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Abstract. In this paper, we explore the real-world Still-to-Video (S2V)
face recognition scenario, where only very few (single, in many cases) still
images per person are enrolled into the gallery while it is usually possible
to capture one or multiple video clips as probe. Typical application of
S2V is mug-shot based watch list screening. Generally, in this scenario,
the still image(s) were collected under controlled environment, thus of
high quality and resolution, in frontal view, with normal lighting and
neutral expression. On the contrary, the testing video frames are of low
resolution and low quality, possibly with blur, and captured under poor
lighting, in non-frontal view. We reveal that the S2V face recognition
has been heavily overlooked in the past. Therefore, we provide a bench-
marking in terms of both a large scale dataset and a new solution to
the problem. Specifically, we collect (and release) a new dataset named
COX-S2V, which contains 1,000 subjects, with each subject a high qual-
ity photo and four video clips captured simulating video surveillance sce-
nario. Together with the database, a clear evaluation protocol is designed
for benchmarking. In addition, in addressing this problem, we further
propose a novel method named Partial and Local Linear Discriminant
Analysis (PaLo-LDA). We then evaluated the method on COX-S2V and
compared with several classic methods including LDA, LPP, ScSR. Eval-
uation results not only show the grand challenges of the COX-S2V, but
also validate the effectiveness of the proposed PaLo-LDA method over
the competitive methods.

1 Introduction

Recently, the availability of affordable cameras and low cost storage devices has
contributed to a rapid increase in the usage of surveillance systems. Vast amounts
of video footage are continuously acquired to monitor government compounds,
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military installations, commercial sites, and private premises. As a result, various
video-based face recognition (VFR) applications, e.g., [1–5], emerged in recent
years. Among them, many works assume that both gallery and query set are
video sequences, for which this kind of application can be called Video-to-Video
(V2V) face recognition.

In contrast, Zhou et al. [6, 7] also defined a Still-to-Video (S2V) face recog-
nition scenario in which the gallery contains still image(s) while the probes are
video clips. In their work, however, the faces in still images are all low-resolution
as the faces in videos or even directly extracted from the videos in one of their
collected databases. But, in a real-world S2V face recognition application such
as mug shot based watch list, the still images is often captured by a high quality
digital camera under controlled environment while the videos are captured with
ordinary video recorder, which implies low quality and low resolution.

To simulate the above application scenario, in this paper, we believe that a
real-world Still-to-Video face recognition should be more emphasized on the fol-
lowing scenario: a face recognition system only enrolls one single high resolution
still image per person into the gallery, while a sequence of low resolution video
frames are used for probing. Evidently, the S2V scenario designed in this paper
is much more challenging and better fits real-world application, compared with
the scenario in previous work. To advance the research on this S2V scenario, we
also collect and release a dataset called COX-S2V database.

Due to intrinsic non-rigid transform and extrinsic uncontrolled environment,
human face images captured by video cameras from a distance often contain
nonlinear variations caused by variations in pose, illumination, or expression.
The difficulties are further increased when the resolution of the face images is
low, which is however typical in closed-circuit television systems. Furthermore,
misalignment would be more serious in the real-world scenario. Therefore, these
factors raise two key issues to be addressed : 1) How to match a high resolution
still image with low resolution video frames? 2) How to cope with those nonlinear
variations due to pose, illumination, expression and misalignment?

To address the first issue, to our best knowledge, there are three ways. The
first way (e.g.,[8]) is to extract the invariant discriminant information from low-
resolution images directly. The second way is a “two-step” based method (e.g.,
[9–11]) which first uses super-resolution (SR) techniques to enhance the image
before face recognition. The last way (e.g., [12–15]) no longer tries to recover
a visually improved high-resolution image, but to directly improve recognition
performance by learning a mapping between LR image and HR image.

