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ABSTRACT

In real application scenarios, the visual observations of the
same type of action vary significantly from one view to an-
other. This paper addresses the action recognition problem
under the view changes, especially when no labels are avail-
able in the target view. A novel feature, called Sequential
Motion Accumulation (SMA), is proposed to characterize ac-
tions. The SMA descriptor depicts the temporal structure of
motion property to explore the distinguishing action charac-
teristics and their invariances across views. Moreover, we
propose a weakly supervised categorization approach to gen-
erate target-view categorical prior for learning a cross-view
metric, which can further improve the recognition accuracy
of the SMA descriptor. Our method is verified on the multi-
view IXMAS dataset, and it achieves superior performance
compared with the state-of-the-art methods.

Index Terms— Action recognition, Cross view, Sequen-
tial motion accumulation

1. INTRODUCTION

Human action recognition is one of the most active research
areas in computer vision. It is central to many application-
s, including visual surveillance, video indexing/retrieval, and
human-computer interaction [1,2]. However, it remains chal-
lenging to recognize actions from different views, due to the
drastic visual variances caused by the changes of viewpoint.

The objective of cross-view action recognition is transfer-
ring action model learned in one view (source view) to an-
other different view (target view). According to [3], this task
can be categorized into three modes: the first mode is cor-
respondence mode, which requires unlabeled action instances
observed simultaneously in both source and target views. The
second mode relaxes instance-to-instance correspondence but
requires partially labeled samples in the target view, which is
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Fig. 1. Examples from the IXMAS multi-view dataset [7] that
illustrate the visual variances across different views, and the
discriminability and view invariance of the SMA descriptor.
Rows 1 and 3 show two actions observed from different an-
gles, while rows 2 and 4 represent the corresponding SMA
descriptors, respectively.

referred as the partially labeled mode. In contrast, the third
mode referred as unlabeled mode contains no label informa-
tion in the target view. The supervision becomes weaker from
the first mode to the third, while the difficulty of task goes
greater. In this paper, we focus on the unlabeled mode.

Recent research efforts for cross-view action recognition
mostly address the correspondence mode and the partially la-
beled mode. These works have been made along two direc-
tions: one focuses on viewpoint invariant features, and the
other tends to reduce the gap between viewpoints via trans-
fer learning. Many of the view-invariant features are based
on trajectories extracted from human bodies that require ac-
curately tracking body parts, joints or landmarks under differ-
ent viewpoints [4–6]. Other feature descriptors based on sil-
houettes [7] and temporal self-similarities [8] are also wide-
ly used. Weinland et al. [7] used an exemplar-based HMM
to fully reconstruct the 3D models of human actions by sil-
houettes from multiple cameras. Junejo et al. [8] proposed
an action descriptor based on temporal self-similarity matrix.
It characterizes the difference between frames by computing



distances between all pairs of extracted features. Its promis-
ing performance indicates that the temporal information is ro-
bust to the changes of viewpoint. Our approach also consid-
ers temporal structure of observations, but based on motion
property. The other direction of cross-view action recogni-
tion relaxes structural constraints and transfers the correspon-
dences across the actions of different views. Liu et al. [9] pro-
posed a view knowledge transfer learning framework to ex-
plore higher-level features which can bridge the semantic gap
across view-dependent vocabularies. Li et al. [3] proposed a
novel notion of ‘virtual views’ that associate action descrip-
tors from source view and target view with linear transforma-
tions. As mentioned previously, these learning methods rely
on corresponding or label information in the target view, with
stronger supervision than our approach.

In this paper, we propose a Sequential Motion Accumula-
tion descriptor for action representation and a weakly super-
vised categorization method for cross-view metric learning.
The main contributions of this work are two-fold:

• Firstly, we represent actions using the temporal order of
motion property, which can overcome the huge visual
variances caused by view changes. Examples of the SMA
descriptor is illustrated in Fig. 1. This figure intuitively
demonstrates that the visual observations vary significant-
ly across different views. However, the SMA descriptor
is robust to view variations and discriminative among
different actions.

• Secondly, we propose a weakly supervised categorization
method. This method utilizes the view invariance of the
SMA descriptor to generate target-view categorical prior
for learning a cross-view metric. It can filter out fluctu-
ations among actions of different views while retaining
sufficient discrimination. Additionally, this method does
not require prior knowledge in the target view, and better
satisfies the practical application requirements.

In Section 2, we describe the details of the SMA descrip-
tor, followed by the weakly supervised categorization in Sec-
tion 3 and the experimental results in Section 4.

2. SEQUENTIAL MOTION ACCUMULATION

Sequential Motion Accumulation (SMA) descriptor is based
on the spatio-temporal cuboid detector [10]. The interest
point detection is operated on a stack of images denoted by
I(x, y, t). The response function of this interest point detec-
tor is calculated by application of separable linear filters as:

r = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (1)

where g is a 2D Gaussian smoothing kernel applied spatially,
and hev and hod are a quadrature pair of 1D Gabor filters
applied temporally. This detector responds strongly to regions
with high motion intensity, including spatio-temporal corners.

