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Abstract

In this paper, we present a theoretical analysis on

learning anchors for local coordinate coding (LCC),

which is a method to model functions for data lying on

non-linear manifolds. In our analysis several local cod-

ing schemes, i.e., orthogonal coordinate coding (OC-

C), local Gaussian coding (LGC), local Student cod-

ing (LSC), are theoretically compared, in terms of the

upper-bound locality error on any high-dimension da-

ta; this provides some insight to understand the local

coding for classification tasks. We further give some

interesting implications of our results, such as tradeoff

between locality and approximation ability in learning

anchors.

1. Introduction

Local Coordinate Coding (LCC) [10] is a method
that approximates any non-linear (α, β, p)-Lipschitz s-
mooth function over the data manifold using linear
functions. There are two components in this method:
1) a set of anchors (data points) which build local co-
ordinates; and 2) local coding schemes for each data
determined by these anchors. LCC has been successful-
ly applied in many challenging problems, e.g., utilizing
very high-dimension data in VOC competitions.

Although the success of LCC, its classification per-
formance is highly depended on the number of anchors,
as suggested by the theoretical bound [10] and the prac-
tical observations [9]. These anchors should be “lo-
cal” enough to encode data on the manifold accurately,
which sometimes means that the number of anchors in
real applications would increase explosively. Moreover,
theoretically analysis suggests that locality is more es-
sential that sparsity in terms of non-linear function ap-
proximation ability. Therefore, coding schemes are crit-
ical to balance between accuracy and complexity.

A few approach has been proposed for learning an-
chors, motivated by non-linear approximation or not,
but the solutions have focused on data quantization or
compression. For instance, sparse coding using the La-
grange dual [4], online dictionary learning with stochas-
tic approximation [5], the k-means clustering [3]. How-
ever, these methods do not provide the theoretical con-
nection between the number of anchors and the approx-
imation ability of (α, β, p)-Lipschitz function.

Several existing publications have been aware of this
pitfall. For instance, orthogonal coordinate coding (OC-
C) [11] provides the theoretical analysis for the upper-
bounded approximation ability of (α, β, p)-Lipschitz
function. However, we still do not know the approx-
imation ability for more coding schemes, e.g., sparse
coding [4].

In this paper, we propose two local coding schemes
(LCSs), and further give theoretical analysis and com-
parison with OCC. Intuitively, if a sample x is closer to
the anchor v, the value of local coding function γv(x)
should be also larger [6]; thus, two different types of
LCS are proposed to achieve this purpose:

1. Local Gaussian coding (LGC) presumes the rela-
tion between samples and anchors as,

γlgc
v (x;σ) =

exp
(

−‖v−x‖2

σ2

)

∑
v∈C exp

(
−‖v−x‖2

σ2

) , (1)

where v ∈ R
D, is the anchor, and the bias σ is

the hyper parameter to control the decay ability of
γlgc
m (x).

2. Local Student coding (LSC) uses Student t-
distribution with one degree of freedom, which is
the same as Cauchy distribution,

γlsc
v (x;σ) =

(σ2 + ‖v − x‖2)−1∑
v∈C(σ

2 + ‖v − x‖2)−1
, (2)



Table 1: Some notations in this paper.

Notation Definition

v ∈ R
d A d-dimension anchor

C ⊂ R
d A set of all anchors

γv(x) ∈ R The local coding of a data x with the anchor v
γ(x) ∈ R

d The approximation vector of a data x

γx ∈ R
|C| The coding vector of a data x by all anchors

γ A map of a data x to γx
(γ, C) A coordinate coding scheme

where the bias σ is the hyper parameter to control
the decay ability of γlsc

v (x). Student t-distribution
has the nice property that (σ2 + ‖v − x‖2)−1 ap-
proaches an inverse square law for large pairwise
distances ‖v − x‖2.

2. Theoretical Analysis of the Upper Bound

For clarification, we summarize some notations in
Table 1 which are used in this paper. We first revisit
some definitions and conclusions in LCC. Note that in
the following sections, ‖ · ‖ denotes the �2 norm.

