
Locality-constrained Active Appearance Model

Xiaowei Zhao1,2, Shiguang Shan1, Xiujuan Chai1, and Xilin Chen1

1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology, CAS, Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
mathzxw2002@gmail.com,{sgshan,chaixiujuan,xlchen}@ict.ac.cn

Abstract. Although the conventional Active Appearance Model (AAM)
has achieved some success for face alignment, it still suffers from the gen-
eralization problem when be applied to unseen subjects and images. In
this paper, a novel Locality-constraint AAM (LC-AAM) algorithm is
proposed to tackle the generalization problem of AAM. Theoretically,
the proposed LC-AAM is a fast approximation for a sparsity-regularized
AAM problem, where sparse representation is exploited for non-linear
face modeling. Specifically, for an input image, its K-nearest neighbors
are selected as the shape and appearance bases, which are adaptively
fitted to the input image by solving a constrained AAM-like fitting prob-
lem. Essentially, the effectiveness of our LC-AAM algorithm comes from
learning a strong localized shape and appearance prior for the input facial
image through exploiting its K-similar patterns. To validate the effec-
tiveness of our algorithm, comprehensive experiments are conducted on
two publicly available face databases. Experimental results demonstrate
that our method greatly outperforms the original AAM method and its
variants. In addition, our method is better than the state-of-the-art face
alignment methods and generalizes well to unseen subjects and images.

1 Introduction

Face alignment is the process of moving and deforming a face model to match
with the input facial image, which plays an important role in many computer
vision problems, such as face recognition, facial expression analysis, face tracking
in video, etc. Among sizable literatures on face alignment, the Active Shape
Model (ASM) [1] and Active Appearance Model (AAM) [2] are the early popular
approaches which attempt to fit the facial image with a statistical generative
model.

As an extension of ASM, the power of AAM stems from statistically modeling
the shape and appearance variations simultaneously through principal compo-
nent analysis (PCA) on a set of labeled data. During the fitting procedure, the
AAM is aligned by finding the model parameters that minimizing the distance
between the observed and the synthesized facial appearance. As indicted by work
[3], the AAM performs well if trained to work with a limited number of known
subjects (e.g., person-specific Active Appearance Model). However, the align-
ment performance of AAM degrades quickly when it is trained on a large data
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set and fitted to images that were not seen during the training procedure. We
assert that this is mostly due to the fact that a single PCA model cannot well
capture the non-linear appearance variation of a large training set, which con-
tains larger variations (e.g., pose, expression, lighting, etc) than a small image
set. Specifically, the learnt PCA model just preserves the statistically significant
features of a training set, ignoring some subtle variations of images.

To tackle the generalization problem of AAM, two main kinds of approaches
are proposed: discriminative and generative. The first approach learns a discrim-
inative fitting function, which establishes a mapping between the facial appear-
ance and the correct alignment. For example, Boosted Appearance Model (BAM)
[4] exploits Haar-like features to model the appearance of faces, and learns a Gen-
tleBoost classifier to distinguish between correct and incorrect alignment. Then,
the correct alignment can be obtained by maximizing the classification score.
However, there is no guarantee that moving along the gradient of the learnt score
function will always improve the alignment [5]. In order to overcome this limi-
tation, Boosted Ranking Model (BRM) [5] proposes to learn a ranking function
which is concave within the neighborhood of the correct alignment. Given a pair
of images warped from different landmarks, the learnt GentleBoost-based rank-
ing classifier can inform which alignment is better. Furthermore, a non-linear
discriminative fitting approach is proposed by Saragih et al. [6], which learns
a non-linear multivariate regressor through Boosting and directly predicts the
update parameters in each iteration of AAM.