However, as the resolution decreases more, most above methods may be-
come more vulnerable to environmental and intrinsic variations, such as pose,
illumination, expression and even misalignment. For the second issue, Arand-
jelovic et al. [16] proposed to extract signatures of illumination and pose from
genetic training faces to represent a shape-illumination manifold. Jia et al. [17]
developed a generalized face SR method for feature-domain reconstruction based
on multi-linear analysis, which is able to accommodate multiple factors such as
pose, illumination and expression.
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In this paper, to address the above two issues, we propose a Partial and Lo-
cal Linear Discriminant Analysis (PaLo-LDA) method. Briefly speaking, on one
hand, to match our proposed S2V scenario, we re-formulate the traditional L-
DA by partially weighting, i.e., emphasizing cross-resolution image pairs. On the
other hand, we also implicitly take the pose and lighting variations into account
by locally weighting, i.e., emphasizing image pairs with pose (i.e., near-frontal)
and lighting (i.e., normal lighting) similar to the still images in the gallery (i.e.,
frontal, normal lighting). Extensive experimental results demonstrate that our
PaLo-LDA method achieves better performance than most state-of-the-art meth-
ods on our COX-S2V dataset.

The remainder of the paper is organized as follows: Section 2 formulates the
proposed real-world Still-to-Video (S2V) face recognition problem and briefly
reviews the existing work. Section 3 presents our recently collected dataset COX-
S2V and the accompanying evaluation protocol in detail. Section 4 details the
proposed Partial and Local Linear Discriminant Analysis (PaLo-LDA) for S2V
face recognition. Section 5 presents our extensive experimental result on COX-
S2V dataset, followed by conclusions in Section 6.

2 Still-to-Video (S2V) Face Recognition: Problem and
Previous Work

2.1 Problem Formulation

As mentioned above, in a Still-to-Video (S2V) face recognition scenario, for
each person, generally there is only one high resolution still image enrolled for
each person while a set of low resolution video frames is available for probing.
Formally, the problem is defined as follows: Let S = {s1, s2, . . . , sns

} be the still
image gallery set, si is the gallery image of the ith person, xi ∈ <d, 1 ≤ i ≤ ns,
where d is the dimensionality or total pixels of each face sample and ns is the
number of persons in the gallery set. Assume V = {v1, v2, . . . , vn} is a query
person’s video sequence, n is total video frame number for the query person,
vj ∈ <d′

, d′ is the dimensionality (or total pixels) of video frames. The label of
V is inferred as follows:

c = arg min
i
d(si, V ). (1)

where d(si, V ) is a distance between the gallery still image si and the probe
video frame set V .

2.2 Brief Review of Existing Work

In the case of traditional video-based Face Recognition (VFR), both gallery and
query set are video sequences rather than still images. In this case, VFR can
be generalized to image-set based classification [2–5], where each target person
may be enrolled with one or multiple image sets and a query image set need to
be assigned to the identity of its nearest gallery set by calculating its distance
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from each gallery image set. Since controlled still images and uncontrolled video
sequences in our proposed S2V scenario are usually captured in different condi-
tions, most existing V2V face recognition methods are not directly applicable to
the S2V scenario.

As discussed in the introduction, there are two key issues raised by our pro-
posed real-world S2V face recognition. Three categories of methods to solve the
first issue are also be mentioned. Extracting invariant discriminant feature (e.g.,
[8]) from low-resolution images is the first way. The second category of meth-
ods (e.g., [9–11]) adopt super-resolution (SR) techniques to enhance the image
following by traditional face recognition. However, these methods usually have
limited performance because the target of SR techniques is for visual enhance-
ment but not for recognition performance improvement. The last categories of
methods (e.g., [12–15]) directly improve recognition performance by learning
a mapping from LR image to HR image. Nevertheless, they are vulnerable to
nonlinear changes of pose, illumination, expression and even misalignment.

To solve the second issue, a shape-illumination manifold was represented by
Arandjelovic et al. [16] to extract signatures of illumination and pose from genetic
training faces. However, a limitation of this approach is that it requires multiple
still high resolution gallery images, making it impractical for our proposed face
recognition scenarios. Jia et al. [17] developed a generalized tensor-based face SR
method which is able to accommodate multiple factors such as pose, illumination
and expression. Nevertheless, the tensor manipulations for reconstruction also
demand high computational expenses since no explicit connections between LR
and HR pairs are established.