Definition 1 (Lipschitz smoothness [10]). A function

f(x) ∈ R
d is (α, β, p)-Lipschitz smooth with respect

to the ‖ · ‖ norm, if |f(x′) − f(x)| ≤ α‖x − x′‖ and

|f(x′) − f(x) − ∇f(x)T (x′ − x)| ≤ β‖x − x′‖1+p,

where we assume α, β > 0 and p ∈ (0, 1].

Definition 2 (Coordinate coding [10]). Let (γ, C) be

an arbitrary coordinate coding on R
d. Let f be an

(α, β, p)-Lipschitz smooth function. We have for all

x ∈ R
d: γ(x) =

∑
v∈C γv(x)v.

Lemma 1 (Linearization [10]). Let (γ, C) be an arbi-
trary coordinate coding on R

d. Let f be an (α, β, p)-
Lipschitz smooth function. We have for all x ∈ R

d:∣∣∣∣∣f(x)−
∑
v∈C

γv(x)f(v)

∣∣∣∣∣ ≤ α‖x− γ(x)‖

+ β
∑
v∈C

|γv(x)|‖v − γ(x)‖1+p

(3)

2.1 Analysis of the Locality Bound

In this subsection, lGC and LSC schemes would
firstly be analyzed and further be compared with OCC;
moreover, the σ-related bound of LGC and LSC would
be presented and discussed.

Theorem 1 (Localization Error of LGC or LSC). Let
(γ, C) either be a LGC or LSC on R

d data manifolds,
where the number of anchors is M , i.e., |C| = M . Let

f be an (α, β, p)-Lipschitz smooth function. Without
losing generalization, assuming ∀x ∈ R

d, ||x|| ≤ 1 and
∀v ∈ C, 1 ≤ ||v|| ≤ h(h ≥ 1), then the localization
error in Lemma 1 is bounded by:

∑
v∈C

|γv(x)| ‖ v − γ(x) ‖1+p≤ [
h2 + h2M2] 1+p

2 (4)

Proof. Let γv(x) either be (1) or (2), then
∑
v∈C

|γv(x)| ‖ v − γ(x) ‖1+p

=
∑
v∈C

|γv(x)|
⎡
⎣‖v‖2 − 2γ(x)v +

⎛
⎝ ∑
v∈C

γv(x)v

⎞
⎠2⎤⎦

1+p
2

≤
∑
v∈C

|γv(x)|
⎡
⎣‖v‖2 − 2

∑
v∈C

γv(x)‖v‖2 +
∑
v∈C

∑
v∈C

γv(x)
2‖v‖2

⎤
⎦

1+p
2

=
∑
v∈C

|γv(x)|
⎡
⎣‖ v ‖2 −2

∑
v∈C

γv(x)‖v‖2

+

(
max
v∈C ‖ v ‖2

) ∑
v∈C

∑
v∈C

γv(x)
2

⎤
⎦

1+p
2

(5)

Because ∀x∈R
d, ‖ v ‖≤ 1 and ∀v ∈ C, 1 ≤‖ v ‖≤ h,∑

v∈C |γv(x)| = 1, so |γv(x)| ≤ 1,
∑

v∈C γv(x)
2 ≤

M . Therefore, (5) can be∑
v∈C

|γv(x)| ‖v − γ(x)‖1+p

≤
∑
v∈C

|γv(x)|
[
h2 − 2h2

∑
v∈C

|γv(x)|+ h2M2

] 1+p
2

≤
∑
v∈C

|γv(x)|
[
h2 + h2M2] 1+p

2

=
[
h2 + h2M2] 1+p

2 ·
∑
v∈C

|γv(x)|

=
[
h2 + h2M2] 1+p

2

Discussion among OCC, LGC and LSC: It

is obvious that
[
h2 + h2M2

] 1+p
2 is lower than

[(M + 1)h]
1+p, the upper-bound of OCC [11]. Thus,

LGC or LSC theoretically obtain more lower upper-
bound approximation error than OCC. Although an
anchor plane in OCC could contain infinite anchors,
most of anchors do not necessarily live on the same
plane; in other words, anchors do not densely live on a
plane. Therefore, the number of planes in OCC would
naturally be larger than the number of anchors in lGC
or LSC.

