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Abstract. Recently, more and more approaches are emerging to solve
the cross-view matching problem where reference samples and query sam-
ples are from different views. In this paper, inspired by Graph Embed-
ding, we propose a unified framework for these cross-view methods called
Cross-view Graph Embedding. The proposed framework can not only
reformulate most traditional cross-view methods (e.g., CCA, PLS and
CDFE), but also extend the typical single-view algorithms (e.g., PCA,
LDA and LPP) to cross-view editions. Furthermore, our general frame-
work also facilitates the development of new cross-view methods. In this
paper, we present a new algorithm named Cross-view Local Discrimi-
nant Analysis (CLODA) under the proposed framework. Different from
previous cross-view methods only preserving inter-view discriminant in-
formation or the intra-view local structure, CLODA preserves the local
structure and the discriminant information of both intra-view and inter-
view. Extensive experiments are conducted to evaluate our algorithms on
two cross-view face recognition problems: face recognition across poses
and face recognition across resolutions. These real-world face recogni-
tion experiments demonstrate that our framework achieves impressive
performance in the cross-view problems.

1 Introduction

Real world data analytic problems in social media often involve data from multi-
view. Typical examples are multi-view face images, which consist of face with
different kinds of viewpoints, or contain face with various of resolutions. These
different views represent different angles to reveal the fundamental properties
of the study subjects. In most cases, the multi-view problem can be solved by
converting to multiple two-view problems. Therefore, in this work, we are only
focusing on the cross-view problem where reference images and query images
may come from two different views.

To deal with the cross-view problem, a few methods has been proposed. Two
of the most popular unsupervised approaches are Canonical Correlation Analysis
(CCA) [1–3] and Partial Least Squares (PLS) [4–6]. Both of them assume that
the data consists of feature vectors that arose from two views which are from
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the same underlying semantic instance. Specifically, they seek for two transforms
to project samples from different views into a common space. Another popular
method is recently proposed by Li et al.[7]. They developed a CLPM algorithm
with an objective function similar as CCA by introducing a penalty weighting
matrix to preserve the locality. The common point of the above three methods is
that they all try to contract pairwise sample while ignoring the label information
of non-corresponding pair of samples.

To make a full use of the supervised information, several supervised meth-
ods recently are developed. Sun et al. [8] proposed Discriminative Canonical
Correlation Analysis (DCCA) which incorporates the class information into the
framework of CCA for recognition with missing samples. Lin et al.[9] proposed
a common discriminant feature extraction (CDFE) method to learn a pair of
transformations by incorporating both the empirical discriminative power and
the local smoothness of the feature transformation. Lei et al. [10] recently pre-
sented Coupled Spectral Regression (CSR) by deriving the solutions from the
view of spectral regression [11] which uses the label information as its response.

The objective of most cross-view methods is to learn view-specific transforma-
tions to project samples from two different views into a common space. Inspired
by the idea of graph embedding [12], in this paper, we develop a framework called
Cross-view Graph Embedding. Firstly, we show that most previous cross-view
methods mentioned above can be reformulated within the proposed framework;
Secondly, using the proposed framework, existing single-view algorithms follow-
ing the original Graph Embedding framework can be easily extended to corre-
sponding cross-view editions; Thirdly, our general framework also facilitates the
development of new cross-view data analysis methods. As an example, we pro-
pose a new algorithm named Cross-view Local Discriminant Analysis (CLODA).
Extensive experiments are conducted to evaluate our proposed algorithms and
show that our methods perform impressively on the cross-view face recognition.

The remainder of the paper is organized as follows. Section 2 briefly reviews
the original Graph Embedding framework and details our proposed Cross-view
Graph Embedding framework for cross-view data analysis methods. Section 3
introduces our new method Cross-view Local Discriminant Analysis (CLODA)
developed under our general framework. Section 4 provides the experimental
results on two real cross-view face recognition tasks which include face recog-
nition across poses and face recognition across resolutions. Section 5 concludes
our work in this paper.

