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Abstract. Human-Namable visual attributes are promising in leverag-
ing various recognition tasks. Intuitively, the more accurate the attribute
prediction is, the more the recognition tasks can benefit. Relative at-
tributes [1] learns a ranking function per attribute which can provide
more accurate attribute prediction, thus, show clear advantages over
previous binary attribute. In this paper, we inherit the idea of learning
ranking function per attribute but propose to improve the algorithm in
two aspects: First, we propose a Relative Tree algorithm which facilitates
more accurate nonlinear ranking to capture the semantic relationships.
Second, we develop a Relative Forest algorithm which resorts to random-
ized learning to reduce training time of Relative Tree. Benefiting from
multiple tree ensemble, Relative Forest can achieve even more accurate
final ranking. To show the effectiveness of proposed method, we first
compare Relative Tree method with Relative Attribute on PubFig and
OSR dataset. Then to verify the efficiency of Relative Forest algorithm,
we conduct age estimation evaluation on FG-NET dataset. With much
less training time compared to Relative Attribute and Relative Tree, pro-
posed Relative Forest achieves state-of-the-art age estimation accuracy.
Finally, experiments on the large scale SUN Attribute database show the
scalability of proposed Relative Forest.

1 Introduction

Recently, computer vision researchers have proposed to explore human-namable
visual attribute as a valuable semantic cue to boost the performance of tradi-
tional recognition tasks [2–5] or enable various new applications [6–10]. While
visual attribute shows encouraging capacity in enhancing the robustness of real-
world face [2], human [3] and object [4, 5] recognition, the ever growing interest
in attribute-centric modeling is even more popularized by its intuitive appeal to
facilitate nature image describing [6–8] and knowledge transferring [9, 10].

Notwithstanding the great potential of attribute-centric modeling, few works
are devoted to generate informative attribute predictions. Most of existing work [2–
10] modeled attribute as binary property and predicted its presence. Although bi-
nary prediction is adequate for some attributes, such as having horn and wearing
glasses, it is too restrictive and unnatural for a large variety of other attributes,
such as human age and object size. As indicated in [1], describing using relative
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visual properties is a much more informative and effective way for humans to
recognize specific objects. Even for properties which are commonly regarded as
binary, relative description can provide more information about the image. For
example, it is better to describe a scene of country road as “more manmade
than a scene of mountains but more natural than tall building” than simply
categorize it as natural or manmade. To model such relationship of a given at-
tribute between different classes, Relative Attribute learns a ranking function for
each attribute. By estimating a continuous ranking score rather than a binary
presence, Relative Attribute can provide much more informative description to
enhance subsequence recognition or other tasks. However, since only a linear hy-
perplane is learned as ranking function, Relative Attribute may not be capable
in handling high dimensional nonlinear data.

In this paper, we focus on efficiently generating informative attribute predic-
tions. Inheriting the elegant idea of learning ranking function per attribute with
ordered or similar constraints, we propose to improve Relative Attribute in two
aspects: 1) Facilitates more accurate nonlinear ranking to cope with high dimen-
sional visual features lying on nonlinear manifold; 2) Reduces time complexity
to handle large scale data set. To achieve the first goal, we employ Relative
Attribute as base ranking function to construct a Relative Tree according to
maximal information gain criterion [11]. Due to the hierarchical tree structure,
the proposed Relative Tree can efficiently capture the complex nonlinear struc-
ture of feature manifold and generate a piecewise linear ranking function to rank
the nonlinear data accurately. Although only linear ranking function is employed,
our method can automatically discover the intrinsic nonlinear structure of the
data manifold and adapt to arbitrary data distributions. To accomplish the sec-
ond goal, which is essential for scaling the algorithm up to handle more realistic
dataset such as [12] and [13], we first resort to randomized learning to signifi-
cantly reduce the complexity of building single Relative Tree. Then borrowing
the idea of random forest [14], we combine multiple randomized Relative Tree to
construct a Relative Forest which can further boosts the ranking accuracy with
much less training time.

