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Abstract. Person re-identification is a challenging problem due to
drastic variations in viewpoint, illumination and pose. Most previous
works on metric learning learn a global distance metric to handle those
variations. Different from them, we propose a view-adaptive metric
learning (VAML) method, which adopts different metrics adaptively for
different image pairs under varying views. Specifically, given a pair of
images (or features extracted), VAML firstly estimates their view vectors
(consisting of probabilities belonging to each view) respectively, and then
adaptively generates a specific metric for these two images. To better
achieve this goal, we elaborately encode the automatically estimated
view vector into an augmented representation of the input feature, with
which the distance can be analytically learned and simply computed.
Furthermore, we also contribute a new large-scale multi-view pedestrian
dataset containing 1000 subjects and 8 kinds of view-angles. Extensive
experiments show that the proposed method achieves state-of-the-art
performance on the public VIPeR dataset and the new dataset.

1 Introduction

Person re-identification is the technique to identify an individual across spatially
disjoint cameras. It is believed to have deep potential applications such
as suspect tracking and lost children finding in next-generation intelligent
video surveillance. With the ever growing requirements in public security,
such techniques are becoming more and more urgently required in order to
automatically locate and track wanted persons, or at least dramatically reduce
the workload of human operators checking the large-scale recorded surveillance
videos.

However, even if it is assumed that the person does not change clothes
across the network of cameras, person re-identification suffers from two technical
difficulties: first, the appearance of the same person can vary dramatically in
different cameras because of both intrinsic and extrinsic variations, including
poses, lighting (especially in outdoor scenario), viewpoints, etc. The second
difficulty is that there might be a large number of similar individuals, such
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as, many people wearing dark coats of similar color in winter. Essentially, these
two difficulties can be cast to the general pattern recognition challenges: large
within-class variations and small between-class variations.

Because of the above-mentioned application values and theoretical challenges,
person re-identification has attracted more and more research efforts in recent
years. Similar to most methods for pattern recognition problems, existing
technologies for person re-identification either seek good features or pursue good
distance metrics. Previous methods [1-11] seeking good features attempt to
extract features that are not only robust to variations, but are also discriminative
for different persons. Gray and Tao [7] proposed a boosting-based approach
to find the best feature representation for the viewpoint invariant person
recognition. However, such selection may not be globally optimal because
features are selected independently from the original feature space in which
different classes can be heavily overlapped. In [2], co-occurrence metric is used
to capture the spatial structure of the colors in each divided region. Farenzena
et al. [3] proposed three localized features under symmetric-driven principles to
achieve the robustness to pose, viewpoint and illumination variations. Cheng
et al. [6] adopted a part-based model to handle pose variation. However, It is
not flexible enough and has strong dependence on the performance of the pose
estimators. More recently, Zhao et al. [11] proposed a saliency matching method,
which used patch saliency to find the distinctive local patches and recognized
same persons by minimizing the salience matching cost. These handcrafted
appearance descriptors mostly worked on person matching from close views,
but it is not necessarily true for large viewpoint variations, e.g., front view vs.
back view. Directly feature matching in corresponding region may derive false
distance when existing large view gap.

In contrast to the above feature extraction method, metric learning em-
phasizes the similarity /dissimilarity measurement, given a pair of images or
features extracted using above methods. For instance, LMNN [12] learned a
distance metric for kNN classification with the goal that k-nearest neighbors
are from the same class as that of input one while instances from different
classes should be separated by a large margin. Davis et al. [13] formulated metric
learning problem as that of minimizing the differential relative entropy between
two multivariate Gaussians distance distribution under the given constraints
on the distance function. They integrated a regularization step to avoid over-
fitting. Zheng et al. [14] proposed Relative Distance Comparison (RDC) to deal
with large appearance changes. In their model, the likelihood of image pairs
of the same person having relatively smaller distance than that of different
persons is maximized to obtain the optimal similarity measure. Recently,
Kostinger [15] proposed a simple strategy to learn a distance metric from
equivalence constraints, based on a statistical inference perspective. Pedagadi et
al.[16] proposed a supervised dimensionality reduction method based on Fisher
Discriminant Analysis. Li et al.[17] learned a decision function with locally
adaptive thresholding rule to deal with appearance variations.
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Fig. 1. An example of multi-view person re-identification. Given a probe image with
view-angle 0° and two gallery sets with view-angle 45° and 180° respectively, it is easier
to find the target image (with green bounding box) from the gallery set with view-angle
45° because more common appearances are shared between images with smaller view
gap.

