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Abstract. Videos always exhibit various pattern motions, which can
be modeled according to dynamics between adjacent frames. Previous
methods based on linear dynamic system can model dynamic textures
but have limited capacity of representing sophisticated nonlinear dynam-
ics. Inspired by the nonlinear expression power of deep autoencoders, we
propose a novel model named dynencoder which has an autoencoder at
the bottom and a variant of it at the top (named as dynpredictor). It
generates hidden states from raw pixel inputs via the autoencoder and
then encodes the dynamic of state transition over time via the dynpre-
dictor. Deep dynencoder can be constructed by proper stacking strategy
and trained by layer-wise pre-training and joint fine-tuning. Experiments
verify that our model can describe sophisticated video dynamics and syn-
thesize endless video texture sequences with high visual quality. We also
design classification and clustering methods based on our model and
demonstrate the efficacy of them on traffic scene classification and mo-
tion segmentation. ...

Keywords: Video Dynamics, Deep Model, Autoencoder, Time Series,
Dynamic Textures.

1 Introduction

Video dynamics, representing as various object motions, widely exist in real-
world video data, e.g., regular rigid motion like moving escalator and windmill,
chaotic motion like smoke and water waves, sophisticated motion caused by cam-
era panning or zooming, etc. Modeling video dynamics is challenging but very
important for subsequent vision tasks, such as dynamic texture (DT) synthesis,
video classification, motion segmentation and so on.

One popular way to address this challenge is via linear dynamic system (LDS),
a probabilistic generative model defined over space and time, which estimates
hidden states using Principal Component Analysis (PCA) and describes their
trajectory as time evolves. LDS can model videos with smooth motions and
has been applied to computer vision tasks such as DT synthesis [9], video seg-
mentation [10][7] and video classification [18][5][17]. However, LDS has obvious
disadvantages due to its simplistic linearity so that many variants have been
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proposed. To overcome visible decay and discontinuities of sequences synthe-
sized by LDS, closed-loop LDS (CLDS) [28] is proposed. However, the model is
still linear and may fail to model some discontinuous rigid motions. Kernel-DT
model is proposed in [6], where the nonlinear observation function is learned us-
ing kernel-PCA while the hidden states change linearly. kernel-DT can capture
more motions such as camera panning, but may have the same weaknesses as
LDS due to the linear state transition. By treating nonlinear DT as temporally
multiple linear DT, piecewise linear dynamic systems (PLDS) [27] automatically
divides the video sequence and models each segment with an LDS. It can tackle
videos with camera switching. But piecewise linearity is too different from non-
linearity. In short, above LDS-based approaches try to model video dynamics,
but do have weaknesses more or less.

Other ways to model video dynamics for texture synthesis is via nonparamet-
ric methods. Masiero and Chiuso [15] propose to estimate the state distribution
and generate samples from the implicit model. Liu et al. [13] assume the spectral
parameters of image sequences lie on a low-dimensional manifold and use a mix-
ture of linear subspaces to model it. In [2], the observation data are embedded
into a higher dimensional phase space, where the predictions computed through
kernel regression. Unlike LDS-based models, these nonparametric methods have
no application reported such as video classification.

Once each video has been modeled by a dynamic system, we can not only
synthesize dynamic textures, but also perform video classification by defining
distance or kernel between pair of models. Some researchers [18][6] use the Mar-
tin distance [14] between two LDSs (or the kernel version) and achieve good
performance in DT recognition. They also use probabilistic kernel based on the
Kullback-Leibler divergence [5] for traffic scene classification. With proper dis-
tance definition, video clustering and segmentation can be done as well [10].