For generative approaches, there are many efforts to handle the multi-model
distribution of shapes and appearances. Typically, Gaussian Mixture Model
(GMM) is exploited to represent the non-linear shape and appearance varia-
tions [7, 8]. Specifically, in literature [8], the multi-model appearance variations
are captured by a mixture of probabilistic PCA (MPPCA) [9], noted as MPPCA-
AAM. Then, the AAM alignment problem is formulated as a maximum likeli-
hood problem, which can be easily solved by EM-algorithm. Besides the GMM
methods, manifold learning technique can also be utilized to learn a non-linear
prior for shapes and appearances [10]. However, the variations of facial shape
and appearance are too complex to be characterized by a parametric distribution
model.

In recent years, sparse representation is also utilized to model the complex
non-linear distribution of facial shapes instead of PCA [11]. In their method, a
novel Sparse Shape Composition model (SSC) is proposed to adaptively approx-
imate the input shape by a sparse linear combination of training shapes. The
effectiveness of SSC is validated on some real world medical applications. How-
ever, due to the high dimension (e.g., 40*50) of facial appearance, it is impracti-
cal to directly apply sparse representation to non-linear appearance modeling in
AAM, which results in a computation-cost problem. Moreover, the multiple it-
eration times (at least 10 times) in the AAM fitting procedure also increases the
computation cost. Fortunately, as empirically pointed by Yu et al., the results
of sparse representation tend to be local: nonzero coefficients are often assigned
to bases nearby to the encoded data [12]. So, the sparse representation-based
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method can be fast approximated by a K-nearest-neighbor (K-NN) search and
then solving a constrained least square fitting problem [13].

In this paper, inspired by the empirical observations of Yu et al., we first
reformulate the original Active Appearance Model as a sparse representation
problem and then approximate it through introducing locality constraint, briefly
called Locality-constrained Active Appearance Model (LC-AAM). Specifically,
for an input image, we first find its K-nearest neighbors as the face bases and
then adaptively fit to it by solving a constrained AAM-like fitting problem. The
effect of locality constraint is twofold: (1) Learning the shape and appearance
prior for the input facial image through exploring its K-nearest neighbors, which
have similar patterns (e.g., pose, expression, subject, etc.). The person-specific
AAM is just a special case of our LC-AAM, which requires that the images come
from one specific person. (2) The global non-linear facial shape and appearance
model is approximated by many localized linear models, which are specific to
the input images and result in a faster convergence. To demonstrate the effec-
tiveness of our method, comprehensive experiments are conducted by comparing
our LC-AAM method with conventional AAM-based methods (e.g., the popular
Inverse Compositional AAM (IC-AAM) [2], Simultaneously Inverse Composi-
tional AAM (SIC-AAM) [3], and MPPCA-AAM [8]) and the state-of-the-art
face alignment methods on two publicly available face databases, which contain
multiple subjects and cover large variations in pose, expression and lighting, etc.
Experimental results demonstrate that our proposed LC-AAM algorithm con-
vincingly outperforms the conventional AAM-based methods. In addition, our
method generalizes well to unseen subjects and images and is better than the
state-of-the-art face alignment methods on the above-mentioned evaluation sets.

The remaining part of this paper is organized as follows. Section 2 gives a brief
review of Active Appearance Model. Section 3 reformulates the original AAM
problem as a sparsity-regularized AAM problem, which is future approximated
by our Locality-constrained AAM algorithm. The formulation and implementa-
tion details are also presented in this section. Section 4 reports the experimental
results and also the comparisons with the state-of-the-art methods. Section 5
concludes the paper.

2 Review of Active Appearance Model

In this section, we will first introduce the shape and appearance modeling of
the conventional AAM, then describe the AAM-based fitting algorithm. Some
notations used in the following sections are also defined in this section.

2.1 Shape and Appearance Modeling

The AAM simultaneously characterizes the intrinsic variations of shape and
appearance as linear combination of basis models of variation.