In addition, several existing methods deal with the issue by preserving the
local structure of the data. Locality Preserving Projection (LPP) [18] seeks for
an embedding transformation that nearby data pairs in the original space close
in the embedding space. However, since the distribution of data in our proposed
problem has a certain particularity(which will be stated in the section 4), these
above methods could not work well directly. In a word, to our best knowledge,
little existing methods are designed specially for our proposed S2V face recog-
nition scenario.

3 COX-S2V Dataset and Evaluation Protocol

COX-S2V is a new dataset we constructed for the research on the real-world
Still-to-Video face recognition problem. We will release it with the publication
of this work. The following subsection will details the construction and protocol
of COX-S2V dataset.

3.1 Construction of the COX S2V Dataset

The dataset consists of controlled high resolution still images and four uncon-
trolled low resolution video sequences of 1000 subjects. As shown in Fig.1, the
still images were captured with a high quality digital camera under controlled
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video1
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video3

video4

Match

Single Still Image Gallery

Video Frames Probe

Fig. 1. One example in the COX-S2V dataset. The left is a gallery image, which is
a high resolution still image captured with a high quality digital camera under con-
trolled environment; The right shows four video sequence probe sets, which are four
low-resolution video sequences of the same subject but captured with off-the-shelf cam-
corder under uncontrolled environment.

environment and with cooperative subjects, which leads to still images of high
resolution and ID photo quality.

The four video clips of people are collected by two different off-the-shelf cam-
corders. These videos are captured in a gymnasium with high ceilings, enclosed
entirely on one side with glass windows. This environment approximates outdoor
lighting condition.

Specifically, video1 clips and video2 clips are captured by the first camcorder
around 13.5 meters and 6 meters respectively away from the subjects while
video3 clips and video4 clips are captured by the second camcorder around 13.5
meters and 6 meters respectively away from the subjects. Both of the camcorder-
s are at a height of around 2 meters. In one scenario, the subjects move from
the start point forward to the first camcorder along a straight line; In the other
scenario, the subjects walk from the start point to the second camcorder along
a curve line. In each process of walking, subjects walk naturally without any re-
striction on expression, head orientation, etc.. Additionally, each video sequence
lasts approximately 1 second, contains around 25 frames. More details about the
video clips captured by the camcorders are shown in Table 1.

3.2 Evaluation Protocol based on the COX-S2V dataset

Face recognition is often naturally described as part of a Detection-Alignment-
Recognition (DAR) pipe-line [19]. To facilitate this process, we have purposefully
designed our dataset to represent the output of the detection process. As we
emphasize on face recognition, to ensure these faces in the videos are not too
hard to detect, all the images are detection verified by several detectors including
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Table 1. Details of the video sources captured by different camcorders.

Videos Face-size Viewpoint Illumination Expression

video1 16× 20 controlled uncontrolled uncontrolled
video2 48× 60 controlled uncontrolled uncontrolled
video3 16× 20 uncontrolled uncontrolled uncontrolled
video4 48× 60 uncontrolled uncontrolled uncontrolled

a commercial one from OKAO.1 In COX-S2V dataset, we design a protocol
specifically for the proposed S2V face recognition. In the protocol, we use the
high resolution still images and video clips of 300 persons for training, and the
remaining 700 persons’ still images and video frames for testing. For training
purpose, all the 300 subjects’ data including one high resolution still image and
four clips can be used. During testing stage, the high resolution still images from
the rest 700 subjects form the gallery set, and the probe set contains four clips
from each of the 700 subjects. The rank-1 face recognition rate would be used
to test the performance of involved approaches on COX-S2V dataset.

4 Partial and Local Linear Discriminant Analysis
(PaLo-LDA) for S2V Face Recognition Scenario

Assume the whole sample set X = S ∪ V = {xi|xi ∈ S or xi ∈ V }, where S and
V are denoted in above section. From here on, we denote Ci and Ti to be the
class label and type label (xi ∈ S or xi ∈ V ) of the i-th sample xi, nk to be the
sample number of the k-th class, n to be the number of all samples.