Deep learning methods have recently been proposed with notable successes
in some areas including computer vision, beating the state-of-the-art [3]. Deep
models, such as Deep Belief Network and stacked autoencoders, have much more
expressive power than traditional shallow models and can be efficiently trained
with layer-wise pre-training and fine-tuning [3][11]. Stacked autoencoders have
been successfully used as a robust feature extractor [24]. Besides, they can also be
used to model complex relationships between variables due to the composition of
several levels of nonlinearity [24]. For example, Xie et al. [26] model relationship
between noisy and clean images using stacked denoising autoencoders. Their
method achieves state-of-the-art performance in image denoising and inpainting
tasks. However, deep autoencoders are rarely used to model time series data,
although there have been some works on using variants of Restricted Boltzmann
Machine (RBM) for specific time series data, i.e., human motion [23][22]. Some
other deep models address video data with convolutional learning of spatio-
temporal features [21][12].

In this paper, we propose a novel hierarchical model named deep dynencoder
to model video dynamics, i.e., the relationship between all pairs of adjacent
frames in an image sequence. We stack an ordinary autoencoder and a variant
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Fig. 1. Model architecture: (a) the basic dynencoder (the parameters 6] and 05 are
obtained from layer-wise pre-training, while the red dashed arrows represent the fine-
tuning process of the model parameters); (b) deep dynencoder

of it to form a basic dynencoder, which can be further deepened through proper
stacking strategy. After layer-wise pre-training and fine-tuning, the model can
capture various video dynamics including regular rigid motions, chaotic motions
and camera motions such as panning or zooming. Given a DT sequence for
training and an initial frame, our model can synthesize an endless DT sequence
with impressive high visual quality. Similar with [6][18][10], we define a distance
measure between two videos based on our model and apply it to traffic scene
classification and motion segmentation. The performances of classification and
segmentation are close to or higher than the state-of-the-art.

To summarize, our contributions are threefold. First, we propose deep dynen-
coder for modeling video dynamics and effective algorithm for training. Second,
our method performs outstandingly in DT synthesis, showing its ability of de-
scribing sophisticated video dynamics. Third, we associate our model with a
distance measure definition and demonstrate its usefulness on vision tasks in-
cluding classification and segmentation.

2 Model Description

In this section, we first give the formulation and training method of the basic
dynencoder for video modeling. Then we introduce how to construct the deep
dynencoder with a stacking strategy. Notice that a video sequence is denoted by
Y = {y:}}_,, where y; € R™ contains raw pixel values of the frame at time ¢.

2.1 Dynencoder

Dynencoder is a three-layer network constructed by stacking a variant of autoen-
coder on top of an ordinary one, as shown in Figure 1(a). For a video sequence,
the autoencoder at the bottom generates hidden states (or compresses the input)
from raw frames, while its variant (we name it dynpredictor) at the top encodes
the dynamic of the hidden states and predicts new states.
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Step 1. Autoencoder Pre-training. Let {y:} be the training data, the ordi-
nary autoencoder is defined as:

ho, (y1) = s(Wiy, + b1), (1)
fo,(ho, (ye)) = s(Wyhe, (ye) + by). (2)

Here 01 = {W, b}, Wy, b} are model parameters consisting of connection weights
and biases. s(x) = (1 + exp (—x))~! is the sigmoid activation function. hg, (y;) is
the hidden layer activation and fp, (he, (y:)) is the output layer activation. The
parameters 61 are optimized by minimizing the average reconstruction error:

T

1
61 = argmin ., > o (hoy (ye)) = ell3- 3)

t=1

It reveals that the hidden layer activation hg, (y:) can be seen as a compressed
representation of y;, as well as the hidden state of y;.

Step 2. Dynpredictor Pre-training. After training the autoencoder, we can
take hidden layer activations {hg, (y:)} as the input of a dynpredictor and train
it. This means that the dynpredictor is put on the top of the autoencoder, as
shown in Figure 1(a). Let x; = hg, (y:), the layer activations of dynpredictor are
computed similarly:

hey (x1) = s(Wia, +b), (4)
fou(hoy (1)) = s(W3ho, (x1) + b3). (5)

Here 0 = {W2, b2, W2, b2} are model parameters consisting of connection weights
and biases. hg, (z:) and fp, (hg,(x¢)) are the hidden and output layer activations
respectively. Note that the dynpredictor is different from autoencoder in that we
optimize the parameters 62 by minimizing the following error:

T-1
. 1
0y —angmin -~ o (hoa o)) — a3 (6)
t=1

That is, dynpredictor is not used for reconstructing the input, but predicting
the input at next time step.

