Head Yaw Estimation via Symmetry of Regions
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Abstract— This paper proposes a novel method to estimate
the head yaw rotations using the symmetry of regions. We argue
and reveal that the symmetry between the two regions in the
same horizontal row are closely relevant to the yaw rotation of
head, while at the same time insensitive to the identity of the
face. The proposed method relies on the effective combination
of Gabor features and covariance descriptors. Specifically, we
first extract the Gabor features of a face image, then the
covariance descriptors are used to compute the symmetry of
Gabor features. Since the covariance matrix can eliminate the
influence which is caused by rotations and illuminations, the
proposed method is robust to these variations. In addition, the
proposed method can be further improved by combining it with
supervised learning. Experiments on two challenging databases
are conducted, on which the proposed method improves the
current state-of-the-art.

I. INTRODUCTION

During the last decade, the research of face recognition
and the related problems has received more and more atten-
tions. However, the current face recognition systems can only
reliably deal with near-frontal faces, and the performances
of these systems degrade dramatically on non-frontal faces.
To achieve the robustness to pose variation, one may expect
to process face images differently according to their pose
parameters, which requires the accurate head pose(especially
the yaw pose). Thus, in this paper, we focus our attention
on the challenging problem of estimating the head yaw pose
from face images.

The methods for head pose estimation are summarized
in [1] [2], which can be categorized into two main groups:
model-based methods e.g. [3] [4] and appearance-based
methods e.g. [5] [6]. The model-based methods use the 3D
structure of human head. Typically, they build 3D models for
human faces and attempt to match the facial features such
as the face contour and the facial components of the 3D
face model with their 2D projections. Since these methods
generally run very fast, they can be used in video tracking
and multi-camera surveillance. However, the model-based
methods often sensitive to the misalignment of the facial
feature points and it is difficult to precisely build the head
model for different person. Inevitably, the application of
model-based method is limited. The appearance-based meth-
ods typically assume that there exists a certain relationship
between the 3D face pose and some properties of the 2D
facial image, and use a large number of training samples to
infer this relationship by using statistical learning techniques.

Recently, Ma et al. proposed the GaFour method which
estimates the head yaw pose by using the asymmetry of the
facial appearance [7] and gained the great improvement in
head pose estimation. They argue that the asymmetry of the
intensities in each row of the face image is closely relevant
to the yaw rotation of head. Their motivation comes from the
scene that with the pose varying from the front to the half-
profile, the symmetry of the face decreases gradually. Since
this decrease of the symmetry is insensitive to the identity of
the input face, it can be applied to estimate the head pose.
Specifically, in GaFour, taking the intensities of each row
of the face image as a 1D signal, 1D Gabor filters are first
convolved with the row signals to reduce noise and extract
the local information, and then Fourier analysis is used to
represent the asymmetry features of the head, i.e. to represent
the pose.

Though the asymmetry in the row signal is related to the
head pose, the asymmetry based on the 1D signal is easily
effected by other factors, for example, the misalignment.
When there is a rotation in the plane for a frontal face
image, the pixels in the same row are not symmetrically. In
fact, the problem of misalignment happened inevitably since
the input image in the head pose estimation problem is the
output of the automatic face detectors. Generally speaking,
the automatic face detectors just care about whether there is
a face in the image and don’t care about the misalignment.
In this scene, it is easy to understand that the performance of
GaFour will be decreased naturally when the misalignment
happens.

In this paper, we propose a novel method to improve the
accuracy of head pose estimation. In the proposed method,
considering the influence of noise and illumination, 2D Ga-
bor filters are first convolved and extracted the local informa-
tion. Then, the Gabor features are divided into many regions
with the same size. Covariance descriptor is taken as feature
extractor to extract the symmetry of the symmetrical regions
of the Gabor features. To enhance the discriminative ability
and reduce the dimension of the proposed representation,
furthermore, supervised learning method, specially Linear
Discriminant Analysis (LDA) [8], is applied after feature
extraction. To gain the final pose of the representations, the
nearest centroid (NC) classifier is exploited to validate the
effectiveness of the proposed method.