Theorem 2 (σ-related upper bound for LGC). Let
(γ, C) be a LGC (1) on R

d, where the number of
anchors is equal to M , i.e., |C| = M . Let f be
an (α, β, p)-Lipschitz smooth function. Without los-
ing generalization, assuming ∀x ∈ R

d, ||x|| ≤ 1 and



∀v ∈ C, 1 ≤ ||v|| ≤ h(h ≥ 1), and dl ≤ ‖x−v‖ ≤ du,
then the localization error in Lemma 1 is bounded by:

∑
v∈C

|γv(x)| ‖ v − γ(x) ‖1+p ≤ [h2 + 2M2h2(
d2u
σ2

− 1)

+M2h2]
1+p
2

(6)

Proof. Let γv(x) be (1) and sx =∑
v∈C exp

(
−‖v−x‖2

σ2

)
, then

∑
v∈C

|γv(x)| ‖ v − γ(x) ‖1+p

=
∑
v∈C

|γv(x)|
[
‖ v ‖2 −2γ(x)v +

(∑
v∈C

γ(x)v

)2] 1+p
2

(7)

Reuse the derivation in (5) and the well-known inequal-
ity, i.e., 1− x ≤ e−x, (7) can be reformulated as∑

v∈C
|γv(x)| ‖ v − γ(x) ‖1+p

≤
∑
v∈C

|γv(x)|
[
h2 − 2h2sx

∑
v∈C

γv(x) +M2h2

] 1+p
2

=
∑
v∈C

|γv(x)|
[
h2 + 2h2sx

∑
v∈C

(‖x− v‖2
σ2

− 1

)

+M2h2] 1+p
2

Because sx ≤ M , and dl ≤ ‖x − v‖ ≤ du, above
inequality can be written as

≤
∑
v∈C

|γv(x)|
[
h2 + 2M2h2

(
d2u
σ2

− 1

)
+M2h2

] 1+p
2

=

[
h2 + 2M2h2

(
d2u
σ2

− 1

)
+M2h2

] 1+p
2

Next, we would give the σ-related upper bound for
LSC (2), and compare its bound with the one of LGC in
Lemma 2.

Theorem 3 (σ-related upper bound for LSC). Let
(γ, C) be a LSC (2) on R

d, where the number of anchors
is equal to M , i.e., |C| = M . Let f be an (α, β, p)-
Lipschitz smooth function. Without losing generaliza-
tion, assuming ∀x ∈ R

d, ||x|| ≤ 1 and ∀v ∈ C,
1 ≤ ||v|| ≤ h(h ≥ 1) and dl ≤ ‖x−v‖ ≤ du, then the
localization error in Lemma 1 is bounded by:

∑
v∈C

|γv(x)| ‖ v−γ(x) ‖1+p≤
[
h2 − 2M2h2

(σ + dl)2
+M2h2

] 1+p
2

(8)

Proof. Let γv(x) be (2) and sx =
∑

v∈C(σ
2 + ‖v −

x‖2)−1. Following the procedure in Theorem 2, and
using the inequality, i.e., 1

(a+b)2 ≤ 1
a2+b2 , we can obtain

the upper bound for LSC as: 1

∑
v∈C

|γv(x)|‖v − γ(x)‖1+p

≤
∑
v∈C

|γv(x)|
[
h2 − 2M2h2

(σ + dl)2
+M2h2

] 1+p
2

=

[
h2 − 2M2h2

(σ + dl)2
+M2h2

] 1+p
2

Discussion on LGC and LSC: As stated in Theo-
rem 2, the upper bound of LGC is controlled by the
σ-related term, i.e.,

(
d2
u

σ2 − 1
)

. If the choice of σ makes
d2
u

σ2 < 1, we would obtain more lower upper bound than
other values of σ. Besides, d2u < σ2 theoretically shows
that there exists an optimal hyper-parameter σ for lGC,
if the number of anchors M is fixed.

For LSC (2), the term − 2M2h2

(σ+dl)2
is always negative.