2 Brief Review of Relative Attribute

Before presenting proposed method, we briefly review Relative Attribute [1]. Un-
like most existing attribute-based methods, Relative Attribute learns a ranking
function rather than binary prediction per attribute. The key idea is to learn a
linear ranking direction to maximize rank margin between given pairs of exam-
ples.

Given a set of training samples X = {xk|k = 1, 2, ... ,K}, where K is the
number of training samples. For each attribute, an ordered constraint set O =
{on|on = (kn1, kn2), n = 1, 2, ..., N} and an similar constraint set S = {sm|sm =
(km1, km2),m = 1, 2, ...,M} are provided to depict the relationships between
pairs of samples. Where N is the number of ordered constraints and M is the
number of similar constraints. Each ordered constraint on ∈ O indicates that
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kn1 � kn2, i.e. sample kn1 has a higher presence of given attribute than kn2,
while each similar constraint sn ∈ S indicates that km1 ∼ km2, i.e. sample km1

has similar attribute presence with sample km2. Intuitively, the optimal linear
ranking direction w should satisfy the ordered and similar constraints as many
as possible. As this problem is NP-hard, non-negative slack variables ξn, γm
proposed in [15] are introduced to relax the problem to the final objective of
Relative Attribute:

arg min
w

(
1

2
‖ w ‖22 +C(

N∑
n=1

ξ2n +

M∑
m=1

γ2m))

s.t. wT (xkn1
− xkn2

) ≥ 1− ξn; ∀on ∈ O
|wT (xkm1 − xkm2)| ≤ γm; ∀sm ∈ S
ξn, γm ≥ 0,

(1)

where C is used to trade off between large rank margin and number of satisfied
constraints. By considering all margins between closest pairs of ordered samples,
the learned linear function w is much more suitable for ranking the data than
linear classification hyperplane learned from nearest binary-labeled samples. It
is important to note that the relative constraint used in Relative Attribute is
also more natural to depict some attribute which are hard to be quantized, such
as “smile face” and “open scene”.

3 Relative Tree

In this section, we propose to extend linear ranking algorithm, i.e. Relative
Attribute, to deal with nonlinear ranking. As introduced in [16], a set of tree
structured projections can hierarchically partition data into pieces in a manner
that is provably sensitive to low dimensional manifold structure. Inspired by
this idea, in section 3.1, we propose a method to facilitate hierarchical nonlinear
ranking by constructing a Relative Tree, in which Relative Attribute serves as
base ranking function(also referred to as splitting function) in each tree node.
Then in section 3.2 we present how to predict attribute with the constructed
Relative Tree.

3.1 Tree Construction—Hierarchical Ranking

The basic idea of Relative Tree is to learn a set of hierarchical ranking functions.
Then by traversing down the tree, a test sample can obtain gradually finer
ranking score. Although it is also possible to apply kernel trick to equation
(1) for nonlinear ranking, our method bears certain intuitive appeal that the
data-driven tree construction involves non hypothesis about data distribution.
And all leaf nodes actually consist a global piecewise linear ranking on origin
data manifold. Thus our proposed Relative Tree can cope with arbitrary data
distribution and automatically learns a set of piecewise linear ranking functions



4 S. Li et al.

 (a). Relative Tree (b). Hierarchical Ranking Functions 

④ ⑤ 

① ② ③ 

1 

2 3 

5 5 5 4 

5 5 

Global Scale plate 

Root Node 

Fig. 1. Learning procedure of Relative Tree(a) on a “S-shape” nonlinear manifold
and its corresponding set of Hierarchical Ranking Functions(b). Numbers in the circle
indicate train step index. Green color indicates non-leaf nodes while blue color indicates
leaf nodes. Ranking functions of all leaf nodes can be normalized to a global “scale-
plate” and generate final unified ranking score.