Compared with the symmetry of the 1D signal in GaFour,
the symmetry of the 2D regions in the proposed repre-



Fig. 1. The relationship between the symmetry plane of the head and the
center lines of the images.

sentations is more relevant to the pose variations. On one
hand, when the rotation in the plane happens, though a
point and its symmetric point in the face are not in the
same row of the image, their regions are still symmetrical
because region is robust to the small rotation. By using
the symmetry of regions, the influence of misalignment
can be reduced greatly. On the other hand, the features of
GaFour are extracted by Fourier transform, which means the
features are not the symmetry metric directly, but just include
the information of symmetry. From the viewpoint of the
relationship between the pose variations and the symmetry,
we argue the direct metric of the symmetry is much better
than the features which includes the symmetry information.
Based on this point, in this paper, the similarity of regions
under covariance descriptor is taken as the symmetry metric
of region.

The remaining part of this paper is organized as follows:
in Section II, we show the advantage of the symmetry of
2D regions. In Section III, we describe the proposed method
and introduce its improvement by combining with supervised
methods. Experiments are given in Section IV. Conclusions
are drawn in Section V with some discussions on the future
work.

II. RELATIONSHIP BETWEEN POSE AND SYMMETRY OF
REGIONS

The relationship between the center line of the images
and the symmetry plane of heads are shown in Fig. 1 [7]. In
Fig. 1, the dash line denotes the center line of the 2D images
while the solid line denotes the symmetry line of 3D faces.
With the pose varying from the front to the half-profile, the
deviation between the two lines increases gradually. From
this sense, in [7], the authors conclude that the symmetry
is closely relevant to pose variations. More details can be
found in [7].

Though the symmetry is relevant to the pose variations, the
symmetry defined in [7] is based on the 1D signals. In this
paper, we argue that the symmetry based on the 2D region
is more relevant to the pose variations. To demonstrate this,
we conduct the following experiment using the images from
CAS-PEAL face database [15].

First, we define the symmetry measure F1p of 1D signals
for a face image as follows:
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where I;; is the image intensity at position (¢,7), w and h
are the width and the height of the input image, respectively.
The image I is flipped horizontally and we can gain a new

Fig. 2. A face image and its’ symmetric image.
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(b) The symmetry measure based on the 2D regions

Fig. 3. The symmetry measures of the different poses on the CAS-
PEAL database. The horizontal axes represent the poses and the vertical
axes represent the measures. (a)The symmetry of the 1D signals. (b)The
symmetry of 2D regions. This figure show that the symmetry of 2D regions
is more related to the pose varies than that of 1D signals.

face image I”. In Fig. 2, we show the image I and its
correlative I7. In fact, image I has the same information
with image I7 because the pixel (z,y) of I is the same
with the pixel (w + 1 — z,y) of IT. By using I7, the
regions with the same position of two image is much easier
to be accepted by human brain than the different position
of one image. Obviously, the lower the value of E;p, the
greater the amount of symmetry and vice versa. The means
and the standard deviations of the symmetry measure E;p
of different poses are shown in Fig. 3 (a). The horizontal
axis represents the poses while the vertical axis shows the
measure of symmetry. From the figure, we can know with
pose varying from the front the half-profile, E'; p is increased,
which means the symmetry is decreased.

We also define the symmetry measure Fsp based on the
similarity of the regions. First, we divide a face image into
many regions. We name a region using the position of the
left-upper pixel. Then the symmetry measure Fop of the
input face image is defined by:

1
Esp =~ _sym(Rij, R)) )
ij
where sym(-) means the similarity of two regions. R;;
is the region in the original input image I and Rz;- is



the region in image I”. In the experiment, we take the
covariance descriptor as the function of sym(-), which is
used in the proposed method and we introduce it in the
following section. Obviously, the lower the value of Esp), the
greater the amount of symmetry and vice versa. We repeat the
experiment and show the means and the standard deviations
of the symmetry measure Eop of different pose in Fig. 3 (b).
From Fig. 3 (b), we can also clearly see that the symmetry
decreases when the pose variations from the front to the half-
profile, which means that the symmetry of 2D regions is also
related to the pose varies and can be applied in head pose
estimation. Compared with Fig. 3 (a), the means of Fyp are
more closed to a straight line while the standard deviations of
FEsp are much smaller than those of £;p when pose varies
from the front to the half-profile. From the comparison, we
can conclude that the symmetry based on the 2D regions is
more relevant to the pose variations than based on the 1D
row signals. So, in this paper, we try to use the symmetry of
2D regions to improve the accuracy of head pose estimation.