2 Cross-view Graph Embedding: A General Framework
for Cross-view Methods

Yan et al. [12] proposed a general framework called Graph Embedding to unify
most single-view methods under different constraints. Furthermore, the gener-
al framework provides a common perspective in understanding the relationships
between all kinds of single-view algorithms and designing new algorithms. Specif-
ically, let an undirected weighted graph G = {X,W} be the intrinsic graph
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with vertex set X and similarity matrix W . And let graph GP = {X,WP }
be the penalty graph whose vertices X are the same as those of G. The ver-
tex set X = {x1, x2, . . . , xN} represents the sample set, and each element of
similarity matrix W represents the similarity between a pair of vertices. The
graph-preserving criterion is given as follows:

ω∗ = arg min
ωTXBXTω=d

or ωTω=d

∑
i 6=j

‖ωTxi − ωTxj‖2Wij .
(1)

where B typically is a diagonal matrix for scale normalization and is also defined
on the penalty graph. That is, B = DP −WP , where DP

ij =
∑

i 6=j W
P
ij .

The above Graph Embedding framework elegantly unified algorithms seeking
one single-view transform for dimension reduction. However, it is not applicable
for cross-view problem. To address this inability, we extend it to Cross-view
Graph Embedding. In this section, we first present our theoretical formulation
of Cross-view Graph Embedding, followed by the revisiting of previous cross-view
methods under the proposed framework. We then show how some representative
single-view methods can be correspondingly extended to cross-view editions with
the proposed framework.

2.1 Cross-view Graph Embedding

In the cross-view problem, there are two types of sample sets: the query samples
and the reference samples captured from two different views. Suppose we have
a training set of Nq samples in the query space and Nr samples in the reference

space from C classes, denoted by (X
(q)
i , C

(q)
i )

Nq

i=1 and (X
(r)
j , C

(r)
j )

Nr

j=1
. To enable

the comparison of the query samples and reference samples in practice, it is
necessary to learn two different projections that can transform the two different
sources to a common space respectively. We denote the projection for the query

source by fq : X
(q)
i → Y

(q)
i and the projection for the reference source by

fr : X
(r)
i → Y

(r)
i .

Let G = (X(q), X(r),W ) be an undirected weighted graph with two vertex
sets X(q), X(r) and similarity matrix W = <Nq×Nr . As shown in Figure 1, the
original graph could be divided into one inter-graph which is a bipartite graph
and two intra-graphs. While the inter-graph describes the relationships between
the query samples and the reference samples, the two intra-graphs represent
the graph structure of the query samples X(q) and the reference samples X(r)

respectively. We denote the inter-graph as G = ((X(q), X(r)),W ) and the two
intra-graphs as G(q) = (X(q),W (q)) and G(r) = (X(r),W (r)).

As the original Graph Embedding, we also define an intrinsic graph and a
penalty graph for both the inter-graph and the intra-graphs, they are denot-

ed as GI = ((X(q), X(r)),WI), GP = ((X(q), X(r)),WP ), G
(q)
I = (X(q),W

(q)
I ),

G
(q)
P = (X(q),W

(q)
P ), G

(r)
I = (X(r),W

(r)
I ) and G

(r)
P = (X(r),W

(r)
P ), respectively.

In this paper, the goal of the Cross-view Graph Embedding is to seek a com-
mon space where the relationships between the vertex pairs in inter-graph and



4 Z. Huang, S. Shan, H. Zhang, S. Lao and X. Chen

Original Graph Inter-graph Intra-graph Intra-graph

Reference View Query View Reference View Query View Reference View Query View

Fig. 1. Illustration of Cross-view Graph Embedding: the original graph could be di-
vided into one inter-graph which is a bipartite graph and two intra-graphs.

intra-graphs are mostly preserved. The formulation of our Cross-view Graph
Embedding framework is given as follows:

[ω∗q , ω
∗
r ] = arg min


Nq,Nr∑

i,j

Z
(qr)
ij WI ij + βq

Nq,Nq∑
i 6=j

Z
(qq)
ij WI

(q)
ij + βr

Nr,Nr∑
i 6=j

Z
(rr)
ij WI

(r)
ij

 ,

s.t.

