
TEMPORALLY MULTIPLE DYNAMIC TEXTURES SYNTHESIS USING PIECEWISE
LINEAR DYNAMIC SYSTEMS

Xing Yan, Hong Chang, Xilin Chen

Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),
Institute of Computing Technology, CAS, Beijing, 100190, China

{xing.yan, hong.chang, xilin.chen}@vipl.ict.ac.cn

ABSTRACT

Real-world nonlinear dynamic textures (DTs) usually consist
of temporally multiple linear DTs which cannot be correct-
ly modeled by previous works. In this paper, we propose
piecewise linear dynamic systems (PLDS) to model tempo-
rally multiple DTs. PLDS simultaneously decides the tempo-
ral segmentation, models each DT segment with an LDS and
the whole DT by switching between the LDS’. Experimental
results verify that PLDS can capture the stochastic and dy-
namic nature of temporally multiple DTs and it synthesizes
nonlinear DTs without decay or divergence. An EM-like al-
gorithm iterating between sequence division and LDS’ fitting
is adopted to learn the model parameters.

Index Terms— Temporally Multiple Dynamic Textures,
Piecewise Linear Dynamic Systems, Temporal Segmentation

1. INTRODUCTION

Dynamic textures (DTs) are video sequences with spatially
repetitive and temporally varying visual patterns that exhibit
certain stationary properties over time, such as flames, mov-
ing escalators, fountains, waterfall, vegetation blowing in the
wind, and so on. DT analysis and synthesis is an important re-
search topic in image/video processing and computer vision.
During the past decades, various methods have been proposed
for this purpose. A typical parametric model for DT synthesis
was proposed by Doretto et al. [1], where a DT is modeled as
a Linear Dynamic System (LDS) by estimating system states
using Principal Component Analysis (PCA) and describing
their trajectory as time evolves. The LDS-based model has
achieved success in various vision tasks such as synthesis,
editing [2], segmentation [3] and video coding [4][5].

However, the visual quality of the synthesized DTs using
basic LDS is often unsatisfactory. To this end, many LDS
variants have been proposed. Yuan et al. [6] analyze the sta-
bility of the basic LDS and present closed-loop LDS (CLDS)
to deal with the non-stable case which may generate longer
DTs without any visible discontinuities. Chan and Vasconce-
los [7] propose to learn a nonlinear observation function us-
ing kernel-PCA. The resulting kernel DT is capable of mod-

eling a wider range of video motion such as chaotic motion
or camera motion. Nonlinear models have been proposed to
model nonlinear DTs, which use nonparametric methods to
generate future observations. Masiero and Chiuso [8] gen-
erate samples from the estimated state distribution. In [9],
observed data are embedded into a higher dimensional phase
space and warped to a strange attractor, followed by predict-
ing future observations using information from the strange at-
tractor. Another class of methods model nonlinear DTs with
multiple LDS’, which indeed enhance the representation a-
bility of original LDS. Early works include switching-based
linear models [10][11] which select the system parameters
or switch between different LDS outputs at each time step.
Then, Chan et al. [12][13] introduce mixture of DTs to model
multiple, co-occurring DTs and achieve superior performance
in the problems of video clustering and motion segmentation.

In spite of the previous works, modeling DTs involved in
real-world videos is still a challenging problem. For exam-
ple, due to camera switching or instantaneous scene changes,
a video sequence may exhibit complex dynamic nature as
shown in Figure 1. Apparently, the dynamic is globally non-
linear which cannot be captured by single linear dynamic
model as did in [1][6][7]. Nonlinear models in [8][9] cannot
be given explicitly and handle these multiple linear DTs. Pre-
vious methods using multiple linear systems will fail to deal
with such problem either. Mixture of DTs [12][13] can mod-
el multiple DTs in spatial domain, but cannot be applied in
the case of temporally multiple DTs. Switching-based linear
systems [10][11] have difficulties in learning a large number
of switches along the transitions.