according to the intrinsic structure. We show a sample of construction procedure
of proposed Relative Tree on a “S-shape” manifold in Fig. 1, where Fig. 1(a) is
the learned hierarchical Relative Tree and Fig. 1(b) shows the learning steps.
The “S-shape” nonlinear manifold can be quantized into 5 approximate linear
part. Each of them falls in a dotted elliptical outline in Fig. 1(b). The ranking
function learned in the root node(See Fig.1(a)) is actually the result of Relative
Attribute algorithm [1]. As is shown, this ranking function(see Fig.1(b): 1©)
gives almost highest ranking score to the test sample indicated by the purple
star. Unlike Relative Attribute, besides of the global coarse ranking function,
Relative Tree automatically learns finer local ranking functions according to the
intrinsic structure of data. As a result, it can predict accurate ranking position
of the purple star localizing in the end of the third dotted elliptical outline.

For further clarification, we present the pseudo code of the tree construction
procedure in Algorithm. 1, in which there are two key problems remain to be
solved: 1) Whether the chosen node is divisible(Algorithm 1 Line: 1); 2) How to
find best split(Algorithm Line: 4).

Divisibility. If the presence of attribute is quantifiable, the ordered label can
be assigned to samples. In this circumstance, if all the data fall in a node have
the same label then this node is strictly indivisible. However, strictly indivisi-
ble is almost impossible. Therefore, in our algorithm, we determine a node as
indivisible if the entropy of the data falling in this node is less than a given
threshold. Once the threshold is small enough the performance will be satisfi-
able. On the other hand, if only some relative pairs of attribute presence degree
are provided, we determine a node as strictly indivisible when there is no ordered
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Algorithm 1 : Relative Tree Construction

Input:
Training features: X;
Ordered constraint set: O;
Similar constraint set: S.

Output:
Relative Tree: T .

1: if size(X)>Minimal Node size and X is divisible then
2: Calculate Relative Attribute: W = RelativeAttribute(X,O, S);
3: Calculate ranking score: R = WTX;
4: Find best splitting threshold b;
5: T.Data = (R,W, b);
6: Split training data: X(L) = {xk|Rk < b}, X(R) = {xk|Rk > b};
7: Split ordered constraint set:

O(L) = {on|xkn1 , xkn2 ∈ X(L)}; O(R) = {on|xkn1 , xkn2 ∈ X(R)};
8: Split similar constraint set:

S(L) = {sm|xkm1 , xkm2 ∈ X(L)}; S(R) = {sm|xkm1 , xkm2 ∈ X(R)};
9: Save left node (T.LeftNode,X(L), O(L), S(L)) as a splitting candidate P ;

10: Save right node (T.RightNode,X(R), O(R), S(R)) as a splitting candidate P ;
11: Find best splitting node (T,X,O,S) in pool P ;
12: Repeat steps 1–15;
13: else
14: T = NULL;
15: end if
16: return T ;

pairs between training samples fall in this node. In real world case, when the
ratio of ordered samples which is at least relate to another sample under ordered
constraint exceeds a given threshold, we determine this node as divisible.

Split criterion. Once the node is determined as divisible, we need to find the
best split to partition the data. To achieve this goal, we first employ Relative
Attribute algorithm [1] to learn a linear ranking direction. If ordered label is
available, similar to [11], we calculate optimal splitting threshold b to split the
data based on maximal information gain criterion:

argmin
b

∆E(b) = E(X)− |X
(L)|
|X|

E(X(L))− |X
(R)|
|X|

E(X(R)), (2)

where E(X) is the Shannon entropy of the classes in the set of samples X.
X(L)/X(R) is the sample data partitioned to the Left/Right child node. If only
partial relative pairwise constraints are available, we choose optimal splitting
threshold b which separates maximal number of ordered pair and maintains
maximal number of similar pair:

argmin
b

∆I(b) = I(O,S)− |X
(L)|
|X|

I(O(L), S(L))− |X
(R)|
|X|

I(O(R), S(R)), (3)
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where I(O,S) = |O| − |S|, |O| is the number of ordered constraint on X and
|S| is the number of similar constraint on |X|. Intuitively, the more the ordered
pairs and less similar pairs, the more uncertain the data is. In other words,
I(O,S) ∝ E(X). It is true that more complex and accurate approximation of
E(X) can be made with O and S. In this paper, we simply use the heuristic
approximation given out by equation (3).