All above metric learning methods learn a global distance metric for matching
across different views. However, since the discriminatory power of the input
features might vary between different image pairs under varying views, learning
a global metric cannot fit well the distance over the multi-view image pairs. As
shown in Figure 1, given a probe image with view-angle 0°, it is more difficult
to recognize its target image with larger view gap (180°) than that with smaller
view gap (45°). Thus, it is necessary and reasonable to learn different metrics for
different view pairs. For instance, the Multi-view CCA (MCCA) [18] obtains one
common space for multiple views. In MCCA, several view-specific transforms,
each for one person view-angle, are obtained by maximizing total correlations
between any pair of views. However, it not only neglects discriminant information
when training but also needs to know view-angle of each image when testing.

To explicitly address the multi-view person re-identification problem, we
propose a view-adaptive metric learning (VAML) method. Different from
traditional metric learning methods, VAML adopts different metrics adaptively
for different image pairs, according to their views. Specifically, given a pair
of images (or features extracted), VAML firstly estimates their view vectors
(consisting of probabilities belonging to each view) respectively, and then
adaptively generates a specific metric for these two images. To learn single unified
discriminant common space, the view vector is encoded into an augmented
representation of the input feature. Then, all the view-specific metrics are jointly
optimized by maximizing between-class variations while minimizing within-class
variations from both inter-view and intra-view. This optimization problem can
be solved analytically by using generalized eigenvalue decomposition. Extensive
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comparisons to state of the art methods on VIPeR dataset [19] show that
the proposed method achieves better performance. To advance the multi-view
person re-identification problem, we further collect a new large-scale Multi-View
pedestrian dataset (MV), simulating video surveillance scenario. In this dataset,
there are 1000 subjects, each with 8 discrete view-angles quantified from the
full range of 360°. To our best knowledge, this dataset is the largest one of the
same type (at least in terms of the number of persons and view-angles). On
this new dataset, the proposed VAML achieves higher performance than the
state-of-the-art methods.

The rest of the paper is organized as follows: Section 2 describes the proposed
approach. Section 3 introduces the MV dataset. Experiments on VIPeR and MV
dataset are presented in Section 4. Finally, we conclude and summarize the paper
in Section 5.

2 View-Adaptive Metric Learning

We define the multi-view person re-identification problem as follows: suppose we
have a gallery set G consisting of N persons, each has one or multiple images
captured from any of V views. Given a probe image x;, our goal is to find the
image of the same person in a different view from G. To make images with
different views comparable, we assume that there is a common metric space. In
this common space, the matching of all the image pairs can be done by applying
a view-adaptive Mahalanobis metric, which is learned to maximize between-class
variation while minimizing within-class variation, as shown in Figure 2. To better
achieve this goal, we first extract feature and estimate view vector (consisting
of the probabilities of the image belonging to each view) for any input image.
Then, the estimated view vector is encoded into an augmented representation of
the feature.

In the next, we first introduce the formulation of the VAML. Then, describe
the process of feature augmentation in detail. Finally, we describe how to learn
the metric analytically.

2.1 Formulation

Recently, metric learning methods [15,20] have been proposed for person re-
identification. They learn a global distance metric for image matching across
different views. However, since the discriminatory power of the image features
varies a lot between different image pairs under varying views, learning a global
metric cannot fit well the distance over the multi-view image pairs. Thus, the
goal of this paper is to introduce a view-adaptive metric, which adopts different
metrics adaptively for different image pairs and can be derived in the following.

The most widely used approach for metric learning is Mahalanobis distance
learning. Given data points x; and x; € RP, Mahalanobis distance metric
between the two data points is
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Fig. 2. The overview of VAML. Image pairs with different views are matched in a
common metric space. In this common space, images in one class with different views
are close to each other, while images in different classes with different views are far
away from each other. According to the view information (e.g. view vector) of input
image pair, a specific metric can be adaptively generated to measure the dissimilarity
of the pair.

d(xi,%5) = (xi —%;) TM(x; — x;) (1)

where M > 0 is a positive semi-define matrix. M can also be decomposed to
M = LL". Then,

