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ABSTRACT

The Mahalanobis metric learning is an effective tool for con-
structing semantic consistent distance among data in single
modal data analysis. However, distance metric learning is
a more challenging issue for cross modal data, where less
attention has been paid in previous studies. In this paper,
we propose Cross mOdal Large mArgin metric leaRning
(COLAR) with multi-level semantic relevance. With large
margin principle, we model different levels of the semantic re-
lations across modalities, e.g., the one-to-one correspondence
and intra-class relation, while traditional correlation learning
approaches (such as CCA and its variants) can only handle
the one-to-one correspondence or treat them indiscriminative-
ly. As a result, the distances of multi-level relevance among
cross modal data are optimized based on a regularized learn-
ing framework. Promising performance is achieved on cross
modal retrieval, i.e., image-to-text retrieval and text-to-image
retrieval.

Index Terms— cross modal metric learning, semantic
relevance, large margin learning

1. INTRODUCTION

Co-occurred data from different modalities usually deliver the
same semantic information, e.g., image and its surrounding
text description on web, video frames and its accompanied
voice messages. People can associate the different data types
subconsciously with each other and understand their inherent
semantics without much efforts. However, it is hard for com-
puter to capture this coincident semantic information since
data are represented in heterogeneous feature spaces.

Traditional content-based image retrieval methods with
textual information train separate classifiers for each word
[1] [2] and combine their outputs heuristically or by word se-
mantic structure [3] for multi-word queries. Siddiquie et al.

This work was supported in part by National Basic Research Pro-
gram of China (973 Program): 2012CB316400, National Natural Sci-
ence Foundation of China (61025011, 61332016, 61303160, 61390511,
90920001, 61101212, 61372169), 863 program of China (2014AA015202,
2012AA012505, 2012AA012504), National Key Technology R&D Program
(2012BAH63F00, 2012BAH41F03), and the Fundamental Research Funds
for the Central Universities.

(a) Sport (b) Sport (c) Art

Fig. 1. The images (a) and (b) belong to sport category, (a)
is basketball star “Michael Jordan”, and (b) is ice hockey star
“Martin Brodeur”. (c) belongs to art category. When search-
ing with abundant textual information about Jordan, (a) is the
perfectly matched item, (b) is somehow relevant, and (c) is
totally irrelevant.

[4] propose a multi-attribute retrieval method which explic-
itly models the correlations that are present between the at-
tributes, however attribute detectors are trained independent-
ly. With defined structured object queries, [5] develops a
learning framework to jointly consider object classes and their
relations, where the relations are modeled by latent variables.
These separately trained models are not suited for describ-
ing the sophisticated semantic relation among multiple con-
tent modalities, which is an important requirement for further
progress in cross modal retrieval [6].

Canonical Correlation Analysis (CCA) and its variations,
which conduct multi-view feature extraction and dimension-
ality reduction by cross modal correlation maximization, have
been proved to be the workhorse in cross modal retrieval [6]
[7]. The category information of single modality is further in-
corporated by Local discrimination CCA (LDCCA) [8]. Lo-
cality preserving CCA (LPCCA) [9] is proposed to incorpo-
rate local structure information of the single modality into C-
CA. Sun et al. [10] propose discriminant CCA utilizing cat-
egory information of multi-views and perform discriminative
feature extraction. More recently, Sharma et al. [7] propose
a general multi-view feature extraction approach called Gen-
eralized Multi-view Analysis (GMA), which is also a super-
vised extension of CCA with category information. However,
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Fig. 2. Illustration of our approach. Data of different modal-
ities and different categories are represented with nodes in
different colors and shapes. The dark brown lines between
nodes imply one-to-one correspondence (strongly relevant),
light brown lines for intra-class relation (relevant), and blue
lines for inter-class relation (irrelevant). The learned cross
modal metrics aim to meet the semantic relation constraints,
as shown in the right part of the figure.

these methods are not capable of modeling different levels of
the semantic relations across modalities.

