data Selection); The result us-
ing all coarse-clustered unlabeled data based on reference manifold, without
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discriminant data selected, is denoted as “RM Only”; And “Non” represents the
approach applying neither of the two strategies. To illustrate the relationship
between recognition accuracy and the number of the added data, we iteratively
augment the training set with unlabeled data and train new classifier combining
the added data. Fig. 4(b) shows the accuracy of three methods at each iteration
respectively.
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Fig. 4. (a) Sample images from the SFEW database [23]. (b) The “RM+DUS” shows
an overall upward trend over iteration, while the results of “RM Only” and “Non”
show that the performance degrade as increasing unlabeled data are added to training
set.

To further improve the performance, we calculate the same features (HOG)
on 12 overlapping patches (size: 32x32; sampling stride: 16 pixels) for local face
analysis, as mentioned in Sec. 2. Besides the global-based results, Table. 1(a) also
gives improved results combining global and local analysis. As it demonstrates,
our method outperforms the baseline 19% [23] significantly. However, due to the
tough imaging conditions, the faces obtained by automatic detector suffer from
severe misalignment, so that the local patch-based strategy cannot work well. In
this consideration, we perform image alignment using manually labeled 5 facial
landmarks as the preprocessing. Based on these aligned data, we have achieved
more significant improvement by using unlabeled data (see Table. 1(b)). Based

Table 1. The experimental results on SFEW (a) based on Viola Jones face detector,
(b) based on 5 landmarks alignment result.

Labeled data Labeled + Unlabeled 
data

Global Global + 
Local Global Global + 

Local
Fold1 25.71% 26.84% 27.97% 28.25%
Fold2 26.87% 27.75% 28.32% 30.35%
Avg 26.29% 27.30% 28.14% 29.30%

Labeled data Labeled + Unlabeled 
data

Global Global + 
Local Global Global + 

Local
Fold1 30.23% 30.79% 31.64% 35.03%
Fold2 30.06% 30.06% 30.93% 34.68%
Avg 30.14% 30.83% 31.29% 34.86%

(a) (b)

on the SPI protocol we compute the precision, recall and specificity scores



10 M. Liu et al.

0

10

20

30

40

50

60

70

80

90

100

Th
e 

C
la

ss
-w

ise
 P

re
ci

sio
n 

(%
) 

#Expression Labels

Baseline Viola Align

0

10

20

30

40

50

60

70

80

90

100

Th
e 

C
la

ss
-w

ise
 R

ec
al

l (
%

) 

#Expression Labels

Baseline Viola Align

0

10

20

30

40

50

60

70

80

90

100

Th
e 

C
la

ss
-w

ise
 S

pe
ci

fic
ity

 (%
) 

#Expression Labels

Baseline Viola Align

(a) (b) (c)

Fig. 5. The three class-wise evaluation metrics of different approaches. (a) precision,
(b) recall, and (c) specificity.

respectively. Fig. 5 shows the comparison of the baseline in [23] and our method
(where “Viola” stands for the results based on Viola Jones face detector; “Align”
stands for results based on 5 landmarks alignment). Although the majority of
the scores outperform the baseline significantly, there are still few cannot reach
our expectation (the recall score of disgust, fear). The possible reason can be the
lacking of typical expression samples in the reference set. In this case, to deal
with some specific category, like disgust or fear, the selected unlabeled data may
not be as discriminant as that in other categories. Future work should focus on
this problem to improve the performance balanced to each class.

4.2 Experiments on GENKI

For real-life smile expression analysis, we perform our experiments on GENKI-
4K [28], a subset of the images using in [29]. The database consists of 4000 web
images captured in real-world (2162 “smile faces” and 1838 “non-smile faces”).
Following the experimental settings in [30], the faces are normalized to 48x48
pixels based on eyes locations. Then we construct 4 equal subsets by sampling
at intervals of 4 to adopt 4-fold cross-validation. We still apply HOG for feature
descriptor and LFW for unlabeled reference dataset. Using linear kernel SVM
(LIBSVM [25]) as in [30], we obtain results shown in Table. 2(a).

We observe only slight improvements by adding unlabeled data. The rea-
son may be that our method is not suitable for this experimental condition
with large size labeled training data. To make our experiments more challeng-
ing, we pick up all the 689 faces with large head pose ranging in (−50◦,−20◦)
and (+20◦,+50◦) [30] to verify the proposed method. This subset satisfy our
assumption that the data are relatively “sparse” with large variation. To adopt
cross-validation, simply we construct 2 approximately equal subsets by sampling
at intervals of 2 (Fold1: 345 for training and 344 for testing; Fold2: 344 for train-
ing and 345 for testing). The same feature descriptor and same classifier are
explored in the experiments. As seen from Table. 2(b), which demonstrates that
more significant improvement is achieved by using unlabeled data.
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Table 2. The experimental results on GENKI. (a) The results of different approaches
compared to [30] (on 4000 images). (b) The results based on only 689 large pose faces.

Approach
Accuracy(%)

Feature Dimension Classifier

[31]

Gabor 23040 SVM 89.68±0.62
LBP 944 SVM 87.10±0.76

Raw Pixel Values 2304 SVM 81.45±0.32
Pixel Comparison 500 Adaboost 89.70±0.45

HOG(labeled) 1200 SVM 91.85±0.97
HOG(labeled+unlabeled) 1200 SVM 92.26±0.81

Labeled data Labeled + 
Unlabeled data

Fold1 85.75% 88.37%
Fold2 87.82% 90.12%
Avg 86.78±1.46% 89.24±1.23%

(a) (b)

5 Conclusion

Recognizing facial expression in the wild is an interesting and challenging prob-
lem in many applications. To cope with such complicated problem, one of the
solutions may be training on a large amount of labeled data, which are difficult
to collect in real-world scenarios. In this paper, we propose to augment small
size labeled set with unlabeled data by iteratively searching the “discriminant”
samples under a semi-supervised framework. To evaluate the method, we perfor-
m our experiments on the latest wild expression databases SFEW and GENKI.
The results show that the proposed method can effectively exploit unlabeled
data to improve the performance on real-world expression recognition.
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