The shape s of an AAM is represented by a set of 2D facial landmarks:
s = (x1, y1, x2, y2, . . . , xn, yn)T. The AAM allows a linear shape variation, which
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means that the shape instance s can be expressed as follows:

s = s0 +

M∑
i=1

αisi (1)

where s0 is the mean shape, si is the ith shape basis, and the coefficients α =
[α1, α2, . . . , αM ]T are the shape parameters to control the variation of s. The first
four shape bases are designed to represent the global similar transformations,
such as global translations in x and y direction, rotation, and scaling. The shape
model of AAM is statistically learnt from a training set with annotated facial
landmarks. Specifically, the training shapes are first geometrically aligned using
the Procrustes analysis. Then eigenanalysis is applied to the aligned training
shapes to obtain the mean shape and shape bases.

To learn the appearance model, each facial image I should be warped into
a “shape-normalized” frame, which is usually defined as the mean shape s0.
The warping function, noted as W (u;α), is usually defined as a piecewise-affine
warp from the mean shape s0 to the shape of facial image. Here, α are the
shape parameters of facial image I, and u = (x, y)T denote a set of pixels
lie inside the mean shape s0. So, the “shape-normalized” appearance of facial
image I is defined as I(W (u;α)). Then the AAM appearance model is computed
by applying PCA to the collected “shape-normalized” appearances. Similarly to
shape modeling, the appearance instance is generated using a linear combination
of L appearance bases:

A(u) = A0(u) +

L∑
i=1

βiAi(u) (2)

where A0(u) is the mean appearance, Ai(u) is the ith appearance basis, and the
coefficients β = [β1, β2, . . . , βL]T are the appearance parameters to control the
variation of A(u).

In the early literatures [14], the shape and appearance parameters are usually
concatenated and a second level PCA is applied to these concatenated parame-
ters to form a more compact representation. However, in this study, the shape
and appearance model are taken into account separately.

2.2 Model Fitting

The fitting of AAM is to estimate the optimal shape and appearance parameters
to minimize the discrepancy between the synthesized image A(u) = A0(u) +∑L
i=1 βiAi(u) and the observed facial image I(W (u;α)). Here, I is the test

image, and I(W (u;α)) represents the warped “shape-normalized” facial image.
Specifically, the AAM fitting algorithm is usually formulated as follows:

min
α,β

∑
u∈s0

[A0(u) +

L∑
i=1

βiAi(u)− I(W (u;α))]2 (3)
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where the sum is performed over all of the pixels u in the base mesh s0. The
goal of AAM fitting is to minimize the expression in Eq.(3) simultaneously with
respect to the shape parameters α and appearance parameters β.

Traditionally, Eq.(3) is solved by gradient decent method, which is compu-
tationally expensive. Recently, the computation cost of AAM fitting is greatly
saved by the popular Inverse Compositional (IC) algorithm (i.e., IC-AAM) [2],
in which the roles of the image and model are reversed and some time-consuming
steps in AAM fitting are pre-computed and remain fixed in the iteration pro-
cess. However, the IC-AAM only works well in the case that faces exhibit small
amounts of variations.

2.3 Limitations of Active Appearance Model

Briefly, there are two main limitations for the conventional AAM, which are
caused by the essentially non-linear variations of facial shape and appearance in
a large data set.

Firstly, it is impossible to capture the complex non-linear shape and appear-
ance variations of a large image set by just a single PCA model. Specifically, the
learnt PCA model usually extracts the statistically significant features of the
training set, ignoring some local details which are necessary for a more accurate
alignment.

Secondly, in the AAM fitting procedure, the relationship between the ap-
pearance error (i.e.,

∑
u∈s0 [A0(u) +

∑L
i=1 βiAi(u)− I(W (u;α))]) and the shape

parameter update (i.e., α) is assumed to be close to linear around the optimum,
which is only right in the case that the face appearance variation is very small.
However, it is hard to initialize the model parameters close enough to the correct
alignment without any shape and appearance priors for the test image.