III. COVARIANCE DESCRIPTOR OF GABOR FILTERS

In this section, we introduce the proposed method named
Covariance Descriptor of Gabor filters (CovGa). Fig. 4 shows
the flowchart of the proposed CovGa. CovGa is a two stages
representation: Gabor features are first extracted and then
the symmetrical regions of Gabor filters are encoded by
covariance descriptors. In the following, we first introduce
the two stages. Then, we introduce how to improve the
discriminative ability of CovGa.

A. Gabor filters in CovGa

In the proposed method, we do not compute the sym-
metry on the intensity feature directly. But considering the
advantages of Gabor filters in face recognition and the related
areas, we exploit the multi-resolution and multi-orientation
Gabor filters to de-composite the input face images for se-
quential feature extraction. Then, we compute the symmetry
of the regions on each Gabor representation.

The Gabor filters are inspired by the human visual system
and their kernels are very similar to the 2-D receptive field
profiles of the mammalian cortical simple cells. For an
image I(x,y), we compute its convolution with Gabor filters
accordingly to the following equation [16]:

G(uv V) = I(x, y) * Q/JM,D(Z) 3)
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where 1 and v are the scale and orientation parameters,
respectively. In our work, (4 is quantized into 16 scales while
v is quantized into 8 orientations.

In our method, the number of scales is fixed to 16 and
two neighborhood scales (within the same orientation) are

grouped into one band (we therefore have 8 different bands).
We then apply MAX pooling over two consecutive scales:

The MAX pooling operation increases the tolerance to small
scale changes which often occurs in head images since head
images are misaligned or only roughly aligned.

B. Covariance Descriptor in CovGa

The core of the proposed CovGa is how to measure the
symmetry of the regions from the 2D images. In this paper,
we employ the covariance descriptor as the metric of the
symmetry of the regions. Covariance descriptor was firstly
proposed by Tuzel et al. for object detection [9], and then
widely used in other fields such as pedestrian detection [10]
and object tracking. Covariance descriptor is able to capture
shape, location and color information. It is shown that the
performance of the covariance features is superior to other
methods as rotations and illuminations changes are absorbed
by the covariance matrix.

In the second step of CovGa, first, for each pixel of the
Gabor features G;;, a 7-dimensional feature vector f;;(x,y)
is computed to capture the spatial, intensity, texture and
shape statistics:

fij(@,y) = [2,y,Gij. Gij,, Gij , Giz, . Giz,, ] (D

where = and y are the pixel coordinate, G;; is the intensity
information at position (z,y), G;;, and G; are the gradient
of image G/;; in direction x and y, respectively. G;;  and
Gjj,, are the second-order gradient of image G;; in direction
z and y, respectively, which can be gain by the convolution
between [—1;2; —1] and the image G;;.

Then, Gabor features are divided into small overlapping
rectangular regions. The covariance descriptor of the region
is computed as:

1
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where f;; is the mean of all the f;; in the region r and n is
the number of the pixels in the region 7.

For region 7 and its’ symmetrical region 7 in the row, we
compute their similarity d;;, under covariance descriptors
and take it as the symmetry of regions:

P
dijr = d(Cijr, Cij ) = ZIHQ Ap(Cijry Cijpr) (9)

p=1

where A, (Cij,r, C;j ) is the p-th generalized eigenvalues
of Cyj, and C;; ,r. The symmetrical region rT is the r-th
region of GZ-Tj and GiTj is the flipped image of G;.

Finally, the symmetry metrics are concatenated to form

the image representation:
D= (di11, ,di,R, dikR, 5 duk,r)  (10)

where R is the number of regions, M and K are the number
of Gabor bands and orientations, respectively.
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Fig. 4. The flowchart of the proposed CovGa.