At last, we analyze time complexity of proposed Relative Tree. As mentioned
in the last paragraph of section 2, the time complexity of Relative Attribute
is O(K3). For proposed Relative Tree, in the best case, i.e. we get a complete
binary tree and at each node the data is equally distributed to left and right

nodes, the complexity is
∑logK

2
i=0 2iO((K

2i )3) = O(K3). Indeed, if the training data
do not severely biased or ordered constraint are uniformly distribute on samples,
our method tends to choose balanced split. In our experiments, consuming time
of constructing a Relative Tree is approximately 3.5 times of training a Relative
Attribute in average.

3.2 Tree Prediction—Ranking Score Normalization

With the learned Relative Tree, a test sample get gradually finer ranking by
traversing down the tree(see Fig. 1(a)). Unlike classical decision tree, which
averaging(regression) or voting(classification) training data’s labels falling in leaf
nodes to generate predictions of test samples, the relative tree will calculate
ranking score of the test sample using the leaf node’s ranking function. However,
the ranking score calculated in different leaf nodes(see Fig. 1) is incomparable
since these functions are trained with disjoint subsets of original training set,
thus we need to normalize the ranking results obtained by different ranking
functions in a Relative Tree. The basic idea is to normalize all the ranking score
with a unique global “scale plate”. If the ordered label is available, the unique
global “scale plate” can be directly set as the corresponding label of the data,
then the normalization parameter of given ranking function can be obtained by:

arg min
s,b

∑
‖li − s · (ri − b)‖22, (4)

where l is the ordered label vector and r is the ranking score vector obtained
in training step(see Algorithm 1 Line: 3). s and b are normalization parameters
which are used to map local rank value to global ”scale plate”. For the situation
when only partial ordered pairwise constraints are given, we can set the unique
global “scale plate” as [0, 1]. We show detailed normalization in Algorithm 2.

After score normalization, the proposed Relative Tree algorithm can gener-
ate a global ranking score, thus facilitate adaptive piecewise linear ranking on
nonlinear data.

4 Relative Forest

Although Relative Tree facilitate more accurate nonlinear ranking, it may suffer
from over-fitting and is time consuming. In this section, we propose Relative



Relative Forest for Attribute Prediction 7

Algorithm 2 : Relative Tree Prediction without Ordered Label

Input:
Relative Tree: T ;
Test sample: x.

Output:
Ranking score of give sample: Rx.

1: binf = 0; bsup = 1
2: while T!=NULL do
3: (R,W, b) = T.Data
4: Calculate ranking score of test sample: rx = WTx
5: Normalize training set ranking score to global unique ”scale plate”:

R⇒ [binf , bsup], accordingly b = Norm b, rx = Norm rx
6: if rx < b then
7: T = T.LeftNode; bsup = Norm b
8: else
9: T = T.RightNode; binf = Norm b

10: end if
11: end while
12: Rx = Norm rx
13: return Rx;

Forest algorithm based on Relative Tree. Resorting to randomized and ensemble
learning, compared to Relative Tree, the proposed Relative Forest obtain even
more accurate prediction of attribute while consuming significantly less training
time.

4.1 Randomized Learning

In original random forest algorithm [14] and its extending works [17, 18, 11] Ran-
domness usually injected at three aspects during training: 1) bootstrap subset
of training data to grow each random relative tree; 2) choose subset of feature
dimensions for calculating splitting function f ; 3) use random splitting threshold
b. In the proposed Relative Forest, we employ first two randomization strategies
but select a optimal splitting threshold b based on equation (2) or (3).