In this paper, we consider the real-world nonlinear DTs as
temporally multiple linear DTs and propose piecewise linear
dynamic systems (PLDS) for modeling and synthesis. Instead
of manually splitting video into simpler DT pieces and then
modeling each with an LDS, PLDS simultaneously decides
the temporal segmentation, models each DT segment with an
LDS and the whole DT by switching between the LDS’. Our
method is inspired by [14], which synthesizes human dance
motion with a collection of LDS’ and uses a transition ma-
trix to represent the relationship between motion textons. The

advantages of PLDS include: (1) it can capture the stochas-
tic and dynamic nature of temporally multiple DTs; (2) it can
synthesize complex DTs without decay or divergence; (3) it
can be effectively learned by an EM-like algorithm.

Fig. 1. A sequence that consists of temporally two DTs.

The rest of this paper is organized as follows. Section
2 reviews the basic DT synthesis using LDS. Section 3 de-
scribes the PLDS to model temporally multiple DTs and the
learning algorithm. Section 4 presents some experimental re-
sults. Finally we conclude the paper and present some future
works in Section 5.

2. DT SYNTHESIS USING LDS

We first give a brief introduction to LDS model and show how
it can be used to synthesize DT [1]. For a given sequence of
length T , we represent each frame with a column observation
vector yt ∈ Rm, 1 ≤ t ≤ T . Let Y = [y1, y2, ..., yT], we
model yt as the output of an LDS as{

xt+1 = Axt +Bvt, Bvt ∼ N (0, Q),
yt = y0 + Cxt + wt, wt ∼ N (0, R).

(1)

where xt ∈ Rn, n ≪ m is the hidden state vector at time t,
A ∈ Rn×n models the dynamic of hidden states, C ∈ Rm×n

maps the hidden state to the output of the system. y0 ∈ Rm is
the mean of observation vectors, Bvt ∼ N (0, Q) and wt ∼
N (0, R) are Gaussian white noises, where Q = BBT .

Doretto et al. [1] introduced a fast but suboptimal method
for computing system parameters, i.e., (y0, C,A,B,R), us-
ing a PCA-based approach. In the training process, an SVD

Y − Y0 = UΣV T , (2)

is performed where Y0 = [y0, ..., y0] and y0 = 1
T

∑T
t=1 yt.

System parameters are then estimated as

C = U and X = ΣV T , (3)

where X = [x1, ..., xT] are estimated hidden states of the
system. These hidden states are used to compute a suboptimal
parameter matrix A using least squares estimation as

A = X2:TX
†
1:T−1, (4)

where † represents pseudoinverse. Also,

Q =
1

T − 1

∑
t

v′t(v
′
t)

T , (5)

where v′t = xt+1 −Axt. The model fitting error is defined as
1

T−1

∑
t ||v′t||22.

The learnt LDS model is then used to reconstruct or syn-
thesize a new sequence. Given an initial hidden state x1, the
sampling noise Bvt can drive the system matrix A to generate
new states, which are then mapped to high-dimensional obser-
vation vectors to form a new sequence of DT. However, this
model often fails to produce videos with satisfactory quality
or arbitrary length even for simple input sequences [6].

3. NONLINEAR DT SYNTHESIS

3.1. PLDS Model

For more accurate representation of realistic DTs, we pro-
pose the PLDS model. Given video sequence Y1:T consist-
ing of temporally multiple DTs as shown in Figure 1, sup-
pose Nt kinds of DTs are involved that can be modeled by
S = {S1, S2, ..., SNt}, where Si denote an LDS as well as its
effective parameters Si = {yi0, Ci, Ai, Bi}. Our objective is
to automatically divide the sequence into Np pieces (appar-
ently Np ≥ Nt) and model each piece by one of the Nt LDS’
such that the total fitting error is minimized.