Nq,Nr∑
i,j

Z
(qr)
ij WP ij + β

′

q

Nq,Nq∑
i6=j

Z
(qq)
ij WP

(q)
ij + β

′

r

Nr,Nr∑
i 6=j

Z
(rr)
ij WP

(r)
ij = d,

(2)

where, from here on, we formulate the Z
(uv)
ij as follows:

Z
(uv)
ij = ‖ωT

u x
(u)
i − ωT

v x
(v)
j ‖

2, (3)

ω∗q and ω∗r are the projection direction for query sample and reference sample.
They tend to balance the feature extraction optimization with tuning the pa-
rameters βq, βr, β

′

q and β
′

r. Like Eq. (1), the subject of our objective function
can also be formulated as:

Nq,Nr∑
i,j

Z
(qr)
ij WP ij + β

′

qω
T
q XqBqX

T
q ωq + β

′

rω
T
r XrBrX

T
r ωr = d. (4)

Following the Appendix in this paper, the above proposed objective function is
formulated as a standard generalized eigenvalue problem which can be efficiently
solved. The details of the general solution to this framework are presented in the
Appendix.

2.2 Revisiting of Existing Cross-view Methods Under Cross-view
Graph Embedding Framework

Given the above formulation of Cross-view Graph Embedding, it is necessary to
check its capacity of deducting existing cross-view data analysis methods, such as
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Table 1. Reformulations of the existing cross-view methods under Cross-view Graph
Embedding.

Method WI W
(q)
I /W

(r)
I

WP W
(q)
P /Bq/W

(r)
P /Br

CCA I W
(q)
I = W

(r)
I = 0 0 Bq = Br = I

PLS I W
(q)
I = W

(r)
I = 0 0

Bq = (XT
q Xq)

−1

Br = (XT
r Xr)

−1

CDFE
1
N1

, if C
(q)
i = C

(r)
j

− α
N2

, if C
(q)
i 6= C

(r)
j

WI
(q)
ij = 1

Nq
exp(−

‖x(q)i −x
(q)
j ‖

σ2
q

)

WI
(r)
ij = 1

Nr
exp(−

‖x(r)i −x
(r)
j ‖

σ2
r

)

0 W
(q)
I = W

(r)
I = I

CCA, PLS and CDFE. Both CCA [1–3] and PLS [4–6] attempt to maximize the
correlation between a projection ωT

q Xq ofXq and ωT
r Xr ofXr, with the difference

lying in their constraint conditions. Under our Cross-view Graph Embedding,
the detailed reformulations of CCA and PLS are shown in Table 1.

CDFE [9] formulates the learning objective by incorporating both the empiri-
cal discriminative power and the local smoothness of the feature transformation.
It can be reformulated using our Cross-view Graph Embedding framework as
shown in Table 1. Note that N1 is the number of pairs from the same class, N2

is the number of pairs from different classes.
Table 1 lists the similarity and constraint matrices for all of the above men-

tioned methods. As shown in the Table 1, all methods including CCA, PLS and
CDFE can be unified into our proposed framework only with different of the
similarity matrices and constrain matrices.

2.3 Cross-view Extensions of Single-view Algorithms in Original
Graph Embedding Framework

As a framework extended from Graph Embedding, it is also expected that our
framework can easily extend existing typical single-view algorithms in Graph
Embedding framework to their cross-view editions for cross-view analysis. In
this subsection, we will show how PCA, LDA and LPP etc. are reformulated
to their cross-view editions respectively under the proposed framework. Table
2 lists the similarity and constraint matrices for all cross-view editions of the
above mentioned methods.

Extending PCA to Cross-view PCA (CvPCA): To deal with the cross-
view problem, PCA [13, 14] can be extended to the following cross-view edition:

[ω∗q , ω
∗
r ] = arg min

Nq,Nr∑
i,j

Z
(qr)
ij , s.t. ωT

q ωq = 1, ωT
r ωr = 1. (5)

It is clearly that the cross-view PCA (CvPCA) is equal to PLS [4–6]. Therefore,
we can conclude that PLS is the cross-view edition of the original PCA.
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Table 2. Cross-view extensions of typical single-view algorithms in Graph Embedding
framework.