Intuitively, a good information retrieval system should
present relevant documents high in the ranking, with less rel-
evant documents following below [11]. Such different levels
of semantic relations can also be observed in cross modal
data involving images and texts. For example, see Fig.1,
both images in Fig.1(a) and (b) belong to the “sports” cat-
egory. However, their associated textual description cannot
be the complementary description of each other. If queried
with “Michael Jordan”, the retrieved intra-class image (e.g.,
Fig.1(b)) is not as good as the true corresponding image
(i.e., Fig.1(a)). The true one is considered most relevant to
the query, thus to deliver the strongest semantic correlation,
while the intra-class one only delivers a certain level of se-
mantic correlation. Unfortunately, traditional approaches can
not learn such kinds of multi-level relevance by explicitly
modeling semantic relation difference among the cross modal
data, therefore they cannot well meet the quality judgment
for cross modal information retrieval [11].

In this paper, we propose COLAR, a novel cross modal
metric learning method which models the multi-level seman-
tic relation among cross modal data. Inspired by LMNN [12],
we encode the one-to-one correspondence, the intra-class and
inter-class relations across modalities with a unified large
margin empirical loss minimization paradigm, as shown in
Fig.2. By imposing penalties on the complexity of the learned
metric, the objective function is a standard convex function
which can be efficiently optimized with gradient descent.
COLAR achieves promising performance on the benchmark
dataset [6] and outperforms the state-of-the-art approaches.

2. EMPIRICAL LOSS

We are given D = {xi, yi, ci}ni=1, where xi ∈ Rdx de-
notes the i-th training data from X , yi ∈ Rdy from Y ,
and ci ∈ {1, 2, . . . , k} denotes the category index of the i-
th training pair. We want to learn two linear transformations
parametrized by M ∈ Rd∗dx and N ∈ Rd∗dy to projectX and
Y into a unified d dimensional space where the learned cross
modal distance D(xi, yj) = (Mxi − Nyj)

T (Mxi − Nyj)
better meets the multi-level semantic relation constraints.

Ideally, examples inX modality should be ranked accord-
ing to the semantic relation to the query in Y modality with
the learned transformations, and vise versa. We define three
kinds of label sets, i.e., the one-to-one correspondence set
S1 = {s1i = {xi, yi} | i = 1, 2, . . . , n}, the intra-class
relation set S2 = {s2i = {xi, yj} | cj = ci, j 6= i} and
the inter-class relation set S3 = {s3i = {xi, yj} | cj 6= ci}.
The three label sets deliver multi-level semantic relevance in-
formation, where S1 carries the strongest semantic relevance
information, S2 carries category level semantic relation and
the cross modal data pairs in S3 are totally irrelevant.

In mathematical terms, imposters are defined by a simple
inequality. For an input xi and its most relevant item yi, an
impostor is any input yj in s2i and s3i such that D(xi, yj) 6
D(xi, yi) + ∆(xi, yj). In other words, an impostor yj is any
input of different semantic level that invades the perimeter
plus certain margin defined by xi and yj . Of course, the mar-
gin of s3i should be larger than that of s2i. However, since
all these constraints may not be perfectly satisfied for all the
training data, we introduce slack variables on each term. The
relaxed constraints are formulated as follows:

D(xi, yj)−D(xi, yi) ≥ ∆(xi, yj)− εij , εij ≥ 0, (1)

where ∆(xi, yj) is determined by the category relation be-
tween examples xi and yj . For example, ∆(xi, yj) = 1 if
ci = cj and ∆(xi, yj) = 2 if ci 6= cj . It is similar with the
cost of the predicted ranking label and the correct label for a
sample in ranking SVM [11]. The linear transformations M
and N are learned by minimizing the following loss function:

M,N = argmin
M,N

L(M,N) = argmin
M,N

c
∑
S1

D(xi, yi)

+ α
∑
i

∑
s2i

εij + β
∑
i

∑
s3i

εij

s.t. D(xi, yj)−D(xi, yi) ≥ ∆(xi, yj)− εij , εij ≥ 0.