4.1 Related Work

Intuitively and ideally, we would like that pairs of samples from the same class
are made close, while the pairs of samples from different classes are separated
from each other. One of the most popular dimensionality reduction techniques
Linear Discriminant Analysis (LDA)[20, 21] could directly achieve the goal in
the pairwise expression way as follows:

S(w) =
1

2

n∑
i,j=1

W
(w)
i,j (xi − xj)(xi − xj)T , (2)

S(b) =
1

2

n∑
i,j=1

W
(b)
i,j (xi − xj)(xi − xj)T , (3)

1 http://www.omron.com/r d/technavi/vision/okao/detection.html
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where

W
(w)
ij =

{
1/nk, if Ci = Cj = k,

0, if Ci 6= Cj ,
(4)

W
(b)
ij =

{
1/n− 1/nk, if Ci = Cj = k,

1/n, if Ci 6= Cj .
(5)

Considering the density of data may be different depending on regions,
Zelnik-Manor et al. [22] defined an affinity matrix taking the local scaling of
data into account as following:

Aij = exp

(
−d(xi, xj)

σiσj

)
, (6)

where d(xi, xj) represents the Euclidean distance of samples xi and xj , σi denotes
the local scaling of the data samples around xi, which is determined by

σi = ‖xi − x(K)
i ‖. (7)

where x
(K)
i is the K-th nearest neighbor of xi.

4.2 Proposed Algorithm

“Partial”: As is well known, LDA supposes the samples of each class are gen-
erated from single normal distribution. However, since each class contains two
types of data in our proposed problem, the data could not be grouped in one
single cluster. In fact, one type of our data (low resolution video frame) could
be grouped in a cluster, while the other type of data (high resolution still im-
age) is a single sample which would stay away from the cluster. Additionally,
for the proposed S2V problem, it only need to focus on the matching of samples
from different types (Still-to-Video). Therefore, in each class, we would like to
partially put more weight on the pairs of different type samples while giving less
weight on the pairs of the same type samples in the above pairwise expression
computation. That is, we use partial weighting to emphasize cross-resolution
image pairs. Note that, weighting the sample pairs from different classes is not
necessary because we want to separate them from each other irrespective of the
affinity in the original space. As shown in the following formulations, we denote
the partial counterparts of matrices by symbols with tilde.

S̃(w) =
1

2

n∑
i,j=1

W̃
(w)
i,j (xi − xj)(xi − xj)T , (8)

S̃(b) =
1

2

n∑
i,j=1

W̃
(b)
i,j (xi − xj)(xi − xj)T , (9)
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where

W̃
(w)
ij =


Aij/nk, if Ci = Cj = k ∧ Ti 6= Tj ,

βAij/nk, if Ci = Cj = k ∧ Ti = Tj ,

0, if Ci 6= Cj ,

(10)

W̃
(b)
ij =


Aij(1/n− 1/nk), if Ci = Cj = k ∧ Ti 6= Tj ,

βAij(1/n− 1/nk), if Ci = Cj = k ∧ Ti = Tj ,

1/n, if Ci 6= Cj .

(11)

“Local”: In the S2V scenario, the data in each class not only belongs to different
types (still image or video frame), but also has various nonlinear variations of
pose, illumination, expression and even misalignment. To deal with this problem,
we locally define the weight of sample pairs in the same class. Specifically, we
weight the sample pairs in the same class to let far apart sample pairs have less
influence on defined scatter matrices than the nearby sample pairs. Consequently,
the local weighting implicitly take nonlinear variations of pose, illumination,
expression into account, with emphasizing image pairs with similar pose (i.e.,
near-frontal), lighting (i.e., near-normal) and expression (i.e., near-neutral) video
frames to the still images (i.e., frontal, normal lighting and neutral expression).

Owing to the specific data distribution in our proposed S2V scenario, the
density of data samples may be different depending on regions. Therefore, it
is more reasonable to adopt the local scaling of data. Following this idea and
taking into account the above ”partial” and ”local” constraints, we modify the
affinity matrix defined by Zelnik-Manor et al. [22] as following

Ãij = exp

(
− d̃(xi, xj)

σiσj

)
, (12)

where

d̃(xi, xj) =

{
d(xi, xj), if T (xi) 6= T (xj),

m(xi, xj), if T (xi) = T (xj).
(13)

In Equ. (12-13), d(xi, xj), σi, σj is the same meaning as those in Eq. (6),m(xi, xj)
= max{max(d(xi, :)),max(d(xj , :))}, where max(d(xi, :)) computes the maxi-
mum Euclidean distance between sample xi and all the other samples.