Method WI W
(q)
I /W

(r)
I

WP W
(q)
P /Bq/W

(r)
P /Br

CvPCA WI = I 0 WP = 0 W
(q)
P = W

(q)
P = I

CvLDA WI ij = 1, C
(q)
i = C

(r)
j 0 WP ij = 1, C

(q)
i 6= C

(r)
j W

(q)
P = W

(q)
P = 0

CvLPP WI = exp(−
‖y(q)i −y

(r)
j ‖

t
) 0 WP = 0 Bq = Dq, Br = Dr

Extending LDA to Cross-view LDA (CvLDA): Similarly, to deal with
the cross-view problem, LDA [15, 16] can be extended to the following cross-
view edition:

[ω∗q , ω
∗
r ] = arg min

Nq,Nr∑
i,j

Z
(qr)
ij WI ij , s.t.

Nq,Nr∑
i,j

Z
(qr)
ij WP ij = 1, (6)

where

WI ij =

{
1, if C

(q)
i = C

(r)
j ,

0, if C
(q)
i 6= C

(r)
j ,

,WP ij =

{
1, if C

(q)
i 6= C

(r)
j ,

0, if C
(q)
i = C

(r)
j .

(7)

The similarity matrices are detailed in Table 2 under our proposed framework.
While those unsupervised approaches like CCA and PLS use part of cross-view
information in order to contract pair-wise different view samples only, the Cross-
view LDA (CvLDA) contract cross-view samples in the same class and separate
samples in different classes.

Extending LPP to Cross-view LPP (CvLPP): Again, to deal with the
cross-view sources analysis, LPP [17] could be extended to the following cross-
view edition:

[ω∗q , ω
∗
r ] = arg min

Nq,Nr∑
i,j

Z
(qr)
ij WI ij ,

s.t. ωT
q x

(q)
i Dqx

(q)
j

T
ωq = 1, ωT

r x
(r)
i Drx

(r)
j

T
ωr = 1.

(8)

where Dqii =
∑

i 6=j W
(q)
ij , Drii =

∑
i6=j W

(r)
ij . Since the dimensions of the query

samples and the reference samples in cross-view scenario might be different, the
similarity matrix WI cannot be calculated directly as original LPP. Therefore, we
uses CvPCA features of the two cross-view sample sets to calculate the similarity

matrix WI with the definition of original LPP. As shown in Table 2, y
(q)
i and

y
(r)
j represent the CvPCA features of samples x

(q)
i and x

(r)
j .
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Table 3. The definitions of similarity matrices in our method CLODA.

WI/WP W
(q)
I /W

(r)
I W

(q)
P /Bq/W

(r)
P /Br

WI ij = exp(−
‖y(q)i −y

(r)
j ‖

σ2 )

WP ij = exp(−
‖y(q)i −y

(r)
j ‖

σ2 )

WI
(q)
ij = exp(−

‖x(q)i −x
(q)
j ‖

σ2
q

)

WI
(r)
ij = exp(−

‖x(r)i −x
(r)
j ‖

σ2
r

)

WP
(q)
ij = exp(−

‖x(q)i −x
(q)
j ‖

σ2
q

)

WP
(r)
ij = exp(−

‖x(r)i −x
(r)
j ‖

σ2
r

)

3 Cross-view Local Discriminant Analysis : A New
Method Developed from Cross-view Graph Embedding
Framework

Besides reformulation and extending, as a general framework, our Cross-view
Graph Embedding framework can facilitate the development of new cross-view
data analysis methods. In this section, as an example, we present a new ap-
proach derived from our framework named Cross-view Local Discriminant Anal-
ysis (CLODA).

On one side, CLODA considers the intra-class compactness and inter-class
separability in both inter-view and intra-views. On the other side, as CDFE
[9], CLODA also introduces the notion local consistency into the formulation
to regularize the empirical objective and reduce the risk of overfitting. Different
from CDFE, we not only use the locality of intra-views but also utilize the
locality of inter-view. Formally, we formulate the learning objective to minimize
the following objective function:

[ω∗q , ω
∗
r ] = arg min


Nq,Nr∑

i,j

Z
(qr)
ij WI ij + βq

Nq,Nq∑
i 6=j

Z
(qq)
ij WI

(q)
ij + βr

Nr,Nr∑
i 6=j

Z
(rr)
ij WI

(r)
ij

 ,

s.t.

Nq,Nr∑
i,j

Z
(qr)
ij WP ij + β

′

q

Nq,Nq∑
i6=j

Z
(qq)
ij WP

(q)
ij + β

′

r

Nr,Nr∑
i 6=j

Z
(rr)
ij WP

(r)
ij = d.