(2)

3. STRUCTURE RISK MINIMIZATION

By concatenating xi and yj , and the linear transformation
metrics M and N inD(xi, yj), we obtain the following repre-
sentationD(xi, yj) = ([M,−N][xi; yj ])

T ([M,−N][xi; yj ]).
Denote zij = [xi; yj ] as a new vector concatenating xi and
yj , A = [M,−N] as the row concatenation form of M and
N, and the covariance matrix B = ATA. The structured
cross modal metric learning can be formulated as:
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B = argmin
B

L(B) = argmin
B

1

2
‖B‖2F + c

∑
S1

zTiiBzii

+ α
∑
i

∑
s2i

εij + β
∑
i

∑
s3i

εij

s.t. zTijBzij − zTiiBzii ≥ ∆(xi, yj)− εij , εij ≥ 0,B ≥ 0,

(3)

where the squared Frobenius norm constraint || · ||2F is im-
posed on B to avoid overly large elements, thus overfitting
can be effectively alleviated. Then we substitute the inequal-
ity constraints with the following form:

B = argmin
B

L(B) = argmin
B

1

2
‖B‖2F + c

∑
S1

zTiiBzii

+ α
∑
i

∑
s2i

[zTiiBzii + ∆(xi, yj)− zTijBzij ]+

+ β
∑
i

∑
s3i

[zTiiBzii + ∆(xi, yj)− zTijBzij ]+.

(4)

The above formulation contains B with the form zTijBzij ,

and the gradient can be easily calculated as:
∂zTijBzij
∂B =

zijz
T
ij . We adopt gradient descent during the optimiza-

tion procedure. We denote the data in S2 and S3 where
{zii, zij |zTiiBzii + ∆(xi, yj) − zTijBzij > 0} with P2 and
P3, respectively, which indicate the training subsets violating
the inequility constraints in Eqn.3. The details are shown
in Algorithm 1. We adjust the step size of gradient descent
according to the loss value and ensure the objective function
is descending at every step. In addition, the positive defi-
niteness of B is not guaranteed. As discussed in [13], when
considering the real world retrieval task, the relative distance
or similarity among data is more crucial than the absolute val-
ues. Therefore, the positive definiteness of the learned metric
is not neccessarily required for such cases. Meanwhile, it
maximally preserves multi-level semantic relation among the
cross modal data, thus achieves better model generality.

4. EXPERIMENTS

In this section, we conduct extensive experiments on Wikipedi-
a dataset [6] to compare our approach COLAR with other
approaches. The dataset contains 2866 image-text pairs of 10
categories. 2173 document pairs are randomly selected in [6]
for training and the remaining 693 pairs are used for test. We
use the features provided by [6] for model comparison.

The tasks in this paper are retrieving images for tex-
tual queries (text-to-image) and retrieving texts for image
queries (image-to-text), therefore, the performance of both
tasks in our experiments is reported. Mean average pre-
cision (MAP) is used as the evaluation criterion [6, 7] to
compare different approaches. However, MAP cannot prop-
erly measure the performance on data with multi-level se-
mantic relevance. To better evaluate the performance, we
adopt the normalized discount cumulative gain (NDCG)
[16] as a complementary measure. NDCG is defined as:

Algorithm 1 Model Optimization of COLAR
1: Initialize B with identity matrix, gradient descent step

size st = 0.01, k = 1, c1 = 1.2, c2 = 0.8;
2: Find the sets P2 and P3, then compute the loss value Lold

and gradient descent direction G(B);
3: while st > ε and k < K do
4: Try B′ = B− st ·G(B);
5: Find P2 and P3, then compute the loss value Lnew;
6: if Lold − Lnew < 1

σLold&&Lold − Lnew > 0 then
7: B = B′; st = st · c1;
8: Compute the new gradient G(B); Lold = Lnew;
9: else if Lold − Lnew ≥ 1

σLold then
10: B = B′; Compute new G(B); Lold = Lnew;
11: else if Lold − Lnew ≤ 0 then
12: st = st · c2;
13: end if
14: k = k + 1;
15: end while

(a) Image-to-text (b) Text-to-image

Fig. 3. Parameter sensitivity test in MAP.

NDCG@k = 1
Nk

∑k
j=1

2rel(j)−1
log(1+j) , where Nk is a normal-

ization constant to ensure that the optimal top k ranking of
the query is 1. k is called a truncation or threshold level.
In our evaluation, the relative gain (i.e., rel(j)) for the j-th
cross modal document, which is the ground truth one-to-one
corresponding and has identical category label with the query,
is set respectively to be 3 and 1. Otherwise, the relative gain
is 0.