In CovGa, the distance between two face images I; and
I; is obtained by computing the Euclidian distance between
their representations D; and D;:

d(I;, 1;) = [|Di — Dy )

Since Gabor filters and covariance descriptors are both
known to be tolerant to illumination variations, the CovGa
representation is also robust to illumination variations.

C. Enhancement of CovGa

The dimensionality the original CovGa representation is
very high because of the multi-scales and multi-orientations
of Gabor filters. Reducing the dimensionality makes the
method more efficient. Here we show that the simple method,
such as Principal Component Analysis (PCA) [11], can work
well for the proposed representation.

Besides dimension reduction, head pose estimation evi-
dently needs discriminating features rather than pure rep-
resentation. Therefore, we need combing the discriminant
analysis method with the CovGa representation in order to
improve the recognition performance. Generally, the perfor-
mance of the supervised method is much better than that
of the unsupervised method. So, we can use the supervised
method, such as Linear Discriminant Analysis (LDA) [12],
Marginal Fisher Analysis (MFA) [13] or Locality Sensitive
Discriminant Analysis (LSDA) [14], to improve the accuracy
of head pose estimation. In this paper, we only select LDA
for its simplify and then propose the method Supervised Co-
variance Descriptor of Gabor filters (sCovGa). In fact, LDA
can be replaced by other supervised methods in sCovGa.

D. CovGa for Head Pose Estimation

Since the extraction of CovGa (sCovGa) can be regarded
as the preprocessing step for yaw estimation, it should be
combined with the classifier to get the yaw pose of the
input image. In this paper, NC is selected as the classifier
to evaluate the performance of the proposed features. In NC
classifier, for the training samples with the same pose, k-
mean method is applied to find their £ centroids. Then we

Fig. 5.

Fig. 6. The face images of one subject in the Multi-Pose database.

compute the distance between the input feature and each
class centroid, and take the class with the smallest Euclidean
distance as the output label. Compared with the Nearest
Neighbor (NN) classifier, NC classifier can eliminate the
error caused by the identify since the image difference of
the same people with the near poses maybe less than the
image difference of the different people with the same pose.

IV. EXPERIMENTS

In this section, we design the experiments to show the
effectiveness of CovGa an sCovGa.

We compare the performance of CovGa with the following
unsupervised methods: PCA, GaFour and HOG. We also
compare the performance of sCovGa with the supervised
method of LDA, GFFF and sHOG. GFFF (sHOG) is the
supervised method of GaFour (HOG) by using LDA. As one
of the baseline methods in face recognition, PCA [11] is also
the baseline method in appearance-based pose estimation.



In paper [7], the authors have shown that the performance
of GaFour and GFFF are much better than that of other
methods, such as ICA and Gabor. So the results of these
methods are not shown in this paper. For all the methods,
PCA is used after feature extraction to reduce the dimension
of features and 95% of total energy of eigenvalues is kept.
For the supervised methods, we apply PCA first for dimen-
sionality reduction and then LDA for discriminant analysis.
In the experiment, the region of CovGa is set to 8 x 8 with
overlapping 4 x 4. To improve the performance of CovGa, we
also compute the symmetry of regions in the same column.

For all the images, the face detection method [17] is
applied to locate the face region from the input images, and
then all the face regions are normalized to the same size of
32 x 32. Finally, histogram equalization is used to reduce the
influence of lighting variations.

In all the experiments, 3-fold cross-validation is used to
avoid over-training. Specifically, we rank all the images by
subjects and divide them into three subsets. Two subsets are
taken as the training set and the other subset is taken as the
testing set. In this way, the persons for training and testing
are totally different, thus avoiding the over-fitting in identity.
Testing is repeated three times, by taking each subset as the
testing set. The reported results are the average of all the
tests.