Additionally, we develop a specific randomized learning strategy for Relative
Attribute which serve as node splitting function. As mentioned in the last para-
graph of section 2, the total number of relative constraints is O(K2). When K
is large, the number of pairwise constraints becomes untractable. We propose to
randomly pick a subset of constraints for optimizing equation (1). Intuitively, we
want every sample at least related to another sample with one order constraint
and one similar constraint. Suppose that there are c different ordered levels for
a given attribute, and in each level n samples are given. Thus totally K = cn

samples are provided. In this case, there are totally |O| = c(c−1)
2 n2 ordered con-

strains, in which totally |Oi| = (c − 1)n ordered constraints are related to a
given sample i. Then by randomly selecting mK ordered constraints, it is easy
to see that when K � 1, the probability that none ordered constraints include
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sample i is selected is [1 − |Oi|
|O| ]

mK ≈ e−2m. For similar constraints, the same

criterion also holds. Thus in our experiments, we set m = 2, in other words,
only randomly choose 2K ordered and similar constraints respectively. And the
corresponding probability for each sample to be selected in at least one ordered
(or similar) constraint is 1− e−4 = 0.9817. As only O(K) comparing to original
O(K2) constraints are used, when K is very large this strategy can significantly
reduce the number of used constraints. These randomized learning strategies not
only speed up the training procedure but also reduce over-fitting [19].

4.2 Tree Ensemble

With randomized learning strategies we can build a Relative Tree much more
faster. However, the ranking accuracy will degrade to some extent. To further
boost the performance, we average the ranking score obtained from different
randomized Relative Tree to generate the final prediction As all the rank scores
are normalized to a unique global ”scale plate”. The average step can be di-
rectly applied. Due to the randomization, ranking results of different trees are
independent. Thus the ensemble of different random Relative Tree improves the
estimation accuracy notably as the tree number increase.

5 Experiments

We conduct comprehensive experiments on four datasets: (1) Outdoor Scene
Recognition (OSR) Dataset [20] containing 2688 images from 8 categories; (2)
A subset of the Public Figure Face (PubFig) Database [2] containing 800 im-
ages from 8 random identities (100 images each); (3) FG-NET Face Aging (FG-
NET) Dataset [21] containing 1002 images form 82 individuals; (4) Sun Attribute
Dataset [12]. For OSR and PubFig dataset, we use exactly the same attributes
and data introduced in [1] with exactly the same feature and training\test dis-
tribution. For FG-NET, we simply use age as ordered label and conduct leave-
one-out experiments according to the evaluation protocol, and for Sun Attribute
database We use all 87 attributes collecting in ’asymmetric’ splits, but reorga-
nize the train/test split to demonstrate the capability of Relative Forest in large
scale scenario. For each attribute, we use all image data which receive at least 2
votes as the positive data and randomly select data which receive 0/1 vote as the
negative data. We set N0 = N1 = N2 +N3 (N0, N1, N2 and N3 are the numbers
of selected samples receiving 0, 1, 2, 3 vote(s) respectively). Then 5 fold cross
validation is constructed for evaluation.

5.1 Relative Tree vs. Relative Attribute

We use the data provided by authors of [1] to conduct experiments in this subsec-
tion. For an image pair (i, j) in a test set (2648 images for OSR, 560 for PubFig),
we compare ranking scores obtained by different methods namely B-SVM(binary
SVM), SVR, RA(Relative Attribute) and RT(Relative Tree). If R(xi) > R(xj)
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Table 1. Relative Accuracy on OSR Dataset(%).

Natural Open Perspective Large Diagonal Close

B-SVM 91.10 86.06 78.98 65.01 80.77 87.20
SVR 94.01 90.42 85.51 86.17 86.87 87.34

RA [1] 94.40 91.01 85.08 86.39 87.52 88.71
RT 95.24 92.39 87.58 88.34 89.43 89.54

Table 2. Relative Accuracy on PubFig Dataset(%).