Since there are several weight parameters (c, α, β) in our
algorithm, we separate the training data into two parts for pa-
rameter tuning. We use 67% of the training data to train the
model and use the remaining 33% of the training data to vali-
date the performance of the parameter setting. For better un-
derstanding of the parameter validation process, we rewrite
the loss function as follows:

B = argmin
B

L(B) = argmin
B

‖B‖2F
2

+ c
∑
S1

zTiiBzii+

c · r · p
∑
i

∑
s2i

[zTiiBzii + ∆(xi, yj)− zTijBzij ]++

c · r · (1− p)
∑
i

∑
s3i

[zTiiBzii + ∆(xi, yj)− zTijBzij ]+,

(5)

where c adjusts the relative importance between the empiri-
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Table 1. MAP (%) for Wikipedia dataset

Query Others COLARPLS[14] BLM [15] CCA[6] SM[6] SCM[6] GMMFA[7] GMLDA[7]
Image-to-text 20.7 23.7 24.9 22.5 27.7 26.4 27.2 28.2
Text-to-image 19.2 14.4 19.6 22.3 22.6 23.1 23.2 22.4

Average 19.9 19.1 22.3 22.4 25.2 24.8 25.2 25.3

Table 2. NDCG@k for Wikipedia dataset
Query @k CCA GMLDA COLAR

Image-to-text @10 0.1056 0.1139 0.1276
Image-to-text @20 0.1298 0.1395 0.1563
Image-to-text @50 0.1629 0.1719 0.1899

Image-to-text @100 0.2031 0.2108 0.2284
Image-to-text @693 0.5154 0.5189 0.5296
Text-to-image @10 0.1107 0.1410 0.1672
Text-to-image @20 0.1400 0.1649 0.1928
Text-to-image @50 0.1633 0.1931 0.2159

Text-to-image @100 0.1989 0.2235 0.2400
Text-to-image @693 0.5181 0.5293 0.5416

cal loss and the model complexity penalty. p (0 < p < 1)
measures the relative importance between the intra-class and
inter-class terms. r measures the relative importance between
the one-to-one correspondence and the intra-class / inter-class
information. With p from 0 to 0.8, small changes are observed
on the MAP curves, while there is a peak at p = 0.2, see
Fig.3. Furthermore, we can obtain that ratio r should not be
too large and setting c = 0.5 or c = 1 will not lead to drastic
performance change. Therefore, we set c = 0.5, r = 0.2 and
p = 0.2 for optimal performance.

The experimental results of cross modal retrieval in terms
of MAP are shown in Table 1. We can see that COLAR s-
lightly outperforms the state-of-the-art approaches, i.e., SCM
[6] and GMLDA [7], where both approaches take advantage
of the category information for correlation learning. Further-
more, we report the performance in terms of NDCG@k in Ta-
ble 2 to evaluate how our method and other correlation learn-
ing based methods (CCA and GMLDA) perform on retrieving
cross modal data with multi-level semantic relevance.

From Table 2, we can see that COLAR significantly out-
performs CCA and GMLDA [7] with different setting of k,
where 693 is the number of documents of the whole test
set. Furthermore, COLAR performs much better than other
methods on the top retrieved results (i.e., k = {10, 20, 50}).
Specifically, for image-to-text retrieval, COLAR achieves
12% improvement than GMLDA on NDCG@10 and ND-
CG @20, and for text-to-image retrieval, COLAR achieves
18.6% and 16.9% improvement than GMLDA on NDCG@10
and NDCG@20. The results show that our method is more
capable of encoding the multi-level semantic relevance, and
the retrieved documents are appropriately ranked according
to their relevance level with the queries.