A. Experiments on the CAS-PEAL database

We first evaluate the performances of different methods
on the public CAS-PEAL database [15]. The CAS-PEAL
database contains twenty-one poses combining seven yaw
poses ([—45°, 45°] with intervals of 15° and three pitch
poses (30°, 0° and —30°). We use a subset containing
totally 4, 200 images of 200 subjects whose IDs range from
401 through 600. Considering the cross-validation, there are
totally about 400(= 600/3 x 2) samples for each pose in
the training set. Some images in the CAS-PEAL database
are shown in Fig. 5. The accuracies when the center number
varies from 1 to 20 are shown in Fig. 7. The x-axis represents
the center number of each class and the y-axis represents the
accuracy.

From the above figure, we can see that on the CAS-PEAL
database, the results of CovGa are much better than those of
PCA and HOG, while similar to those of GaFour. But after
using LDA, the results of sCovGa are the best of all methods.
By combining with the supervised method, the advantage
of the symmetry of 2D regions is more clearly. For the
unsupervised methods, it can also be seen that the accuracy
increases with the increase of k£ when k is very small.
However, for the supervised methods, such as sCovGa, the
accuracies are nearly equal for different £’s, which actually
implies the excellent compactness of each class in the feature
space obtained by LDA. Especially, for different number of
centers, the accuracies of sCovGa are const to 93.2% while
the results of GFFF are 90.5%. The robustness of sCovGa
to the number of centers shows the good discriminate-ability
of sCovGa. In the real system, we can just use 5 or 6
centers for each pose, which can decrease the computing

S 88t
©
g
3 86|
Q
©
O 84
<
'_
82
s —*— GaFour
L/ - % — GFFF ||
8y —v- HOG
/ —0--sHOG
8L B —— CovGa |]

—&— sCovGa

~
@

2 4 6 8 10 12 14 16 18 20
The number of center

Fig. 7. The accuracies on the CAS-PEAL database. The x-axis represents
the center number of each class and the y-axis represents the accuracy.

cost of matching the gallery sample and the probe sample.
We attribute the improvement of CovGa and sCovGa to two
aspects. First, by using the symmetry of regions, the feature
is more related to the pose variations. Second, in computing
the symmetry of region, we use covariance descriptors, in
which rotations and illuminations changes are absorbed by
the covariance matrix.

B. Experiments on the Multi-Pose database

The second experiment is on the private Multi-Poses
database, which consists of 3,030 images of 102 subjects
taken under normal indoor lighting conditions and fixed
background. The yaw poses and the pitch poses range within
[—50°, +50°] with intervals of 1°. The sample number is
30 for each class (i.e. yaw pose). Since the poses of this
database are near continuous, we use the error mean between
the predicted label and the ground-truth, not the accuracy, as
the measure of the performance. Some images of the results
of face detection are shown in Fig. 6. Considering that the
sample number is about to 40(= 60/3 x 2) for each class
(pose) in the training set, the maximal centroid number for
each pose is limited to 7, which is different from that in the
experiment on the CAS-PEAL database. The error means
when the center number varies from 1 to 7 are shown in
Fig. 8.

From the above figure, we can see on the MultiPoses
database the advantage of the proposed method is more
obviously. The results of CovGa are best of all the unsu-
pervised methods and the results of sCovGa are best of all
the methods. Especially, for different number of centers, the
error means of sCovGa are near to 4.1° while those of GFFF
are 4.7°. The error means of CovGa are near to 4.5° which
even better than those of the supervised methods. The good
performance of the proposed method show that the proposed
method can improve the performance of head pose estimation
by using the symmetry of regions.
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V. CONCLUSIONS

Based on the relationship between the symmetry of the
face image and the head pose, we propose in this paper a
novel face representation method for head yaw estimation.
Compared with the symmetry of 1D signals, the symmetry
of 2D regions is much more related to the pose variations of
head while robust to misalignment. To extract the symmetry
of regions which locate in the same horizontal position,
we use covariance descriptor on the Gabor representations.
The results on two databases show the effectiveness of the
proposed method.

There are also several aspects to be studied in the future.
First, considering the necessary of the real-time system, the
covariance descriptor should be replaced by its fast version.
Second, in this paper, we select LDA for its simpleness. In
fact, we should investigate which supervised method is more
suitable to combine with CovGa for improving the accuracy
of the proposed method further.
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