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Abstract. Video segmentation with spatial priority suffers from inco-
herence problem, since the presegments of consecutive frames may be
very different. To address this problem, this paper proposes an effective
and scalable approach for video segmentation, aiming to cluster video
pixels that are coherent in both appearance and motion. We build up a
multi-layer graph based on multiple segmentations of the video frames,
where each presegment corresponds to a vertex in the graph and each
layer corresponds to the segmentation result using mean shift algorithm
under specific granularity. Three types of edges are connected in the
graph and the corresponding affinities are defined which convey local
grouping cues of intra-frame, inter-frame and inter-layer neighborhoods.
Then the task of video segmentation is formulated into graph partition,
which can be solved efficiently by power iteration clustering algorithm.
Both qualitative and quantitative experimental results demonstrate the
efficacy of our proposed method.

1 Introduction

Segmentation is an important research topic in computer vision. Video Segmen-
tation generalizes the concept of Image Segmentation to spatio-temporal space
and aims to cluster pixels, which are coherent in both appearance and motion,
into volumes. It is fundamental for many high-level computer vision tasks such as
region-based video coding, object tracking, activity recognition, motion analysis,
3D scene analysis, and content-based retrieval.

Existing video segmentation methods can be classified into three categories.
1) video segmentation with temporal priority (a.k.a. motion segmentation) [1][2]
groups salient image feature trajectories, and then gets the label of every pixel
from these features. However, getting perfect feature trajectories relies on fea-
ture tracking which is also a hard problem. 2) simultaneous spatial-temporal
video segmentation in x-y-t space. Algorithms of this class are always general-
ized from image segmentation and can be divided into either non-graph-based
[3][4] or graph-based [5][6][7]. All of them directly deal with the large number
of pixels in the video, which is costly in both memory and computation time.
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3) video segmentation with spatial priority (a.k.a. layer extraction)[8][9][10] seg-
ments each frame at first, and matches these presegments across all frames.
During the past decades, image segmentation techniques have been widely stud-
ied and made great progress. Therefore it is prosperous to segment a video based
on the presegments of all frames, which is also the focus of this paper.

Unfortunately, for the real world images of the same scene, when captured
under slightly different conditions, their segmentation results could be very dif-
ferent. The unstable (or inconsistent) segmentation also exists for consecutive
video frames, leading to incoherent presegments. The second row of Fig.1 il-
lustrates this problem of mean shift segmentation on consecutive video frames.
Many image segmentation methods, besides mean shift, suffer from this issue,
which makes spatial prior video segmentation a big challenge. Several previous
works have tried to solve this problem. [9] maps and clusters homography ma-
trices between these presegments in a low dimensional linear subspace where it
is proven that they form well-defined clusters. [8] finds the optimal correspond-
ing region pairs through circular dynamic-time warping (CDTW), where the
motion properties are captured by homography matrices. Whereas, [10] directly
concerns about the region mismatch problem and matches presegments accord-
ing to partial matching cost which is based on affine transformations. All above
methods model the relationship between presegments in parametric ways, i.e.
homography matrix and affine transformation. Nevertheless, the inconsistency
problem results in very diverse regions whose relationship cannot be perfectly
captured using parametric models.

As shown in Fig.1, the coarser the segmentations, the more stable the results.
Inspired by the empirical experiments as well as several recent multi-layer image
segmentation approaches [11], we propose a new multi-layer spectral clustering
algorithm for video segmentation in this paper. The main contributions lie in
the following two aspects:

1. We present a non-parametric graph-based video segmentation method with
both spatial and temporal consistency. More specifically, we construct a
multi-layer graph over the initial segmentation results using mean shift al-
gorithm with different granularities, where the inter-layer affinities can ef-
fectively combine coarse-but-stable and fine-but-unstable details, and the
affinities between consecutive frames can provide local grouping cues across
temporal range. Note that [11] constructs a multi-layer graph similarly by
varying the parameters of the mean shift algorithm. The main differences be-
tween [11] and our method include: [11] focuses on integrating local grouping
cue in image segmentation, while ours focuses on high-quality video segmen-
tation with spatial and temporal consistency; in [11], both pixels and pre-
segments (regions) are considered as graph nodes while ours only considers
presegments, and the affinity measures are defined differently as well.