3 Locality-constrained Active Appearance Model

In this section, to address the limitations of conventional AAM, it is reformulated
as a sparsity-regularized AAM problem, where sparse representation is exploited
to model the non-linear face representation of AAM. Subsequently, the sparsity-
regularized AAM is further approximated by our proposed Locality-constrained
AAM algorithm for a fast implementation.

3.1 Sparsity-regularized Active Appearance Model

In this study, it is assumed that the shape and appearance of faces can be
sparsely represented by faces of a large training set. Here, an explicit parametric
model (e.g., PCA) is no longer needed. The aligned training shapes and the cor-
responding appearances are directly used as the shape and appearance bases. In
this way, the original AAM is reformulated as the following sparsity-regularized
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AAM problem:

min
α,β
{
∑
u∈s0

[

N∑
i=1

βiAi(u)− I(W (u;α))]2 + λ1‖α‖l1 + λ2‖β‖l1} (4)

where N is the number of faces in the training set, s0 is the mean shape of all
training faces, Ai(u) is the “shape-normalized” appearance obtained by warped
the facial image to the mean shape s0, βi is the ith appearance model parameter,
α are the shape parameters, I(W (u;α)) is the observed “shape-normalized” ap-
pearance of the input facial image, and λ1, λ2 are the regularization coefficients,
which add sparse constraints to the shape and appearance parameters α and β
respectively.

During the fitting procedure of sparsity-regularized AAM, the “analysis by
synthesize” strategy is used to iteratively approximate the correct alignment.
In each iteration, the “shape-normalized” facial appearance is first warped ac-
cording to the current shape parameters α. With the fixed α and the observed
appearance I(W (u;α)), the appearance parameters β are calculated by solving
a l1 constrained optimization problem, Eq.(4). Then a new appearance is syn-
thesized by the calculated appearance parameters β. To calculate the updated
shape parameters, another l1 constrained optimization problem (i.e., Eq.(4) with

β and
∑N
i=1 βiAi(u) fixed), which aims to minimize the discrepancy between the

observed appearance and the synthesized appearance. The correct alignment can
be obtained until convergence or a maximum iteration number is reached.

However, as pointed out in section 1, the sparsity-regularized AAM is very
time-consuming due to the high dimension l1 optimization problem and multiple
iterations in the fitting procedure.

3.2 Approximated Sparsity by Locality Constraint

Inspired by the theory analysis and empirical observations by Yu et al. [12], the
sparse coefficients α and β in Eq.(4) tend to be local and images with larger
coefficients are more similar to the input image. So, to speed up the fitting
procedure of sparsity-regularized AAM, locality constraint is introduced by us
for a fast approximation.

Specifically, given an input image I to be aligned, the sparsity constraint in
Eq.(4) is replaced with our locality constraint, which is as follows:

min
α,β
{
∑
u∈s0

[

N∑
i=1

βiAi(u)− I(W (u;α))]2 + λ1‖d� α‖2 + λ2‖d� β‖2} (5)

where N is the number of faces in the training set, Ai(u) is the appearance basis
obtained by warping the train image to the mean shape s0, βi is the ith appear-
ance model parameter, α are the shape parameters, and λ1, λ2 are the regular-
ization coefficients. Specifically, d = [d1, d2, . . . , dN ] are the distances between
the input image I and the appearance bases A(u) = [A1(u), A2(u), . . . , AN (u)],
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Fig. 1. Original AAM (left) vs. Locality-constrained AAM (right). T0 is the mean
template the whole training set, Tk0 is the mean template of the K-nearest neighbors
of input image Ik.

which add larger weights to the appearance bases nearer to I. Symbol � denotes
the element-wise multiplication.

In practice, Eq.(5) is fast implemented by directly setting the coefficients of
the distant faces to be zero, i.e., selecting the K-nearest neighbors of I as the
shape and appearance bases, which is formulated as:

min
α,β

∑
u∈s0

[

K∑
i=1

βiAi(u)− I(W (u;α))]2 (6)

where K is the number of selected nearest neighbors. It is important to note
that s0 is the mean shape of the selected K-nearest neighbors.