After that, the output layer activations { fo, (ha, (z:))} are mapped back to the
output layer of the autoencoder below. Therefore, when given y;, the calculation
process of dynencoder is:

F(ye) = fo,(fo,(hoy (ho, (y1))))- (7)

Step 3. Joint Fine-tunning. The above two steps can be considered as the
layer-wise pre-training strategy in deep learning. After pre-training with {y;}, it
is obvious that the dynencoder with parameters {0}, 65} tends to output video
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frame of the next time step when given the current one, ie., F(yt) = yy1.
Similar to deep learning, fine-tuning can be performed to make the prediction
more accurate. With initialized parameters {61,605} and target sequence {y;+1},
we fine-tune the parameters as:

T—1
1
{61,63} = arg min .~ S IF ) = yeral3- ®)
’ t=1

After joint fine-tuning, the dynencoder represents the mapping y; — yst1
more precisely. Actually, it can model the underlying relationship between tem-
porally adjacent two inputs and encode the video dynamic into parameters. More
specifically, the dynencoder maps the observation data to hidden states (and vice
versa) via autoencoder and describes the dynamic of hidden states via dynpre-
dictor. The mapping line is: ¥y — T — Tyy1 — Yer1. S0 given an initial frame,
a trained dynencoder can generate an endless video of the same dynamic.

2.2 Deep Dynencoder

Like deep autoencoders, we can also stack many building blocks to get deep
dynencoder. In the architecture of dynencoder, there are two kinds of building
blocks: autoencoder and dynpredictor. So, the model can be deepened by adding
more autoencoders at the bottom and more dynpredictors on the top, as shown
in Figure 1(b). If we have stacked M autoencoders with parameters {6;}}, and
N dynpredictors with parameters {92}5\1 'Xﬁ_l from bottom to top, the resulting
deep dynencoder maps input y; to output F(y;) by:

F(yt) = f91 S Of91u+N © h’91u+N -0 h91(yt)a (9)

where o represents function composition. In other words, the layers are activated
bottom-top-bottom.

Given {y;}, the M+ N building blocks are pre-trained one by one from bottom
to top in the same way as stacked autoencoders. For example, {hg, (y;)} are
used to train the second autoencoder, and so on. The hidden layer activations
of the top autoencoder {hg,, o --- o hg,(y)}, i.e., the hidden states {z;}, are
used to train the first dynpredictor . Then {hg,, ,(x;)} are used to train the
second dynpredictor, and so on. Finally, we get the pre-training parameters

{01,...,0% .~} and use them as initializations in the following fine-tuning step:
| Tl

0} = i F(y) — 5 10

{07} arg%il}lTi 1 tz:; 1 F(ye) — yes i3 (10)

The deep dynencoder can model more complex dynamics y; — y41.

It is worth noting that the training strategy need to be modified slightly when
stacking two dynpredictors. At the pre-training step, unlike autoencoder aiming
at reconstructing input, dynpredictor tries to predict the hidden states of next
time {z;41}. If we train the second dynpredictor using the same method as the
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first one and stack them, the network will tend to output x¢42 when inputting
x;. After pre-training, the deep dynencoder tends to output y;4+2 when inputting
Yt, which is not what we want. A simple solution is stacking only one dynpre-
dictor on top of several autoencoders. A better solution of stacking multiple
dynpredictors is interpolating between two adjacent inputs to form a new data
set {¢, z, ! 1T ,. Then, two stacked dynpredictors tends to represent the map-
ping z; — x¢+1, and z, 1 Ty simultaneously. Since interpolating between
{z;} directly may lack some sense, we can adopt video frame interpolation first
to get {y, 41} and treat {y¢y,, 1} as training data of bottom autoencoders to
get {x¢, ;1 }. After pre-training, {y,, 1} and {z,, 1} are abandoned to elimi-
nate their influence, i.e., we still perform the optimization according to Equation
(10). This strategy can be adopted when stacking more dynpredictors. In fact,
the basic dynencoder including one autoencoder and one dynpredictor can model
complex videos well. We will verify this in the experiment section.