2. Our proposed method is efficient and scalable. We adopt spectral segmen-
tation framework [12][13][14] in this paper. Once obtained the affinities of
the multi-layer graph, we perform power iteration clustering [15], which is
fairly efficient, to get the final video segmentation. Moreover, we propose a
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Fig. 1. Mean shift segmentation on two consecutive video frames under different gran-
ularities (through parameter tuning). Top row: coarser segmentations. Bottom: finer
segmentations.

scale-up strategy to make our method feasible for high-resolution and long
video clips.

To summarize, our proposed method is effective, efficient, and scalable for real-
world video segmentation. Both qualitative and quantitative experiments verify
the efficacy of our algorithm.

The remainder of this paper is organized as follows. In Section 3, we describe
the multi-layer spectral clustering algorithm for video segmentation in detail.
Section 3 presents the experimental results. Section 4 concludes the paper.

2 Multi-layer Spectral Clustering for Video Segmentation

2.1 Multi-layer graph model

For graph-based segmentation algorithms, the final segmentation quality mainly
depends on the graph structure and affinities (edge weights). Therefore, to pro-
duce high-quality segmentation results with object-level details and frame-to-
frame consistence, it is very important to define graph affinities by integrating
spatial and temporal grouping cues.
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Traditional image segmentation approaches usually define a graph G = (V, E),
with V being the pixel set and the weights on E being appearance similarities be-
tween pixels. Here, we design a new multi-layer graph G* = (V*, E*), with each
layer corresponding to an initial segmentation result under specific granularity.
The nodes V* = U{Vt(l)}iié are the union of multi-parametric presegment
sets of a video clip (containing 2 frames as an simple illustration in this paper),

where the node subset Vt(l) corresponds to Nt(l) image segments of frame ¢ in
layer I. We use mean shift algorithm [16] with varying parameters to get the
presegments of all frames [17], which exactly construct the node set V* in the
multi-layer graph.

I (I+1})

r+1

74 (I+1)
t

(b) Connections between consecutive frames.

Fig. 2. The proposed multi-layer graph model. (This figure is better viewed in color.)

In graph G*, there are three types of undirected edges {efj € E*}, as shown
the red, green and orange lines in Fig.2, with the corresponding affinities defined
respectively as follows:

1. Intra-frame neighborhood affinity. Regions (i.e. presegments as men-
tioned above) sharing a common boundary within a frame at the same layer
are connected (marked by red lines in Fig.2(a)). Let R; and R; are intra-
frame neighboring regions, and f.(R;) and f.(R;) are their color histograms
respectively. The similarity between intra-frame neighboring regions, R; and
R;, is computed as a Gaussian function of the y? distance between the two
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histogram features, i.e.,
wij = exp(—0 - Dy(fe(Ri), fe(R;))), R € N*(Ry).

where 6 is a constant controlling the strength of the weight, and N*(R;)
represents the spatial neighborhood of region R;.

. Inter-layer neighborhood affinity. Regions from the same frame but in
adjacent layers may be neighbors as well. Let Rj denote the region with
black bold boundary in Vt(l), as shown in Fig.2(a). We shift Ry, to the frame
in Vt(lH) and get its spatial correspondence region Rk (Here, “means nonex-
isting region) in Vt(lH), which is specified with black dashed boundary, in-
tersecting with three regions, i.e., %;, R;, R,. Then, these three regions are
considered as in the inter-layer neighborhood of Ry, denoted as N'(Ry).
Thus, we connect them by green edges. We compute the affinity between a
lower-layer region R}, and its neighboring higher-layer region, R, for exam-
ple, as the overlapping percentage, i.e.,

- |Rk ﬁRp|
kp |Rk‘ )

where |Ry| is the number of pixels in region Rj. This affinity measure the
consistency of presegmentations with different parameters.

. Inter-frame neighborhood affinity. Regions at the same layer but in con-
secutive frames may have temporal overlap, thus can be connected by edges
representing the temporal relation (marked by orange lines in Fig.2(b)). Tak-

ing the region R; with black bold boundary in Vt(Hl) (as shown in Fig.2(b))
as an example, we compute the optical flow and estimate its location in the
next frame Vt(f{l) as region with black dashed boundary, which overlaps with
three regions. Thus, the three regions are in the temporal neighborhood of
region R;, i.e., € N'(R;), and connected with R; respectively using orange
edges.