The PLDS have additional discrete parameters besides S,
the labels L = {l1, l2, ..., lNp} and the segmentation points
H = {h1, h2, ..., hNp} of the Np pieces. As illustrated in
Figure 2, li indicates which LDS is used to model the i-th
video piece, and hi denotes the beginning frame of the i-th
piece. Practically, we set a minimum length constraint for all
pieces, i.e., hi+1 − hi ≥ Tmin, ∀i.

Fig. 2. An example illustrating how a sequence be divided
and pieces be labeled using discrete parameters H and L.

3.2. Algorithm to Fit PLDS

The PLDS learns parameters {H,L, S} to find the best divi-
sion of the sequence and the most exact labels of pieces that
get the minimum fitting error, by optimizing the objective,

min
H,L,S

Np∑
i=1

m(Yhi:hi+1−1, Sli). (6)

For any s, t and i, m(Ys:t, Si) is the fitting error which need-
s a redefinition. That is, given any LDS Si and a piece of
video frames Ys:t = [ys, ys+1, ..., yt], how well the LDS fit

the video clip. In [14], probability likelihood P (Ys:t|Si) is
adopted. For video reconstruction, we should measure the
difference between reconstructed and input videos. So the fit-
ting error in Section 2 is also not proper and we can use other
measures such as the average norm error or PSNR between re-
constructed and original frames. Experiments show that strict
measures can improve the results, such as the maximum norm
error or the minimum PSNR, i.e.,

m(Ys:t, Si) = max
s≤k≤t

∥ Y rec
k − Yk ∥2, (7)

or
m(Ys:t, Si) = − min

s≤k≤t
PSNR(Y rec

k , Yk), (8)

where Y rec
s:t is the reconstructed sequence of LDS Si with ini-

tial hidden state xrec
s = (Ci)† · (Ys − yi0). We observe a

complexity reduction that Y rec
s:t can be used to directly obtain

m(Ys:t′ , Si) for any t′ ∈ (s, t) by just taking a part of frames
Y rec
s:t′ from Y rec

s:t .
We adopt an EM-like iterative strategy to learn the mod-

el parameters {H,L, S}. Our algorithm is inspired by the
parameter estimation algorithm proposed in [14] and each it-
eration step includes two parts, inferencing {H,L} and fit-
ting multiple LDS’ S. In inferencing part, a dynamic pro-
gramming algorithm is performed to efficiently compute the
optimal {H,L} while S is available due to the fitting part
of the last iteration step. In fitting part, we update S using
{H,L} obtained from the inferencing part of the current iter-
ation step. The algorithm loops until it converges to a local
optimum or a maximum number of iterations is reached.

Details of dynamic programming algorithm of the infer-
encing part are given below. We define Gn(t) as the minimum
possible fitting error when dividing the sequence Yt:T into n
pieces. Let En(t) and Fn(t) be the label and ending frame of
the first piece of Yt:T when achieving Gn(t).

1. Initialization

G1(t) = min
1≤i≤Nt

m(Yt:T , Si), 1 ≤ t ≤ T−Tmin+1,

E1(t) = arg min
1≤i≤Nt

m(Yt:T , Si).

2. Loop for n = 2 : T
Tmin

, t = T −n ·Tmin+1 : −1 : 1

Gn(t) = min
1≤i≤Nt

t+Tmin−1≤b≤T−(n−1)Tmin

max(Gn−1(b+ 1),m(Yt:b, Si)),

En(t), Fn(t) = argmin
i,b

max(Gn−1(b+1),m(Yt:b, Si)).

Notice that m(Yt:b, Si) can be directly obtained after
computing m(Yt:T−(n−1)Tmin

, Si).

3. Final solution

G(1) = min
1≤n≤ T

Tmin

Gn(1),

Np = arg min
1≤n≤ T

Tmin

Gn(1).