Specifically, the optimization of Eq.(6) is similar to the conventional AAM-
based fitting, which can be solved by gradient decent algorithm or the popular
IC-AAM algorithm. Different from the conventional-AAM based methods, the
appearance model used in our LC-AAM algorithm is localized linear, where the
appearance variations are small and the relationship between the appearance
error and the shape parameters is close to linear.

Figure 1 intuitively interprets why our LC-AAM algorithm works better than
the original AAM. Specifically, in original AAM, the shape and appearance vari-
ations are characterized with a single Gaussian (PCA) model on the whole train-
ing set. However, the learnt PCA model cannot well characterize the non-linear
feature of the whole training set. In comparison, our LC-AAM algorithm learns
many localized linear models, which are specific for the input image, to approx-
imate the global non-linear face model. Essentially, a stronger prior is learnt by
exploring the K-nearest neighbors to constrain the shape and appearance sub-
space of input image. In addition, as illustrated in Figure 1, the input image Ik is
closer to the mean template Tk0 in LC-AAM, which is usually used to initialize
the facial shape parameters, than the mean template T0 in original AAM. So, it
is much easier to converge to the correct alignment.

In our implementation, the neighbor samples are determined according to
the measurement of the appearance similarity. Specifically, the face region is nor-
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malized by the automatically detected two eye centers [15, 16] and the Euclidean
distance is adopted to characterize the similarity of two faces. In addition, two
kinds of feature descriptors are exploited to compute the similarity of faces, e.g.,
Histogram of Oriented Gradients (HOG) [17] feature and gray intensity value of
image.

4 Experiments

In this section, we evaluate the effectiveness of our LC-AAM algorithm1 through
comparing it with the conventional AAM-based methods and other state-of-the-
art face alignment methods.

4.1 Databases and Evaluation Metric

Our evaluation experiments are conducted on two publicly available face data
sets. Set 1 is randomly collected from CMU-PIE [18], FRGCv1[19], FERET [20],
CAS-PEAL [21], and PubFig [22] face databases, which covers large variations
in pose, expression, lighting and image conditions, etc. Totally, there are more
than 7000 images in set 1 and 1500 images are randomly selected for testing,
noted as T1. Set 2 is collected from Cohn-Kanade face database [23], which
includes 486 image sequences (8796 static images) in nearly frontal view from 97
subjects. Each sequence begins with a neutral expression and proceeds to a peak
expression. To demonstrate that the generalization capability of our method, 80
subjects are randomly collected for training, and the other remaining 17 subjects
(consisting of 1519 images, noted as T2) for testing.

For evaluation metric, the normalized root-mean-squared error (NRMSE)
relative to the ground truth is adopted as the error measure for the face align-
ment. The NRMSE is given as a percentage, computed by dividing the root
mean squared error by the distance between the two eye centers. The cumula-
tive distribution function (CDF) of NRMSE is used to evaluate the performance
of face alignment algorithm.

4.2 Experimental Results

Comparisons with respect to Different Number of Neighbors To show
how our method is affected by the number of nearest neighbors. We conduct
our experiments on T1 using K=10, 20, 50, 100 respectively. Moreover, the gray
intensity is used to calculate the similarity of face images. From the experimental
results, as shown in Figure 2(a), it is observed that K=20 is better than the
other parameters. In addition, when a larger K is selected, the alignment results
become worse. So, in the following experiments, the number of nearest neighbors
is set to 20.

1 The matlab code of our LC-AAM algorithm can be found at
http://vipl.ict.ac.cn/members/xwzhao
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Fig. 2. Performance variation of LC-AAM with different parameter configuration.

Comparisons with Different Feature Descriptors In this subsection, two
kinds of feature descriptors are exploited to compute the similarity of image
pairs: HOG feature and gray intensity. Specifically, for HOG feature, the block
size, the number of orientation bins are set to 7×7 and 9 separately. The number
of nearest neighbors is set to 20 in the comparison experiments.