To compute the affinity between neighboring regions in consecutive frames,
we resort to similarity between contour shapes [18], as shapes of the neigh-
boring region boundaries convey important information of whether they are
from the same object or not. One of the most popular shape descriptors is
shape context which is mainly used to recover point correspondences. In this
paper, we make use of the distribution over the tangent angles of all bound-
ary points of region R; as its shape feature, denoted as histogram fs(R;).
This shape descriptor is proved robust and discriminative enough for our re-
gion matching problem. Fig.3 gives some examples. The similarity between
R; and its temporal neighbor, R, for example, is computed as

wiq = exp(—7 - Dy (fs(Ry), fs(Ry))), Ry € Nt(Rj)'
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Fig. 3. Discriminative power of the shape descriptor. Some example shapes in the top
row and their corresponding shape histograms in the second row.

*.,1,5 € V* in the multi-layer graph can

To summarize, the edge weights wy;, 1,

be written as

tq eXp(fe ) Dx(fc(Ri)» fc(Rj))) Rj € Né(Rz)

|RiNR;| . HUR:
w;} _ t27|Ri‘l R; e Nt(Rl) 1)
t3(1 = 3Dy (fs(Ri), fs(Ry)))  R; € N'(R;)
0 otherwise

Here, t1, to and t3 are parameters to balance the three types of weights, with
t1 + t2 + t3 = 1. Note that the parameters # and 7 in spatial and temporal
similarity measures vanish away due to redundancy (with ¢; an ¢3 respectively).

2.2 Spectral Segmentation

Once we obtain the affinity matrix for the multi-layer graph W = [w}}], its
degree matrix D is a diagonal matrix with d;; = > j Wi;j, and the normalized
affinity matrix L = D~'W. Instead of adopting traditional spectral clustering
algorithm, we make use of a more efficient and scalable method, named Power
Iteration Clustering (PIC), to get the final segmentation result. To compute the
largest eigenvector of a matrix, Power Iteration method starts with an arbitrary

vector v # 0 and repeatedly performs the update v'*! = ﬁ It has been

proved that the intermediate vector v*, which stops after it has converged within
clusters but before final convergence, is an extremely good clustering indicator.
We define the velocity at ¢ as 6* = v —v'~!, then the acceleration is ¢! = §*—§* 1.
The power iteration stops when |e!| 22 0.
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The power iteration clustering method assigns a label k € {1, ..., K}, where
K is a user-defined parameter, to each presegment in our multi-layer graph. The
final segmentation is obtained from the clustering result of the lowest subgraph,
which is more coherent and keeps necessary details. The overall procedure is
summarized in Algorithm 1.

Algorithm 1 multi-layer spectral segmentation algorithm

Input: Video clip, and the number of clusters K.
Output: Video segmentation result.

1. Construct a multi-layer graph G*, calculate the weight matrix W* according to
Eq.(1), and compute D and L.

2. Pick an initial vector v°, repeat set v**! =

t, untill |§* — §* 71 = 0.

Cluster v’ into K clusters via K-means clustering algorithm.

4. Assign the presegment region R; to cluster k if and only if element i of the vector
v' is assigned to cluster k.

5. Output the segmentation result in the lowest layer.

Lot
[[Lot]ly

and 8" = |o' ! —v!|, increment

w

2.3 Scaling Up Method

The multi-layer spectral segmentation algorithm is successful in producing co-
herent segmentations for a variety of videos. However, as it defines a graph based
on multi-layer presegments, there is restriction on the spatial and temporal size
of the video that it can process. To overcome this bottleneck, we design a scaling
up method. We segment video into several spatial-temporal volumes, which are
actually very coarse segmentations. Next, we segment each volume using Algo-
rithm 1. Performing multiple passes over the disjoint volumes, we can obtain an
identical result with the original algorithm.

3 Experimental Results

This section presents our quantitative and qualitative evaluation results of the
proposed method on a wide range of videos.

As for parameter setting, the initial mean shift segmentation parameters and
the number of total segments K are chosen empirically according to the video
contents. t1, o, t3 can be chosen to put the three kind of affinities into comparable
ranges. In our experiments, they are not sensitive within a reasonable variations,
so we simply set them all to 1/3 to get the following results.
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3.1 Qualitative Results

We compare our algorithm with the baseline segmentation algorithm and the
related state-of-the-art methods over a wide range of videos. Some examples are
shown below.

(b) Army Sequence

Fig. 4. Comparison with [16] on two sequences. From top to bottom rows: original
sequence; results of [16]; our segmentation results.