4. Backtracking
Backtrack the segmentation points H and the labels L
using En(t) and Fn(t). For T frames and Nt LDS’, the
computational complexity is O(NtT

2).

After Inferencing {H,L}, we concatenate pieces that
have the same label into a new sequence and learn an LDS for
it using the algorithm described in Section 2. There are small
modifications when dealing with boundaries of the pieces.
Simultaneously, we keep all the starting hidden states of the
pieces used for reconstructing the whole sequence using the
method in Section 2. All the learnt LDS’ compose a new S.
That is, we get S updated in fitting part of each iteration.

Initial {H,L, S} is given by a greedy approach. Assume
Y1:s has been divided into pieces, each has been labeled, and
S = {S1, S2, ..., Si}. Then an LDS in S which best fits sub-
sequent T ′ = min(Tmin, T − s) frames Ys+1:s+T ′ is chosen
and we label the frames with it if the fitting error is under
a specified threshold ρ. Otherwise, no LDS is chosen and
we learn a new LDS Si+1 using Ys+1:s+T ′ . In any case the
piece Ys+1:s+T ′ is labeled and we add subsequent frames to
the piece one by one until the fitting error is above ρ. Then
we get a new piece and add Si+1 into S, and repeat until the
entire sequence is processed. The threshold ρ and Tmin are
two important parameters in initialization step.

4. EXPERIMENTS

(a) (b)

(c) (d)

Fig. 3. Four sequences that consist of multiple DTs. Two
representative frames are shown for each sequence.

We have verified our proposed algorithm on some texture
sequences.1 Figure 3 shows four sequences involved in our
experiments that consist of temporally multiple DTs. The se-
quences (a) and (b) are directly cut from real videos. The
sequences (c) and (d) are manually concatenated using two
DTs from the DynTex database [15]. Each of the eight subse-
quences has 60 frames. In our experiments, we adopt the min-
imum PSNR as the measure of fitting error. We set the thresh-

1All experimental data and results are available from our web page
http://vipl.ict.ac.cn/paperpage/PLDS/

(a)

(b)

(c)

(d)

Fig. 4. Comparison between basic LDS method and our PLD-
S method. The left column are frames synthesized by basic
LDS, and the right are by our PLDS.

old ρ in model initialization varying from 15 to 50. Tmin is
25 and iteration number between 2 and 4 is enough.

Figure 4 shows visual quality comparisons between basic
LDS method [1] and our PLDS method. Our approach out-
performs the LDS, because single LDS cannot model multiple
DTs. The results of basic LDS method show a phenomenon
that two DTs are mixed into the same frames. The quanti-
tative comparisons are shown in Table 1, where our method
gives significantly smaller norm error between reconstructed
and original frames. The number 61 in each H reveals that
the four sequences are correctly divided.

We also compare our results with those generated by the
CLDS method [6]. Because the random selection procedure
and smooth operation in CLDS make it infeasible to com-
pute the reconstruction errors, we only give qualitative com-
parisons in Figure 5. We can see that the smooth operation
in CLDS does not always work, especially for synthesizing
nonlinear DTs.

Sequence Basic LDS PLDS H (A total of 120)
(a) 89.7 31.5 (1,28,61)
(b) 248.6 26.2 (1,61,86)
(c) 239.4 68.0 (1,29,61,88)
(d) 142.8 90.2 (1,61,90)

Table 1. Quantitative comparison between LDS and PLDS.
The second and third columns show norm errors. The fourth
column provides segmentation points H after fitting PLDS.

(a)

(b)

Fig. 5. Comparison between CLDS and PLDS. Frames on the
left are synthesized by CLDS, and the right by PLDS.

5. CONCLUSION AND DISCUSSION

In this paper, we propose a piecewise linear DTs model to
synthesize temporally multiple DTs. An EM-like algorithm
iterating between sequence division and LDS’ fitting is adopt-
ed to learn the model parameters. Experimental results verify
that our method can capture the stochastic and dynamic nature
of temporally multiple DTs by correct division and labeling.