(9)

where the definitions of all similarity matrices are presented in the Table 3.

Specifically, the intrinsic graph similarity matrices’ entry WIij , WI
(q)
ij and WI

(r)
ij

are equal to the corresponding value in the table when xi and xj belong to
the same class and one element of them is among the K nearest neighbors of
the other element; 0, otherwise. Likewise, the penalty graph similarity matrices’

entry WPij , WP
(q)
ij and WP

(r)
ij are equal to the corresponding value in the table

when xi and xj belong to different classes and one element of them is among the
K nearest neighbors of the other element; 0, otherwise. In addition, as CvLPP, we
uses CvPCA features of the two cross-view sample sets to calculate the similarity
matrices WI and WP .
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4 Experiments

In this section, we evaluate the proposed framework on cross-view face recogni-
tion problems at two large-scale face databases: Multi-PIE [18] and COX-MR
multi-resolution face databases. The former is a publicly released dataset, while
the latter is collected by ourselves. We will release it with the publication of
this work. In the two experiments, we compare our approaches with state-of-
the-art cross-view methods and (linear or non-linear) single-view methods for
cross-view recognition. Specifically, the parameters of involved methods are set-
ting as follows: For LPP [17], we use KNN as the Neighbor Mode, the number
of neighborhood k = 5, use HeatKernel as the Weight Mode, let t = 5; For SDA
method [19], we manually select two subclasses (samples from the same view
construct a subclass) for each class of samples; For CDFE [9], we select the best
performance by tuning α from 0.1 to 2 and β from 0.1 to 1; For CSR [10], we
select the best performance by tuning λ from 1 to 21 and η from 1 to 21. For
our Cross-view LPP (CvLPP) we use 40 dimensions of CvPCA features to cal-
culate the similarity matrix WI , set the other parameters as original LPP; For
our method CLODA, we use 40 dimensions of CvPCA features to calculate the
similarity matrix WI and WP , let all the kernel widths σ,σq and σr be the mean

of Euclidean distances of samples, set βq = βr = β
′

q = β
′

r = β then select the
best performance by tuning β from 0.1 to 1 and number of neighboring points
K from 10 to 1000. For all methods, the dimension of the feature space is firstly
selected by keeping 95% of the PCA energy.

4.1 Evaluation on the Multi-PIE Database

Multi-PIE [18] collects images of totally 337 subjects in multiple recording ses-
sions and with large variations in pose, illumination, and expression. In this
experiment, we select 7 distinct poses (−45o, −30o, −15o, −15o, 30o, 45o, and
frontal angel 0o) with automatic pose estimation (around 5% error). Therefore,
these images with different poses form 7 types of views.

For our recognition experiment, we use 137 subjects (Subject ID from 201
to 346) with neutral expression from all 4 sessions at 7 different poses. Among
them, 200 subjects (Subject ID from 001 to 200) are used for training and the rest
are used for testing. Specifically, images in two different poses are used to learn
pairs of projection directions. The frontal face image from the earliest session for
each subject is used as the gallery image (137 totally), and all of the remaining
images per subject are used as 7 probe sets from −45o to 45o, respectively. For
each image, we fix the eye centers and crop it to the size of 64× 80 pixels.

Table 4 shows the results of all methods for face recognition across poses
which is a canonical cross-view problem. The comparisons show that our cross-
view edition algorithms such as CvPCA(PLS), CvLDA and CvLPP all work bet-
ter than corresponding original algorithms (PCA, LDA and LPP) under Graph
Embedding. In the cross-view recognition, most existing cross-view methods pre-
vail on the linear or non-linear single-view approaches. It also shows that our
new method CLODA consistently outperforms any other methods significantly.
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Table 4. Face recognition performance on Multi-PIE Database. For each probe set,
the gallery set is the same set which contains the frontal face images.