Fig. 2. SMA descriptor extraction. Each bin in the middle
histogram corresponds to the accumulation of motion intensi-
ties in one temporal segment in the left part. The right chart
indicates the normalized histogram (the final feature).

We utilize this detector to detect interest points in videos,
and obtain the corresponding motion intensity responses.
Then the temporal structure of the motion intensity is used to
describe actions. Due to the temporal order being diverse for
different actions but similar across different views, the tempo-
ral structure is informative for action classification and robust
to view variations. As mentioned in [11–13], an action can be
defined as a finite sequence of segments over a finite period
of time. For instance, if “left leg moves forward” and “right
leg moves forward” are two individual segments, then the
walking behavior is a finite sequence of those segments (e.g.
“left leg moves forward→ right leg moves forward→ left leg
moves forward ...”). The temporal order of these segments
remains the same, no matter which viewpoint the actions are
captured from. In our method, we decompose each action
video into temporal segments, so a video becomes a finite
sequence of individual parts. Then we accumulate motion
intensities in each part, obtaining motion property descriptor
for each temporal segment. The SMA is the concatenation of
those accumulations (as shown in Fig. 2). Let Si denote the
i-th segment of an action. The SMA descriptor is defined as:

f = (fS1
, fS2

, ..., fSn
)

fSi =
∑

Pj∈Si

rPj

/
n∑

l=1

fSl

(2)

where rPj
is the motion intensity of an interest point Pj , com-

puted by Eqn. 1. The parameter n denotes the number of seg-
ments, which is fixed for action videos to guarantee the same
dimension of the features. The SMA descriptor with larger n
maintains more distinguishing characteristics, but introduces
more fluctuations due to the differences of video length and
movement speed between various actions. So the setting of
n is a tradeoff between reserving action separable character-
istics and reducing noise. We solve this problem by describ-
ing temporal structure with multiple numbers of motion seg-
ments.

3. WEAKLY SUPERVISED CATEGORIZATION

As mentioned previously, our approach addresses the unla-
beled mode of cross-view action recognition. For this pur-
pose, we provide a weakly supervised categorization method



Fig. 3. The process of weakly supervised categorization. To
explore distinguishing characteristics in the unlabeled target
view (b), we first discover rough-grained categories in the
source view (a)→(c). Then classification model based on the
source-view examples is used to predict target-view examples

(b)
(c)−→(d). As a result, we can learn a cross-view metric based

on the categorical information of both the source and target
views (e). Finally, we train on source-view actions and recog-
nize target-view actions with this cross-view metric (f)→(g).

that utilizes the view invariance of the SMA descriptor to dis-
cover and use target-view prior knowledge. This method has
two parts: The first part constructs rough-grained category to
explore categorical information in the target view, and the sec-
ond one learns a cross-view metric for action classification.
The process of weakly supervised categorization is illustrated
in Fig. 3.

Rough-grained category construction. Let {Ci}ki=1 de-
note the real class labels while {Vj}mj=1 denote the rough-
grained categories and µj is the mean of instance vectors in
Vj . We construct a rough-grained classification matrix A ∈
Rk×m, that each row corresponds to a real class and each col-
umn corresponds to a rough-grained category. The element
aij counts the number of instances which belong to Ci that
are classified into Vj , and bi denotes the maximum aij in the
i-th row of A. Each Ci is classified into Vx, that x is the col-
umn of bi. As the rough-grained category is the cluster of the
real class labels, instances of one real class should be classi-
fied into the same rough-grained category mostly to guarantee
the accuracy. It means we should maximum the sum of bi for
each row of A. The optimization problem can be formulated
by:

max score =

k∑
i=1

bi

bi = max aij ; ∀j ∈ [1,m]

(3)

The detailed algorithm of rough-grained category construc-
tion is listed in Algorithm 1. Once the optimal {Vj}mj=1
are found, the target-view instances can be rough-grained

labeled (as shown in Fig. 3 (b)
(c)−→(d) ).

Cross-view metric learning. With the rough-grained la-
beled source-view and target-view observations, we utilize
large margin nearest neighbor (LMNN) [14] to learn a dis-

Algorithm 1: Rough-grained Category Construction
Input: Initial rough-grained category number m ini

Maximum iteration Maxiter
Output: Rough-grained categories {Vj}mj=1

Initialize set level = 1, score = 0;
kmeans with m ini cluster centers;

while iteration ≤Maxiter do
update A with {µj}mj=1 as cluster centers;
compute score according to Eqn. 3 ;
if score descend then

level = level + 1;
back to previous {Vj}mj=1;

else
level = 1;

refine {Vj}mj=1 by classifing Cp into Vq , that p is
the row of the level-th min1≤i≤k(bi) and q is the
column of the second max1≤j≤m(apj);
iteration = iteration+ 1;

criminative cross-view metric. LMNN is a Mahanalobis dis-
tance metric, which can filter out fluctuations between ob-
servations, and capitalize on useful statistical regularities in
both the source and target views. So utilizing LMNN instead
of Euclidean distances to measure the dissimilarities between
instances from different viewpoints is a powerful method for
learning classification model.