Fig.4 shows the comparison results of our method with the baseline mean
shift segmentation algorithm [16]. Apparently, our method gives coherent seg-
mentations on the two videos, while the results of [16] are meaningless. Note that
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Fig. 5. Comparison with [10] and [8] on House, Kwan, and Walking sequence(listed
from top to bottom rows), from left to right columns: original sequence; results of [10];
results of [8]; results of our algorithm.
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our method not only identifies regions occupied by different moving objects, but
also gives consistent segmentations in the dynamic texture area, e.g. the flower
bed in (a).

Fig.5 compares our results against [10] and [8] on three video sequences. Our
segmentation retains more important details without losing the overall meaning
of the scene: top of the chimney and windows in House, stand in Kwan and the
person and background in Walking. Looking at the walking person further, we
segment the whole person out, but [10] merges face with background and [8]
segment the person into upper and lower body. When it is to the background,
our method gives more sound regions of wall and road without outthrust in the
results of the other two.

3.2 Quantitative Results

Most existing work on video segmentation presentsonly qualitative evaluation,
such as [3] [6] [9] [10]. We can’t deny that quantitative evaluation for video
segmentation is really a big challenge. The main problem is that there is no
unique segmentation of a video clip, and then we could not obtain the convincing
ground truth.

Nevertheless, there are some trials on quantitative evaluation on object seg-
mentation in videos [8] [19]. Inspired by these works, we choose segmentation
covering introduced by [20] to measure the accuracy of object-oriented video
segmentation, as did in [19]. Given a ground truth segmentation S and another
segmentation S’ using some method, the covering of S by S’ is defined as

C(S' > 8) = = 3" |R| - max d(R, '), )
N fes Res
where N denotes the number of pixels in the image frame. d(R, R’) is the Dice
coefficient in 3D between the labeled spatio-temporal segments R and R’ and
its computed as |[R( R'|/|RJ R/

We use segmentation covering (Equation 2) to quantitatively evaluate our
proposed method on human segmentation in Activity videos [21]. This database
consists of 10 human activities (including walking, jumping, hand-waving, run-
ning, etc.). Each activity includes 9 videos, and each video consists of 30 to 120
frames. In all videos, one person moves in front of a static background. The
ground truth of each video segmentation is obtained by manually labeling the
moving person and the background. Some sample frames from running sequence
and their ground truth are shown in Fig. 6.

In Table 1, we report the comparison results of our method with the baseline
Mean-shift segmentation algorithm [16] and the most related method, Video
Object Segmentation by Tracking Regions (VOSTR) [8] over 6 activity videos
(i.e. jump in place, walk, jump, gallop, wavel, and run). For each video, we give
the average segmentation covering and the corresponding standard deviation. As
can be seen, our method gives the best average segmentation coverings over all
videos with a little sacrifice in the standard deviation. So, considering the two
factors together, our approach slightly outperforms the other two.
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Fig. 6. Example frames from Activity video running in the top row and their ground
truth in the second row.

Table 1. Segmentation covering of the person and its corresponding standard deviation
(in parentheses) over frames in some activity videos obtained with mean-shift [16],
VOSTR [8], and Multi-layer (ours). The higher segmentation covering and the lower
standard deviation, the better. The best segmentation covering of each video is shown

in bold.

Method
eli-pjump

‘ Mean-shift ‘ VISOR ‘ Multi-layer ‘

eli-walk
ido-jump
ido-gallop
lena-wavel
lyova-run

0.64 (£0.07)
0.46 (+£0.16)
0.53 (£0.16)
0.67 (£0.02)
0.85 (40.03)
0.32 (+0.25)

0.75 (£0.07
0.35 (+0.23
0.44 (£0.28
0.49 (+0.25
0.54 (+0.38

)
)
)
)
)
0.07 (£0.06)

0.82 (+£0.10)
0.50 (+0.26)
0.57 (+0.18)
0.78 (+0.07)
0.91 (+0.04)
0.44 (+0.23)

4 Conclusion

In this paper, we propose an novel multi-layer spectral clustering algorithm for
video segmentation. The advantage of multi-layer graph model lies in providing
a non-parametric way to model relationship between presegments. We make use
of efficient power iteration clustering to get the final segmentation result and
design a simple scale-up method to make the algorithm more applicable for real
world problems. Experimental results show the priority of our method to some
related state-of-the-art methods.
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