Method probe set(rank-1 recognition rate)
(gray feature) −45o −30o −15o 0o −15o 30o 45o

PCA 14.18 19.72 39.87 87.67 57.59 19.32 15.85
PCA+PLS(CvPCA) 21.63 72.89 83.72 87.33 81.72 74.24 19.01

PCA+LDA 11.70 53.52 88.70 95.33 85.52 52.54 8.10
PCA+CvLDA 26.95 80.99 93.02 94.33 90.34 80.00 24.30

PCA+LPP 9.22 14.79 30.90 76.33 38.28 16.95 4.26
PCA+CvLPP 11.70 77.25 85.38 92.67 82.41 66.44 11.21

PCA+SDA 13.12 33.80 80.07 93.67 80.69 42.71 9.51
PCA+LE[20] 7.09 7.04 11.63 72.00 23.45 5.42 6.69

PCA+LLE[21] 10.99 12.68 33.55 89.0 60.69 12.32 9.49

PCA+CCA 19.15 78.17 89.04 91.00 89.31 78.31 18.66
PCA+DCCA 21.27 70.42 88.04 93.33 84.48 70.17 18.31
PCA+CDFE 14.89 77.82 91.36 93.33 88.28 72.20 15.49
PCA+CSR 23.40 76.76 89.37 93.33 87.93 76.61 23.24

PCA+CLODA 29.08 83.80 94.35 95.00 92.76 82.03 29.23

4.2 Evaluation on the COX-MR Database

The COX-MR database collected by ourselves consists of images from 5 resolu-
tions as shown in Table 5. Since the resolutions are different, we normalize the
images with different sizes as detailed in Table 5. On this dataset, we use the
images of 300 persons for training, and the images of 500 persons for testing.
Furthermore, we subdivide the training set and the test set into 5 categories
according to 5 different views (resolutions). Specifically, recognition cross 2 d-
ifferent resolutions is a cross-view problem. Table 5 details the training sets
and test sets of our database. Note that COX-MR also contains images under
different illumination conditions and facial expressions.

On COX-MR database, we design 10 face verification testings specifically
for the cross-resolution scenario. As shown in Table 6, for example, index SHH
represents the test using Super High Resolution testing set as the target set and
High Resolution testing set as the query set. It is worth mentioning that the
images in the High Resolution set contain kinds of variations in poses while the
images in other resolution sets are relatively controlled.

Since the dimensionalities of images with different resolutions are different,
most single-view methods and the cross-view method CSR [10] can not work
directly in the cross-resolution recognition. Therefore, Table 6 only shows com-
parisons of cross-view methods which could deal with the cross-view problem.
The performance is measured by the verification rate when false accept rate is
0.001. Seen from the above extensive comparisons, our cross-view editions of
PCA, LDA, LPP all work well and our new method CLODA even outperforms
the conventional approaches consistently in all evaluations.
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Table 5. Details of COX-MR database. The original size of face is measured in pixels
between the centers of the eyes; cropped size is meausred in pixels of width and height.

Resolutions Eye-distance Cropped-size Training Test Total-num.

Super High (SH) ≈350 160× 200 2030 3348 5378
High (H) ≈100 128× 160 2444 3128 5572

Median (M) 70∼80 80× 100 2719 4287 7006
Low (L) 40∼45 64× 80 2943 4875 7818

Super Low (SL) 18∼20 40× 50 2844 4848 7692

Table 6. Face verification performance of COX-MR Database

Method Protocols(VR (%) at FAR = 0.001)
(gray feature) SHH SHM SHL SHSL HM HL HSL ML MSL LSL

PCA+CvPCA 5.77 8.33 8.89 9.02 57.27 32.08 12.41 51.71 15.92 21.97
PCA+CvLDA 11.52 18.08 19.14 13.60 84.17 70.35 38.06 86.23 47.51 62.49
PCA+CvLPP 6.10 5.93 6.32 4.55 81.86 61.09 25.17 88.16 43.48 63.31

PCA+CCA 10.12 15.93 17.08 13.50 86.23 77.15 45.84 90.88 60.18 71.88
PCA+DCCA 7.80 14.46 14.94 12.10 79.46 67.73 38.77 84.08 54.84 62.52
PCA+CDFE 11.58 16.12 19.23 11.63 86.35 75.99 42.83 90.91 59.95 71.54