Classifier at different level is learned with different num-
ber m of rough-grained categories. As each classifier only
provides partial knowledge, we consider multi-level weakly
supervised categorization and utilize max voting to effective-
ly fuse all level predictions. A new data instance is classified
to the category obtained from the majority vote of classifiers.
It is a simple yet powerful method to combine the discrimi-
nant capability of multiple models.

4. EXPERIMENTS AND RESULTS

We evaluate our approach on the IXMAS multi-view action
dataset [7], which contains eleven daily-life actions, such as
check watch, turn around, and pick up. Each action is per-
formed three times by twelve actors and recorded simultane-
ously from five different views: four side views and one top
view.

We extract at most 300 cuboids with motion intensity
from each video. To solve the issue of temporal synchro-
nization, numbers of temporal motion segments are set to
4, 16 and 64, according to diverse video lengths. Then we
concatenate these temporal features into a multi-scale tempo-
ral representation. In this way, each video is described by a
normalized 84-dimensional vector, which is used for weakly



Fig. 4. Cross-view recognition accuracy on the IXMAS
dataset in the unlabeled mode. Each row is a source view
and each column is a target view. The two numbers in a tuple
are the average recognition accuracy of SSM-hog-of [8] and
our method, respectively. (best viewed in color)

supervised categorization. To evaluate the performance of
weakly supervised categorization, we conduct experiments
on all possible numbers of rough-grained categories that
range from 3 to 11, and the final result is a combination of all
multi-level results obtained by k nearest neighbors classifier.
For a better comparison, we follow the same leave-one-out
cross-validation (LOOCV) setting, and make sure at least
one person does not appear in the training and testing sets
simultaneously for cross-view recognition.

Cross-view action recognition accuracy averaged over all
categories and test subjects is shown in Fig. 4. This table il-
lustrates that the cross-view performance of our method out-
performs SSM-hog-of [8] for most combinations of training
and testing cameras. It is interesting to note that our method
performs much better when tested on top view (Cam 4) with
learning on side views (Cam 0-3), and vice versa. As top
view captures totally different visual information, we believe
the performance on top view is more important for evaluating
a cross-view action recognition method. The promising top-
view results of our approach illustrate its robustness to huge
view variances. Moreover, our approach obtains comparable
results with the SSM-hog-of when the same or similar views
are used for training and testing. It indicates that our fea-
ture is also discriminative among different actions. Note that
the cross-view recognition accuracies are close to the perfor-
mance of same-view recognition for most view combination-
s, which further verifies the view-invariance of our approach.
Fig. 5 shows the confusion matrix corresponding to the av-
erage confusion computed for all cross-camera recognition
setups in Fig. 4. The per-class cross-view recognition per-
formances are promising for most classes.

The comparison of diverse cross-view action recognition
methods for different combinations of source and target view
setups is summarized in Table 1. Besides SSM-hog-of, we al-
so compare with space-time interest points (STIP) [16] and
other two learning methods. Table 1 shows that both the
SMA descriptor and SMA with weakly supervised catego-
rization outperform STIP in cross-view recognition. But the

Fig. 5. Confusion matrix for all classes of averaged over all
cross-camera setups in Fig. 4.

Table 1. Comparison of Recognition Results
cross camera same camera any-to-any

SMA+Wsc 63.9 77.0 69.9
SSM-hog-of [8] 61.8 74.0 64.3

SMA 59.0 68.5 64.9
STIP-hog-hof 42.4 80.6 50.0
Farhadi [15] 58.1 68.8 60.3
Weinland [7] — 57.9 —

STIP gains better result in same-camera recognition. It il-
lustrates that the SMA descriptor and weakly supervised cat-
egorization method are more robust to viewpoint variations,
but somewhat reduce the discriminative power. [7] and [15]
propose effective transfer learning approaches for cross-view
action recognition. Our work outperforms all these view-
invariant recognition techniques for different combinations
of training and testing view setups. Especially, our method
addresses the unlabeled mode without links or labels in the
target view, which is more difficult than the cases presented
in [7, 15].

5. CONCLUSIONS

In this paper, we address the problem of recognizing actions
from an unlabeled view using instances extracted from other
view. For this purpose, we have proposed a Sequential Mo-
tion Accumulation descriptor based on temporal information,
which achieves significant improvement over features based
on appearance for cross-view action recognition. It is able
to produce further gains by weakly supervised categorization.
This learning method discovers and uses categorical prior in
the target view to learn a cross-view metric. Experiments are
conducted on the IXMAS multi-view dataset and our method
obtains promising results compared with alternative methods
in the literature.
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