Masculine White Young Smiling Chubby Forhead

B-SVM 70.12 64.64 75.49 66.97 59.37 76.50
SVR 75.36 69.98 76.25 76.58 72.34 85.79

RA [1] 81.00 77.31 81.05 79.66 76.14 87.91
RT 85.33 82.59 84.41 83.36 78.97 88.83

Eyebrow Eye Nose Lips Face

B-SVM 69.05 74.90 66.29 74.52 74.25
SVR 75.22 77.08 69.14 71.86 74.23

RA [1] 78.89 80.72 74.84 78.07 80.46
RT 81.84 83.15 80.43 81.87 86.31

we predict i � j else i ≺ j, then this prediction are compared to the ground-truth
relative ordering. The accuracy of predictions is shown in Table 1 (OSR) and Ta-
ble 2 (PubFig). As seen, the proposed Relative Tree outperform all competitive
algorithms in all given attributes.

As mentioned in section 3.2, once ordered label is given, we regard it as
unique global ”scale plate” and normalize the ranking score according to it. In
this circumstance, the normalized ranking score of test sample can be directly
compared with given ordered label of each individual using Euclidean distance
in order to recognize it. With this simple method, recognition accuracy using at-
tribute prediction of Relative Tree is 84.37% and 70.24% on the OSR and PubFig
datasets, respectively, as compared to 77.40% and 65.54% if using ranking score
obtained by Relative Attribute.

5.2 Relative Forest vs. Relative Tree

We compare Relative Forest to Relative Tree in two aspects: Prediction Accuracy
and Time Consumption. The evaluation is conducted on the FG-NET data set.
Images of the first person (15 images) in this data set are used as the test set, and
images of all the other person (987 images) are used for training. Mean Absolute
Error(MAE) is used to evaluate the estimation accuracy. The evaluation results
are shown in Fig. 2. The dotted green line is the results of Relative Attribute
with the score normalization using equation (4). The dotted blue line is the
results of Relative Tree and the solid red line is the results of Relative Forest.
In Relative Forest, we randomly bootstrap 40% samples with replacement for
each tree. In tree construction step, 30% features are randomly selected to train
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Fig. 2. Age estimation result of Relative
Forest as the tree number increases.
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Fig. 3. Analysis of selected feature
number of Relative Forest.
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Fig. 5. Analysis of bootstrap sam-
ple number of Relative Forest

splitting function, i.e. Relative Attribute. We try 10 times and select the best
based on information gain criterion [11]. When the size of forest grows larger
than 5, Relative Forest performs consistently better than Relative Tree. For each
method, we repeat the algorithm 10 times and calculate mean consumption time.
The consumption times are 121.8s and 417.7s for Relative Attribute and Relative
Tree respectively. When the number of tree is 20, Relative Forest consumes 60.3s.

We also analyze effect of three kinds of randomization introduced in subsec-
tion 4.1. The corresponding key parameters are: 1)number of bootstrap samples
for training each single tree (see Fig. 5); 2)selected dimensions for training Rela-
tive Attribute in node splitting step (see Fig. 3); 3)selected number of constraints
used in training Relative Attribute (see Fig. 4). Note that the default parameters
of tree number, bootstrap proportion, mTry Ratio and constraint number are
20, 40%, 30% and 2K respectively. When analyzing one parameter, we fix the
other three.

5.3 Relative Forest for Age Estimation

We conduct facial age estimation on FG-NET dataset. Similar to [22], we first
use OLPP [23] to extract informative feature from gray scale face image, then
use proposed Relative Forest to predict age of subjects. The MAE results of
our method and state-of-the-art age estimation methods [24–26, 22] are shown
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Table 3. MAEs Comparison on FG-NET aging database.

Methods
OHRanker

[24]
MTWGP

[25]
MHR [26]

LARR
[22]

SVR [27]
Relative
Forest

MAEs 4.48 4.83 4.87 5.07 5.79 4.45±0.02

in Table 3. With the same features used in [22], our method achieve the best
MAE result on FG-NET database. With the same feature we used, MAE result
of Support Vector Regression(SVR) is also shown in Table 3 for more clear
comparison.

5.4 Relative Forest for Large Scale Attribute Prediction

We also present results on the SUN attribute database [12]. GIST feature is used.
All three comparison methods predict continuous label. We set an attribute as
present if predicted label is larger than 0.5. We calculate all 87*5 prediction accu-
racies, and the mean accuracies are: AccSV R = 67.78;AccRA = 68.29;AccRF =
69.57;. Note that for Relative Attribute method we simply sample part of the
data and part of positive and negative constraints to train ranking function, or
it cannot scale to such large scale testing.