If σ reduces, the bound of LSC also decreases. How-
ever, reducing σ would take danger to make the cod-
ing γv(x) be zero. That is, although the locality term,∑

v∈C |γv(x)|‖v − γ(x)‖1+p, in (3) has low error, the
term, ‖x− γ(x)‖, in (3) has large reconstruction error.

It should be noted that Theorem 2 and 3 do not dis-
cover the relation between the number of anchors M
and the hyper parameter σ. Besides, all above conclu-
sions are drawn on the assumption that the number of
anchors M is fixed.

2.2 Learning Anchors in LGC and LSC

Since Theorem 2 or 3 proves that the locality error
is bounded by a constant, we only consider the data re-
construction term to minimize the upper bound in The-
orem 1 as:

minV

∑
x∈X

‖x− γ(x)V‖2

s.t. |γ(x)| = 1, γ(x) � 0, ∀m
(9)

where | · | is the �1 norm, γ(x) � 0 means that all ele-
ments of γ(x) stratify γv(x) ≥ 0, V = [v1, . . . ,vM ]T .
It is quite similar to sparse coding, except the recon-
struction term γ(x) is determined by (1) or (2).

Optimizing (9) is beyond the scope of this paper, es-
pecially for large-scale and high-dimension visual data.

1Due to the limited length of paper, we omit the detailed derivation
and directly present the conclusion.
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Figure 1: Comparison between LGC and LSC with different number
of anchors.

An approximate solution for V is the clustering centers
of k-means as [3] does.

3 Verification of Theoretical Results

We use USPS and MNIST data sets in the experi-
ments. USPS consists of 7,291 training and 2,007 test
gray-scale 16 × 16 images. Each label correspond-
s to “0”-“9” digits. MNIST contains 60,000 training
and 10,000 28×28 gray-scale test images, which are re-
shaped directly into 784-dimensional vectors. Although
these two data sets are relatively easy for classification,
our primary purpose is to verify these theoretical con-
clusions in Subsection 2.1. As expected in Theorem 2,
the error rate of LGC would first decrease until a critical
point, and then increase 2 (see Figure 1). This observa-
tion well matches the conclusions in Theorem 2: there
exists an optimal σ in LGC for classification. While
for LSC, the error rate would raise as the value of σ
increases. Obviously, Theorem 3 explains this phenom-
ena well. That is, the σ should be as smaller as possible.

Table 2: Classification error rate (%) on MNIST and USPS.

Algorithms MNIST USPS

PEG-LLSVM+G-OCC(#vectors) [11] 1.81(40) 4.38(50)
PEG-LLSVM+C-OCC(#vectors) [11] 1.74(90) 4.09(80)

PEG-LLSVM+LGC(#anchors) 1.63(30) 2.21(40)
PEG-LLSVM+LSC(#anchors) 1.86(20) 2.64(20)

Lin.SVM+LCC(512) [10] 2.64 -
Lin.SVM+improved LCC(512) [9] 1.95 -

LA-SVM(2 passes) [2] 1.36 -
SVMstruct [8] 1.40 4.38

LL-SVM(10 passes, 100anchors) [3] 1.85 5.78

Table 2 summarizes our comparison results between
our methods and some other SVMs-based approaches.
The parameter of the RBF kernel used in the SVMs is
the same as [1]. On USPS, we can see that LGC is bet-
ter than LCC, improved LCC, OCC and LL-SVM; on

2We use PEGASOS [7] to optimize the LL-SVM in this paper.

MNIST, LGC is better than both LCC and LL-SVM,
but slightly worse than LA-SVM. All of these results
demonstrate that LGC or LSC is quite suitable to mod-
e the non-linear anchors in LL-SVM for classification.
On the other hand, LSC or LGC uses much less number
of anchors compared to the one in LCC or OCC, while
obtains better test accurate rate than other ones.

4 Conclusion

In this paper, we theoretically analyze the local cod-
ing, i.e., LSC and LGC, to encode high-dimension data.
We prove that LSC and LGC can guarantee a lower lo-
cality error for any (α, β, p)-Lipschitz smooth function
than previous methods. In future, we would like to learn
the localized sparse coding (9) using stochastic gradient
descent for large-scale and high-dimension visual data.
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