PCA+CLODA 17.56 23.30 24.17 17.58 88.78 79.52 50.02 92.34 62.74 72.87

4.3 Discussion

In this paper, our proposed Cross-view Graph Embedding framework attempts
to deal with the general cross-view problem, where the two views are not neces-
sarily from the same feature space. Although some non-linear manifold learning
techniques (e.g., LPP, LE, LLE etc.) can handle the cross-view problem when
the two views are from the same feature space, e.g. the cross-pose problem on
MultiPIE, they fail to work in the scenarios that the two views are from the dif-
ferent spaces, e.g., cross-resolution problem on COX-MR. Furthermore, in most
cases, the two views may not lie in a continuous manifold, e.g., frontal faces and
half-profile face images. In these cases, those manifold learning techniques may
not work well. Additionally, the existing cross-view methods only attempted to
preserve the inter-view discriminant information or the intra-view local struc-
ture; besides these two types of information, our method CLODA also preserves
the intra-view discriminant and inter-view local structure information, leading
to a better generalization.

5 Conclusion

In this paper, we proposed a unified framework called Cross-view Graph Em-
bedding extended from Graph Embedding. We show that, our framework not
only can elegantly reformulate most existing cross-view methods but also have
the ability to rebuild the typical intra-view algorithms in original Graph Em-
bedding into corresponding cross-view editions. It also facilitates the develop-
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ment of new cross-view feature extraction methods. As an example, we design
a novel Cross-view Local Discriminant Analysis (CLODA) method. Extensive
experiments show that our methods achieve significant improvement over the
traditional methods in the cross-view problems.
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6 Appendix

The section presents the general solution of proposed Cross-view Graph Embed-
ding in details. To simplify the further deductions, we introduce the following

diagonal matrices notations: S
(u)
I (i, i) =

∑Nu

j=1WI ij , D
(u)
I (i, i) =

∑Nu

j=1WI
(u)
ij ,

S
(u)
P (i, i) =

∑Nu

j=1WP ij , D
(u)
P (i, i) =

∑Nu

j=1WP
(u)
ij , where u denotes the query

view(q) or reference view (r). Following Eq.(3) and above definitions, then we
rewrite the objective function of Eq.(2) in matrix form as:

Nq,Nr∑
i,j

Z
(qr)
ij WI ij + βq

Nq,Nq∑
i 6=j

Z
(qq)
ij WI

(q)
ij + βr

Nr,Nr∑
i6=j

Z
(rr)
ij WI

(r)
ij

=tr(ΩT
q XqS

(q)
I XT

q Ωq +ΩT
r XrS

(r)
I XT

r Ωr − 2ΩT
q XqWIX

T
r Ωr)

+ 2βqtr(Ω
T
q Xq(D

(q)
I −W

(q)
I )XT

q Ωq) + 2βrtr(Ω
T
r Xq(D

(r)
I −W

(r)
I )XT

r Ωr)

=tr(ΩT
q XqR

(q)
I XT

q Ωq +ΩT
r XrR

(r)
I XT

r Ωr − 2ΩT
q XqWIX

T
r Ωr)

(10)

where R
(q)
I = S

(q)
I + 2βq(D

(q)
I −W

(q)
I ), R

(r)
I = S

(r)
I + 2βr(D

(r)
I −W

(r)
I ). Likewise,

we also simplify the subjective condition of Eq.(2) as following:

Nq,Nr∑
i,j

Z
(qr)
ij WP ij + β

′

q

Nq,Nq∑
i 6=j

Z
(qq)
ij WP

(q)
ij + β

′

r

Nr,Nr∑
i 6=j

Z
(rr)
ij WP

(r)
ij

= tr(ΩT
q XqR

(q)
P XT

q Ωq +ΩT
r XrR

(r)
P XT

r Ωr − 2ΩT
q XqWPX

T
r Ωr)

(11)

where R
(q)
P = S

(q)
P + 2β

′

q(D
(q)
P −W

(q)
P ), R

(r)
P = S

(r)
P + 2β

′

r(D
(r)
P −W

(r)
P ). To solve

the optimization problem, we introduce the matrices:

MI =

[
XqR

(q)
I XT

q −XqWIX
T
r

−XrW
T
I X

T
q XrR

(r)
I XT

r

]
,MP =

[
XqR

(q)
P XT

q −XqWPX
T
r

−XrW
T
P X

T
q XrR

(r)
P XT

r

]
, Ω =

[
Ωq

Ωr

]
(12)
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Finally, following Eq.(10-12), we transform the optimization problem Eq.(2) to
the generalized eigen-decomposition problem MIΩ = λMPΩ.
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