2.3 Discussion

Dynencoder preserves some similarities with LDS. The formulation of LDS con-
tains a couple of equations representing the observation and state transition
processes, which are just the objectives of autoencoder and dynpredictor re-
spectively, in our model. But they are significantly different as dynencoder is
completely nonlinear while LDS is linear. Even some variants of LDS remain
linear to some extent, e.g., in kernel-DT, hidden states change linearly. With the
help of nonlinear representation capability, dynencoder can model video dynam-
ics better than LDS-based models do.

It is clear that computational complexity of training our model is the same
as training stacked autoencoders, which mainly depends on the optimization
algorithm adopted in each optimization problem described above. Two popular
algorithms can be adopted: L-BFGS or nonlinear conjugate gradient method.
The latter is faster in each iteration and the L-BFGS needs less iterations. It is
well known that the computational complexity of training a deep model is high
when the input dimension is high (all pixel intensities of an image). Training
with multicore computing or GPU acceleration will save a lot of time.

One may doubt why the regularization term that tends to decrease the mag-
nitude of the weights is absent in our formulations. Actually, regularization term
is to prevent overfitting and improve predictive performance. In some cases (e.g.,
DT synthesis), the model may be required to reconstruct the original sequence
with small error. The regularization term may cause opposite effect so that it is
absent in this paper. Furthermore, we can set the dimensions of hidden layers of
dynencoder to be small to prevent overfitting.

Our method has potential to model any time series data beyond computer
vision field, e.g., large amounts of financial data or medical time series. It may
need some modifications to match different data types and tasks, e.g., it might
be necessary to add regularization term in some cases. We do not give much
discussion here because our focus in this paper is modeling video dynamics.
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3 Vision Applications of Deep Dynencoder

We give approaches to DT synthesis, video classification and video segmentation
using our proposed deep dynencoder. For classification and segmentation, a dis-
tance definition between two videos is given and the effectiveness of it is verified
in the experiment section.

3.1 DT Synthesis

DT synthesis is a classical problem in computer vision and computer graphics.
Our model can naturally be used to synthesize DT of any length. Given a training
sequence {y;}1_;, we learn deep dynencoder with the training strategy described
above and get the output mapping F of the model according to Equation (9).
Given an initial frame g, an endless sequence {y;} can be obtained iteratively:

Yirr = F(y)- (11)

The synthesis process is real-time as many previous methods are.

3.2 Video Classification

In order to do video classification, we need to define a distance measure, which
many classification algorithms, such as kNN and SVM, rely on. In LDS-based
classification methods [18][6], Martin distance is adopted which is originally a
metric for autoregressive moving average process (ARMA) [14]. Unfortunately,
it seems that no distance has been defined between two neural networks.

Wolf et al. [25] introduce an one-shot similarity (OSS) kernel which com-
pares two vectors representing images. They train two classifiers for each vector
and apply them on the opposite vector. Two classification confidence scores are
obtained and averaged to get the similarity. Inspired by OSS switching classi-
fiers, we develop a distance definition between two videos Y, = {y¢}*, and
Y, = {yf}tTil by switching models. Treating Y, and Y}, as training data respec-
tively, we learn two deep dynencoders M, and M, with output mapping F, and
F,. Then we switch the models and measure how M, fit Y, well and M, fit Y,
well. The average fitting errors are adopted as:

To—1
L
2= S I - sl (12)
@ t=1
;| Dl
=05 > IFwh) = vbia 3. (13)
t=1

The distance measure between Y, and Y} is then defined as:

da+db

d(Ya,Ys) =
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Because video dynamics are represented by our models, this distance can re-
flect difference of two videos in dynamic nature. After calculating all distances
between videos in a video database, any classification algorithms that rely on
distance measure, e.g., kernel-SVM, can be adopted for classifying videos. Al-
though the distance defined above is not a distance metric and the kernel using
it cannot be proved positive definite, this does not affect its usefulness for clas-
sifying videos. Experiment in video classification in the next section will show
the efficacy of our model together with the distance.

3.3 Video Segmentation

Distance definition also makes video clustering feasible and video segmentation
can be done through the clustering of spatiotemporal patches, as [10] and [7]
do. Because our model represents video dynamics or motions well, our method
can segment a video into regions of homogeneous motion, i.e., can do motion
segmentation. Specifically, a collection of overlapped video tubes of dimensions
p X p X q are extracted from each location in the video. Then we cluster them
using algorithm like K-medoids with distance defined above. If the segmentation
boundaries need not change over time, ¢ is equal to the length of the video
sequence. The segmentation result is then obtained using a voting scheme: each
pixel in a tube receives a vote for its clustering result. The pixel is then assigned
to the cluster with the most votes.

4 Experiments

We evaluate our method on the tasks of DT synthesis, traffic scene classification
and motion segmentation, and compare its performance against popular methods
in each task. In all the experiments, the raw grey scale pixel values of each
video are used to train a deep dynencoder. Each frame is reshaped to a vector.
Dimensions of hidden layers of dynencoder are set to be small factors times the
dimension of the input, e.g., 0.1, 0.05 etc. Too high dimensions may cause over-
fitting while too low ones may decrease the representation ability of the model.
It is easy to choose suitable dimensions. All the optimizations in our training
are solved with non-linear conjugate gradient algorithm.

In the tasks related to classification, we train deep dynencoders for all videos in
the video database ) and calculate distances between them. Then the distances
are used to train a kernel-SVM classifier with an RBF-kernel. The bandwidth
parameter o2 is estimated as:

1 .
o2 = 2medlan{dQ(Ya,Yb)}ymyb.gy, (15)

where Y, and Y} are two videos in the database ). Then we get the kernel
k(Y,,Y,) = exp(—,t2d?(Y,,Y;)). We train kernel-SVM using LIBSVM ([8].
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(a) (b) (©) () (©) (0

Fig. 2. Six examples in the DynTex database: (a) Escalator, (b) Steam, (c) River, (d)
Flowers, (e) Flag (f) Windmill

Table 1. Comparison between mean squared errors given by five synthesis methods

Sequence\Method LDS Kernel-DT Stable LDS CLDS Basic Dynencoder

Escalator 5.83 5.47 7.54 4.87 13.95
Steam 431.91 118.33 91.59 95.41 89.88
River 90.37 92.45 81.60 126.86 35.65

4.1 DT Synthesis

In this experiment, we evaluate the performance of our method in DT syn-
thesis. We use DT sequences from the DynTex database [16] as training data
respectively. Figure 2 shows some examples such as Escalator, Steam and River.
Original sequences all have 250 frames of size 720x576 and we down sample them
to 120x 96 grey scale images. For each of these sequences, we train a dynencoder
using 100 or 120 frames and synthesize a new DT sequence which is 10 times as
long as the original one. Both qualitative images and quantitative measurements
between synthesized and original videos are provided for comparisons.