After introducing the concepts of “Partial” and “Local”, we can turn to
calculate our scatter matrices and define our projection matrix. The within-class
scatter matrix S̃(w) and the between-class scatter matrix S̃(b) can be efficiently
calculated following [21]. Now, we can define our projection matrix as following:

P̃ = arg max
P̃T S̃(b)P̃

P̃T S̃(w)P̃
. (14)

The final objective function is a standard generalized eigenvalue problem
that can be solved using any eigen-solver. It will produce real eigenvectors and
eigenvalues because both S̃(b) and S̃(w) are symmetric matrices.
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5 Experiments on COX-S2V

5.1 Baseline and Competing Methods

In order to demonstrate the grand challenge of our proposed problem in the
COX-S2V datasets, we compare three types of traditional methods in face recog-
nition. The first one utilizes the most popular dimensionality reduction meth-
ods after Bicubic interpolation, e.g. Bicubic+LDA[20] or other methods. The
second one uses the super-resolution techniques and then applies the tradition-
al algorithms consequently. In the experiment we presents the result with the
state-of-the-art super-resolution algorithm ScSR [11] followed by LDA or oth-
er methods. The last one is hallucinating feature method. Here, we implement
state-of-the-art methods CLPM [14] and CDFE [23]. Note that, above methods
SDA [24], LFDA [21], LPP [18], ScSR and CLPM are performed using codes
from the original authors.

For the first type of methods, in the experiment, we use Bicubic interpolation
to scale both the low resolution and high resolution images to face size of 96×120
pixels. Both of the latter two types perform on the raw face images: the face size
from high resolution still image is 96× 120 pixels, the face size from video 1 and
video3 is 16×20 pixels, and the face size from video 2 and video4 is 48×60 pixels.
Specifically, ScSR super-resolves all the video frames from original resolutions
to face size of 96× 120 pixels.

In the experiment, the parameters of involved methods are setting as follows:
For SDA, we fix the number of clusters in each class K = 5; For LPP, we
use supervised as the Neighbor Mode, the number of neighborhood k = 5, use
HeatKernel as the Weight Mode, and let t = 5; For ScSR, we set the size
of dictionary to 1024, parameter λ = 0.15, the size of each patch to 5 × 5, the
number of training patch to 100000; For CLPM , we select the best performance
by tuning α from 0.1 to 1 with step of 0.1 and N(i) from 10 to 1000 with step
of 50. For CDFE, we select the best performance by tuning α from 0.1 to 2 with
step of 0.1 and β from 0.1 to 1 with step of 0.1. Note that the above parameter
settings are all consistent with original setting of authors. For our method PaLo-
LDA, the parameter β is selected by tuning it from 0.01 to 0.1 with step of 0.01.
Since all the implemented approaches lead to large eigenvalue problems, PCA
[25] is applied to reduce the data dimension before feeding it to all methods,
with keeping from 60% to 90% of the principal component energy.

In testing stage, we need to calculate the distance between one single still
image and a set of video frames. In previous work [26], they defined the dis-
tance as Image-to-Set distance. Accordingly, we validate the performance of all
involved methods by calculating the following two Image-to-Set distances: Mean
Distance (MD) and Nearest Neighbor Distance (NND) respectively.

5.2 Experimental Results and Discussion

As shown in Table 2 and Table 3, our method achieves the highest rank-1 recog-
nition rate in all video probe sets compared to state-of-the-art methods. Several
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Table 2. Rank-1 Recognition Rate (%) on COX-S2V using MD .