6 Conclusion

Human-Namable visual attribute bears intuitive appeal in strengthening object
recognition, facilitating zero shot learning, enabling knowledge transfer and im-
age describing, which make the accurate estimation of attribute in large scale
scenario especially important. Aiming at efficiently predicting accurate relative
attribute, we first propose Relative Tree to facilitate more precise nonlinear rank-
ing, and then propose Relative Forest to further boost the performance while
significantly reducing training time.

7 Acknowledgements

This work is partially supported by Natural Science Foundation of China (NSFC)
under contract Nos. 61025010, 61173065, and 60833013; and Beijing Natural Sci-
ence Foundation (New Technologies and Methods in Intelligent Video Surveil-
lance for Public Security) under contract No. 4111003.

References

1. Parikh, D., Grauman, K.: Relative attributes. In: ICCV. (2011) 503–510
2. Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for

face verification. In: ICCV. (2009) 365–372



12 S. Li et al.

3. Yao, B., Jiang, X., Khosla, A., Lin, A., Guibas, L., Fei-Fei, L.: Human action
recognition by learning bases of action attributes and parts. In: ICCV. (2011)
1331–1338

4. Wang, J., Markert, K., Everingham, M.: Learning models for object recognition
from natural language descriptions. In: BMVC. (2009)

5. Wang, G., Forsyth, D.: Joint learning of visual attributes, object classes and visual
saliency. In: ICCV. (2009) 537–544

6. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: CVPR. (2009) 1778–1785

7. Bourdev, L., Maji, S., Malik, J.: Describing people: A poselet-based approach to
attribute classification. In: ICCV. (2011) 1543–1550

8. Siddiquie, B., Feris, R., Davis, L.: Image ranking and retrieval based on multi-
attribute queries. In: CVPR. (2011) 801–808

9. Fergus, R., Bernal, H., Weiss, Y., Torralba, A.: Semantic label sharing for learning
with many categories. In: ECCV. (2010) 762–775

10. Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes
by between-class attribute transfer. In: CVPR. (2009) 951–958

11. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. In: CVPR. (2008) 1–8

12. Patterson, G., Hays, J.: Sun attribute database:discovering, annotating, and rec-
ognizing scene attributes. In: CVPR. (2012) 2751–2758

13. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database: Large-scale
scene recognition from abbey to zoo. In: CVPR. (2010) 3485–3492

14. Breiman, L.: Random forests. Machine learning (2001) 5–32
15. Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD.

(2002) 133–142
16. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of mani-

folds using random projections. In: NIPS. (2007) 473–480
17. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine learning

(2006) 3–42
18. Bosch, A., Zisserman, A., Muoz, X.: Image classification using random forests and

ferns. In: ICCV. (2007) 1–8
19. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees.

Neural computation (1997) 1545–1588
20. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation

of the spatial envelope. IJCV (2001) 145–175
21. FGNET: The fg-net aging database. http://sting.cycollege.ac.cy/ alani-

tis/fgnetaging/index.htm (2002)
22. Guo, G., Fu, Y., Dyer, C., Huang, T.: Image-based human age estimation by

manifold learning and locally adjusted robust regression. TIP (2008) 1178–1188
23. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition.

TIP (2006) 3608–3614
24. Chang, K., Chen, C., Hung, Y.: Ordinal hyperplanes ranker with cost sensitivities

for age estimation. In: CVPR. (2011) 585–592
25. Zhang, Y., Yeung, D.: Multi-task warped gaussian process for personalized age

estimation. In: CVPR. (2010) 2622–2629
26. Qin, T., Zhang, X., Wang, D., Liu, T., Lai, W., Li, H.: Ranking with multiple

hyperplanes. In: SIGIR. (2007) 279–286
27. Chang, C., Lin, C.: Libsvm: a library for support vector machines. TIST (2011)

27