We first compare basic dynencoder to some well-known LDS-based methods:
LDS, kernel-DT, and CLDS, on some sequences in DynTex database. We imple-
ment these comparative methods and select parameters of each to produce best
results. Qualitative results over two challenging sequences Steam and River are
shown in Figure 3. One can see that LDS and kernel-DT produce unsatisfactory
DT sequences which tend to explode or converge over time, while CLDS and dy-
nencoder produce DT sequences with high quality. The reason why the sequence
produced by LDS or kernel-DT explodes or converges is because of the eigen-
value property of the transition matrix, which is analyzed in [28] where CLDS is
proposed. The sequence tends to explode when the transition matrix has eigen-
values greater than 1 and tends to converge if all the eigenvalues are less than
1. Stable LDS [4] tries to solve this by adding constraints on the eigenvalues.
We apply it to the DT sequences using the released code and add the results
into comparison (no images shown due to space limit). Quantitative results of
all methods through mean squared errors between original frames and new syn-
thesized frames are provided in Table 1. It reveals that our method gives close
results comparing to other methods over simple sequences (such as Escalator)
and achieves better performance over challenging sequences (Steam and River).



224 X. Yan et al.

Fig. 3. Comparison between four synthesis methods. 120 frames are used for training
and 1200 frames are synthesized. From left to right, the columns are the 1-st, 80-th,
200-th, 600-th, 1200-th frames of synthesized sequences. The results in each row are
given by: (a) LDS, (b) Kernel-DT, (c) CLDS, (d) Dynencoder, (e) LDS, (f) Kernel-DT,
(g) CLDS, (h) Dynencoder.

It is worth noting that sometimes the quantitative result given by CLDS may
be unfair for itself (e.g., the result on sequence River in Table 1) because CLDS is
unlike other three methods that it is not based on predicting new frames but on
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Table 2. Comparison between CLDS and multilayered dynencoders through mean
squared errors

Sequence\Method CLDS Dynencoder 1+1 Dynencoder 241 Dynencoder 242

Flowers 60.51 17.68 15.68 11.88
Flag 129.73 144.13 128.20 118.82
Windmill 21.97 73.04 47.66 21.16

Table 3. Comparison in traffic scene classification task. We achieve the best perfor-
mance than others.

Method Accuracy
LDS [19] 87.50% =+ 0.87
CS-LDS [19] 89.06% + 2.16
KL-SVM [5] 95%

NLSSA [1] 94.49% + 2.02

94.09% + 1.71
94.87% + 1.75
96.06% + 1.39

Dynencoder 141
Dynencoder 241
Dynencoder 2+2

stitching video clips getting from the original video. It is not proper to calculate
predicting error for it sometimes.

CLDS achieves good performance over many sequences in our experience. It
is a technique combining two steps: concatenating video clips that have similar
boundaries and smoothing between the boundaries. The reason why CLDS works
well may be that in most cases it can find clips that have similar boundaries. If
not, the smooth process may fail and discontinuities may occur. To show this, we
handcrafted a new sequence with camera motion in it. The sequence is obtained
by applying a sliding window of changeable size over the sequence Flowers, which
changes itself through zooming and panning in turn and will not return to the
starting location exactly. Over this sequence, we compare the CLDS method not
only to basic dynencoder, but also deep dynencoders with more layers to see
the influence of the number of layers. The synthesis results are shown in Figure
4, in which Dynencoder M + N represents the deep dynencoder consisting of
M autoencoders and N dynpredictors. We can infer from the figure that CLDS
fails to find clips that have similar boundaries and the smooth process does not
work well. So discontinuities occur near the boundaries while our method gener-
ates more continuous sequences. Only there are some obvious discontinuities in
sequence synthesized by dynencoder 1+1. Besides, we implement multilayered
dynencoders over other two sequences and quantitatively compare their mean
squared errors, as shown in Table 2. As we expected, dynencoder with more
layers yields better performance.