We illustrate some top 5 retrieved examples using our

action potentials , 
single neurons or 
axons, sensitive 
electronics,  
shrinking electrodes, 
the neurons , squid 
genus ''Loligo'‘, 
voltage clamp, glass 
micropipette 
electrodes 

plate tectonics, 
meteorites from 
outer space, NASA 
satellite, Antarctic 
ozone hole , the 
supercontinent, the 
celestial dome and 
cosmic microwave 
background 
radiation 

Tiltmeter, volcano, 
magma, the 
reservoir beneath 
the summit, 
seismic activity, 
magmatic 
eruptions, large 
eruption, Dacite, 
igneous rock, 
tephra, eruptions 

physiological colour 
change, the dermal, 
dermal 
chromatophore units 
(DCU), an uppermost 
xanthophore or 
erythrophore layer, an 
iridophore layer, a 
basket-like 
melanophore layer 

Kolkata, a  wet-and-
dry climate, 
temperatures, rainy, 
thunderstorm or 
hailstorms , ice sleets, 
thunderstorms ''Kal 
baisakhi'‘, sunshine , 
Pollution, Suspended 
Particulate Matter 
(SPM), smog and haze 

Poetic, important 
formal verse, the 
poetry of the time, 
the National 
Literature movement, 
Turkish folk poetry, 
modernist poetry of 
Vladimir Mayakovsky, 
"Second New" 

Veerashaiva 
writers, 
expositions, a 
biography of 
Basavanna, poems 
and books on the 
Shaiva philosophy,  
the 12th century 
movement 

the Rashtrakuta 
empire, the 
Western Chalukyas ,  
the defeat of the 
Western Ganga 
Dynasty by the 
Cholas  in Gangavadi,  
setback to Jainism, 
kingdoms 

population of Turkey, 
the bond of 
citizenship, legal use 
of the term "Turkish" , 
Turkish ethnicity, 
official language, 
official state religion, 
Islamic religious 
authority 

Military, Trajan's 
account of the Dacian 
Wars, Rome's earliest 
histories, Rome's 
kings, campaigns, 
invading Roman 
territory, conflict, the 
expiry of the treaty, 
autocratic kingship 

(a) Examples of image-to-text retrieval results

Radiohead, piano-
based song, album, 
recording,  ''In 
Rainbows'‘, CD 
editions, sound and 
lyrics, the Mercury 
Music Prize, Best 
Alternative Music 
Album, nominations, 
"discbox“,  touring, 
debuting 

Football, the World 
Cup, FIFA, a four-
year period, 
tournaments, 
football tournament, 
Summer Olympic, 
the continental 
championships, club, 
UEFA Champions, 

(b) Examples of text-to-image retrieval results

Fig. 4. Some examples of the top five results with COLAR for
cross modal retrieval. Double red stars represent the ground
truth one-to-one correspondence, and single red star repre-
sents the cross modal data with identical category labels as
the queries.

COLAR method for cross modal retrieval in Fig.4. We further
see from the examples that COLAR could better retrieve cross
modal documents according to their relevance level. Specif-
ically, the second example in Fig.4(a) and the first example
in Fig.4(b) are “perfectly” ranked results that can be hard-
ly obtained by other approaches. For visual documents with
complex patterns, the retrieval performance seems to be influ-
enced by the semantic consistency between the object and the
background, as shown in the second example in Fig.4(b).

5. CONCLUSION

We propose COLAR, which models different levels of the
semantic relevance, e.g., the one-to-one correspondence and
intra-class relation with a structure risk minimization for
cross modal metric learning, while traditional correlation
learning approaches can not effectively handle such infor-
mation. Promising performance is achieved on cross modal
retrieval. In future work, we will extend COLAR to nonlinear
metric learning, and conduct extensive evaluations on other
cross modal or multi-view data.

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20143095



6. REFERENCES

[1] Cees GM Snoek, Marcel Worring, Jan C Van Gemert,
Jan-Mark Geusebroek, and Arnold WM Smeulders,
“The challenge problem for automated detection of 101
semantic concepts in multimedia,” in Proceedings of the
14th annual ACM international conference on Multime-
dia. ACM, 2006, pp. 421–430.

[2] Milind Naphade, John R Smith, Jelena Tesic, Shih-
Fu Chang, Winston Hsu, Lyndon Kennedy, Alexander
Hauptmann, and Jon Curtis, “Large-scale concept on-
tology for multimedia,” Multimedia, IEEE, vol. 13, no.
3, pp. 86–91, 2006.

[3] Cees GM Snoek, Bouke Huurnink, Laura Hollink,
Maarten De Rijke, Guus Schreiber, and Marcel Wor-
ring, “Adding semantics to detectors for video retrieval,”
Multimedia, IEEE Transactions on, vol. 9, no. 5, pp.
975–986, 2007.
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