Some future work will be pursued to make the proposed
method more applicable. The number of parameters can be
reduced by replacing the SVD in the method with higher-
order tensor decomposition, such as HOSVD [16]. To model
and synthesize more real-world videos, we can apply PLD-
S in both temporal and spatial domains. Other possibilities
include integrating the method into video coding framework.

6. ACKNOWLEDGEMENT

This work is partially supported by the National Science
Foundation of China under contract No. 61272319, the
National Basic Research Program of China (973 Program)
under contract 2009CB320900, and Beijing Natural Science
Foundation (New Technologies and Methods in Intelligent
Video Surveillance for Public Security) under contract No.
4111003.

7. REFERENCES

[1] G. Doretto, A. Chiuso, Y.N. Wu, and S. Soatto, “Dy-
namic textures,” International Journal of Computer Vi-
sion, vol. 51, no. 2, pp. 91–109, 2003.

[2] G. Doretto and S. Soatto, “Editable dynamic textures,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, June 2003, vol. 2.

[3] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dy-
namic texture segmentation,” in Proceedings of the
IEEE International Conference on Computer Vision,
October 2003.

[4] A. Stojanovic, M. Wien, and J.-R. Ohm, “Dynamic
texture synthesis for h.264/avc inter coding,” in Pro-
ceedings of the IEEE International Conference on Im-
age Processing, October 2008, pp. 1608–1611.

[5] B. Zhou, F. Zhang, and L. Peng, “Compact represen-
tation for dynamic texture video coding using tensor
method,” IEEE Transactions on Circuits and Systems
for Video Technology, 2012.

[6] L. Yuan, F. Wen, C. Liu, and H.Y. Shum, “Synthesizing
dynamic texture with closed-loop linear dynamic sys-
tem,” in Proceedings of the European Conference on
Computer Vision, 2004, pp. 603–616.

[7] A.B. Chan and N. Vasconcelos, “Classifying video with
kernel dynamic textures,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, June 2007, pp. 1–6.

[8] A. Masiero and A. Chiuso, “Non linear temporal tex-
tures synthesis: a monte carlo approach,” in Proceed-
ings of the European Conference on Computer Vision,
2006, pp. 283–294.

[9] A. Basharat and M. Shah, “Time series prediction by
chaotic modeling of nonlinear dynamical systems,” in
Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2009, pp. 1941–1948.

[10] R.H. Shumway and D.S. Stoffer, “Dynamic linear mod-
els with switching,” Journal of the American Statistical
Association, vol. 86, pp. 763–769, 1991.

[11] Z. Ghahramani and G.E. Hinton, “Switching state-space
models,” University of Toronto Technical Report CRG-
TR-96-3, Department of Computer Science, 1996.

[12] A.B. Chan and N. Vasconcelos, “Mixtures of dynam-
ic textures,” in Proceedings of the IEEE International
Conference on Computer Vision, October 2005, vol. 1,
pp. 641–647.

[13] A.B. Chan and N. Vasconcelos, “Modeling, cluster-
ing, and segmenting video with mixtures of dynamic
textures,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 5, pp. 909–926, May
2008.

[14] Y. Li, T. Wang, and H.Y. Shum, “Motion texture: A two-
level statistical model for character motion synthesis,”
ACM Transactions on Graphics, vol. 21, no. 3, pp. 465–
472, 2002.

[15] R. Péteri, S. Fazekas, and M.J. Huiskes, “Dyntex: A
comprehensive database of dynamic textures,” Pattern
Recognition Letters, vol. 31, no. 12, pp. 1627–1632,
2010.

[16] R. Costantini, L. Sbaiz, and S. Susstrunk, “Higher or-
der svd analysis for dynamic texture synthesis,” IEEE
Transactions on Image Processing, vol. 17, no. 1, pp.
42–52, January 2008.