4.2 Traffic Scene Classification

In this experiment, we use the UCSD traffic video database [5] to classify videos
based on the density of traffic and evaluate the dynencoder and the distance
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Fig. 4. Comparison between CLDS and multilayered dynencoders. 100 frames are used
for training and 1000 frames are synthesized. From left to right, the columns are the
1-st, 60-th, 102-th, 380-th, 690-th, 918-th frames of synthesized sequences. The results
in each row are given by: (a) CLDS, (b) Dynencoder 1+1, (c¢) Dynencoder 2+1, (d)
Dynencoder 2+2.

definition. The database consists of 254 videos of highway traffic which are par-
titioned into 3 classes corresponding to the amount of traffic congestion (Figure
5 shows some examples). There are 44 sequences of heavy traffic, 45 of medium
traffic, and 165 of light traffic. Each video contains between 42 to 52 frames of
size 320x 240 and is converted, resized and clipped to 48x48 grey scale images.
All the data after preprocessing are provided in the database, and four trials
of train/test splits (75% for training and 25% for testing) are suggested. We
set the parameter C' of SVM to be 2 without selection and report the average
classification accuracy and standard deviation over the four trials.

We compare the performance of our method with three LDS-based meth-
ods: LDS [19], compressive sensing LDS (CS-LDS) [19], and probabilistic ker-
nels (KL-SVM) [5]. We also compare it to another method named Non-Linear
Stationary Subspace Analysis (NLSSA) [1]. All the results are listed in Table 3,
in which Dynencoder M + N represents the deep dynencoder consisting of M
autoencoders and N dynpredictors. It can be seen that deeper model gets better
results and Dynencoder 2 + 2 outperforms all other methods and achieves the
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Fig.5. Examples of traffic videos in the UCSD database. From left to right, the
amounts of traffic congestion are: heavy, heavy, medium, medium, light, light.

highest accuracy 96.06%. It confirms the fact that deep dynencoder represents
video dynamics well and the distance definition is efficacious.

4.3 Motion Segmentation

We do segmentation experiment on real-world video sequences depicting vehicle
traffic on a bridge or highway using our method described in Section 3. Each
sequence has 51 grey scale frames of size 160x 113 and the size of spatiotemporal
patches is set to be 5x5x51. Patches with pixel-level temporal variances of
less than 10 are marked as static background. We use K-medoids algorithm for
clustering with K = 3 or 4. Finally, the segmentation maps are postprocessed
with a 5x5 majority smoothing filter.

(a) Original Sequences (b) NormCuts

Fig. 6. Original video sequences and segmentation results given by three methods

Segmentation results of the basic dynencoder are compared with those pro-
duced by an LDS-based method DytexMixCS [7] and a traditional optical-flow-
based method NormCuts [20]. It is difficult to give quantitative evaluation on
the results, so we qualitatively show the segmented video frames® in Figure 6.
As we can see, our method segments the videos into regions of traffic which are
moving away from the camera and moving towards the camera. Although there
are some small incorrect segmented regions, our results are better than those

! The original videos and the results of comparison methods are from the companion
web site of [7].
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produced by other methods in some ways. DytexMixCS and NormCuts segment
the region with traffic moving away from (or moving towards) the camera into
more than one main region because of perspective effects while our method does
not. It means that our method can handle strong perspective effects.

5 Conclusion and Discussion

We have proposed a hierarchical model named deep dynencoder to model video
dynamics, that relies on the combination of autoencoder and dynpredictor. We
describe the architecture of basic dynencoder and show how to construct deep dy-
nencoder by proper stacking strategy. Effective training algorithm is also given,
which includes layer-wise pre-training and joint fine-tuning. Our model can be
applied to DT synthesis and the outstanding synthesis performance verify its
ability of capturing various video dynamics. With a defined distance measure
between videos, our model can also be applied to video classification and cluster-
ing. Experimental results on traffic scene classification and motion segmentation
confirm the effectiveness of our model and the distance definition as well.

In our experimental comparisons, we only report results on small-scale data.
In our future research, we will set up more complex deep models with large-scale
training data, from which more attractive results are expected. The computa-
tional efficiency is then an issue to be considered. Other possible directions in-
clude deep probabilistic models for video dynamics and more vision applications,
like some general video segmentation and classification tasks.
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