The comparison experiments are conducted on T1. Experimental results,
shown in Figure 2(b), demonstrate that the HOG feature is more suitable to
calculate the similarity of faces than the gray intensity feature. The reason is
that the HOG descriptor characterizes the boundary features of faces, eliminates
some noise contained in gray pixel values.

Comparisons with AAM and its Variants In this subsection, we compare
our algorithm with conventional AAM-based algorithms (e.g., IC-AAM, SIC-
AAM, and MPPCA-AAM, etc.) on the above-mentioned two data sets. Specifi-
cally, the dimensionality of the shape and appearance models for IC-AAM and
SIC-AAM is chosen by retaining 90% of the variance in the eigenvalues. For
MPPCA-AAM, the number of Gaussian components is set to 5, 10, and 20 re-
spectively. For our LC-AAM, the number of nearest neighbors is set to 20 and
the HOG feature is exploited to calculate the similarity of image pairs. Moreover,
the iteration number in the fitting procedure of all these methods is set to 25.

The comparison results are shown in Figures 3(a) and Figure 3(b), which
demonstrate that our method greatly outperforms the conventional AAM-based
methods. Specifically, in T1, which contains more pose variations than T2, our
method achieves at least 40% higher than other methods when NRMSE is less
than 0.1.

Comparisons with state-of-the-art Methods In this subsection, we com-
pare our algorithm with the state-of-the-art face alignment algorithms, such as
MPPCA-ASM [24], STASM [25], and CLM-CMU [26]. Specifically, the MPPCA-
ASM method is a kind of ASM-based approach, which exploits the mixture of
probabilistic principal component analysis (MPPCA) to model the shape vari-
ations. In our previous study, the MPPCA-ASM algorithm performs well when
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(b) Comparison results on T2.

Fig. 3. Comparisons with original AAM and its variant methods.

Fig. 4. Common facial landmarks of the evaluated methods.

the Gaussian component of MPPCA is set to 5, which corresponds to 5 differ-
ent pose intervals in yaw direction. So, the number of Gaussian components is
set to 5 in the following experiments. In our LC-AAM, the number of nearest
neighbors is set to 20 and the HOG feature is adopted to calculate similarity of
image pairs.

To perform a fair comparison, only the common 18 facial landmarks of these
methods are used for performance evaluation, as shown in Figure 4. The com-
parison results are shown in Figures 5(a) and Figure 5(b) respectively. It is
observed from the comparison results that our method greatly outperforms the
other methods on T1. On T2, our method is comparable with STASM and is bet-
ter than other methods. It is also interesting to note that the STASM algorithm
performs well on near-frontal facial images (T2) but fails to work on images
with large pose variation (T1). However, our method achieves consistently good
alignment performance on these two test sets. Figure 6 shows some visualized
example images of our method on challenging images.

5 Conclusion and Future Work

Instead of characterizing the facial shape and appearance distributions with a
single PCA model, the original Active Appearance Model is reformulated as a
sparsity-regularized problem. Then, based on the theory and empirical results
of Yu et al., the sparse representation problem is further approximated by our
Locality-constrained Active Appearance Model algorithm. For an input facial
image, a strong shape and appearance prior is learnt by exploiting its K-similar
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Fig. 5. Comparisons with state-of-the-art methods.

Fig. 6. Visualized example images of our method.

patterns. Essentially, the effectiveness of our LC-AAM stems from learning many
localized linear face model instead of a global non-linear face model. By com-
parison, the localized face model is more compact and much easier to converge
to the correct alignment. The effectiveness of our method is validated through
comprehensively comparisons with the original AAM method, the variant meth-
ods of AAM, and the state-of-the-art face alignment methods on two publicly
available face databases. In addition, our proposed method generalizes well to
unseen subjects and images than the original AAM and its variants.
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