Methods/Probe Set (gray feature) Video1 Video2 Video3 Video4

Bicubic+PCA+LDA 38.86 60.57 13.57 39.86
Bicubic+PCA+LPP 36.71 60.42 13.71 38.85
Bicubic+PCA+SDA 19.71 25.28 2.86 7.57

Bicubic+PCA+LFDA 17.43 34.00 2.57 10.14

ScSR+PCA+LDA 19.14 37.29 7.57 21.43
ScSR+PCA+LPP 19.00 38.14 7.71 22.29
ScSR+PCA+SDA 14.00 18.43 2.00 5.43

ScSR+PCA+LFDA 14.57 23.86 2.14 8.57

PCA+CLPM 5.14 1.43 1.23 1.57
PCA+CDFE 10.00 5.14 1.71 5.00

Bicubic+PCA+PaLo-LDA 44.43 66.00 15.44 46.57

Table 3. Rank-1 Recognition Rate (%) on COX-S2V using NND .

Methods/Probe Set (gray feature) Video1 Video2 Video3 Video4

Bicubic+PCA+LDA 47.57 68.28 20.00 49.85
Bicubic+PCA+LPP 47.43 68.57 20.12 49.14
Bicubic+PCA+SDA 24.71 33.43 3.29 11.86

Bicubic+PCA+LFDA 21.86 44.00 3.29 16.14

ScSR+PCA+LDA 27.57 50.29 10.43 32.71
ScSR+PCA+LPP 27.29 50.86 10.71 33.00
ScSR+PCA+SDA 20.00 25.00 1.71 8.86

ScSR+PCA+LFDA 18.00 31.57 2.57 12.71

PCA+CLPM 4.43 2.00 1.21 1.86
PCA+CDFE 8.14 12.29 6.57 5.00

Bicubic+PCA+PaLo-LDA 52.43 73.00 22.00 56.71

reasons are discussed as follows: LDA puts equal weights on all pairs of sample
without considering the cross-resolution and nonlinear data distribution sce-
nario. LPP and LFDA also performs worse for using local affinity to give more
weights on the pairs of samples in the same resolution. Although SDA divides
each class into several subclasses, it still puts the equal weights on all pairs
of samples. Different from above methods, in our method PaLo-LDA, partial
weighting addresses the cross-resolution problem, while local weighting implicit-
ly takes other variations (e.g., pose, illumination, lighting etc.) into account. We
also did additional validations on the separate effects of partial and local weight
schemes, which show average 2.69% and 1.96% gains respectively.

We also conclude several following reasons why state-of-the-art methods Sc-
SR, CLPM and CDFE don’t work well: ScSR is visual enhancement oriented
but not recognition oriented method, which leads ScSR’s performance not well.
Since one of the two-view training sets (HR still image set) has only 1 still image
per subject and 300 training samples totally, the models of CLPM and CDFE
are seriously bias to work worse and even break down on the scenario. Last and
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may be the most important, these tradition methods are all previously validated
in the experimental environment where the low resolution images were artificial-
ly obtained by several operation of smoothing and downsampling, and in our
dataset, the real-world low resolution images are directly from different cameras
with originally lower resolutions, and contain all kinds of nonlinear variations.
Therefore, with the grand challenge, our dataset COX-S2V develops a good plat-
form to advance the methods which could work in the real-world low resolution
face recognition scenario.

Another deserved discussing point is the Image-to-Set distance. The compar-
ison of Table 1 with Table 2 shows that the performances of most methods using
Mean Distance would be worse than those using the Nearest Neighbor Distance.
The result illustrates that the Image-to-Set distance plays an important role in
advancing the performance of S2V face recognition. Therefore, we will pay more
attention on seeking a better Image-to-Set distance in future.

6 Conclusion

In this paper, different from [6], we emphasize a real-world Still-to-Video face
recognition problem. Further, we collect a dataset called COX-S2V and designed
a reasonable experimental protocol for encouraging more advanced methods to
develop on this dataset in the future. As mentioned in this paper, the proposed
S2V face recognition scenario raises two key problems. Consequently, we devel-
op a Partial and Local Linear Discriminant Analysis (PaLo-LDA) method to
deal with the problems directly. The experimental results on COX-S2V dataset
demonstrate that our proposed approach can achieve better performance than
existing methods.
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