2
d(x;,%;) = (%; — %) 'LLT (x; — %) = ||[LT (x; — x;)]| (2)
Note that Eq.(2) uses a global metric to match all image pairs with different
views. Here we introduce a view-adaptive metric, which is adaptive to different
image views. Suppose there are V views, a new distance between a pair of images
is defined as the sum of Mahalabonis distances over all the views:

o (%1,%7) = D (%1 — %5) T (30— x50) = 3 L] (xiw = 30| (3)

v=1

where M,, = LULI is positive semi-define and is the metric matrix for vth
view; x;, and x;, are features under the vth view. However, it’s hard to
extract all the view-specific features {x;,}Y_; from single image because only
part of person appearances are visible. Instead, we introduce a view vector
Pi = [Pi1, Pi2s - - > Divy - - -, Piv] |, where pj,, measures the ability of x; to represent
person appearance under the vth view, to weigh the image feature x; and make
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Fig. 3. Feature augmentation. The view vector of input image is estimated using the
kNN-classifier. Then the view vector is encoded into an augmented representation of
the image feature using Kronecker multiplication operation.

it view-specific. Thus, let x;, = p;yX;, the Eq.(3) can be re-written as

1%
o (%i,%5) = Y || (pivxi —pjoxy)||”

v=1
By expanding Eq.(4), we can get the view-adaptive metric as follows:

Ao (Xi, %) = (Pi @ X; — Pj @ X)) My (pi @ X; — P;j @ X;)

= (%} = %) "M (x} = xj)

()

where M,,,,, is a new positive semi-define matrix, which contains V positive semi-
define matrices; ‘®’ is a Kronecker multiplication operator, and x* = p®x is an
augmented representation of the original feature x (see Section 2.2 for details).
Thus, Eq.(5) is a kind of parameter metric learning methods. The view adaptive
property is achieved by the parameter vector p; and p;.

2.2 Feature Augmentation

Figure 3 illustrates the process of feature augmentation. To obtain the aug-
mented feature, we extract texture and color features to generate x and use
kNN-based view estimation to get the view vector p. We describe the details of
feature extraction and view estimation in the following:

Feature Extraction We use texture and color features to represent the
input image. Haralick et al. [21] proposed gray level co-occurrence matrix
(GLCM) as the distribution of co-ocurring values at a given offset vector (angle
and distance) and extracted texture features based on it. In our method, we
first separate the images into horizontal strips of size 8 x 48 and control the
overlapping stride to be 4 in the vertical direction. Then local GLCMs are
calculated from each strip with 4 offset vectors: [0°;1], [45°;1], [90°;1] and
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[135°;1]. We also calculate GLCMs between any two strips, which describe
frequencies of co-ocurring color pair. For each GLCM, entropy and homogeneity
[22] are used to generate the texture features. Then in each strip, HSV histogram
is extracted from three color channels with (8,8,4) bins respectively. Finally,
texture and color features extracted from all strips are concatenated to generate
the representation x for the input image.

View Estimation We treat the view estimation problem as a multi-class
classification problem by grouping data with different view-angles into different
classes. Then kNN classifier is learned from a training set with labeled view
and used to estimate the possibilities of input image belonging to each view in
order to form the corresponding view vector p. Considering that only part of
person appearances are visible in single image, thus some entries corresponding
to invisible views in the view vector are insignificant. To reduce the effects of
those noises, we only keep few values by thresholding very small values in p to
be zero. We set the threshold to be 0.2 empirically.

2.3 Metric Learning

Given a set of n training data points x = {x;}?_;, and the corresponding class
label £ = {I;}_;, where [; € {1,2,...,C}, and corresponding binary view vector
P = {p:}?, in which p; consists of V binary values and only one of them
that corresponds to the labeled view-angle is 1, we describe the process of view-
adaptive metric learning in the following.

Denote that Ly, = [L{Lj ---L{,]T, M,,, in Eq.(5) can be decomposed to
M,,., = L, L, . Thus, Eq.(5) can be equivalently written as:

muv*

Ao (%4, %) = (X] — X )TL LT (x;‘—x;)

? (6)

muv ’L muv j

HLT * LT *

Based on the derivation of view-adaptive Mahalanobis distance above, we
then define our objective function by considering two aspects in the new metric
space: the separability of distances between images from different classes and
the compactness of distances between images from the same class.

The separability, which describes the between-class variation, is defined as

=y

where p, and n; are the mean and the number of the data points belonging
to the ith class, and p is the mean of all the data points in the transformed
space Ly,,. Tr(+) is trace operator; S, = Zlczl(nz)/(n)(ul —p)(p; —p) 7 s the
between-class covariance matrix.

From another aspect, we use compactness to represent the intra-class
variation. Let Jo denoted the compactness, which can be calculated as the sum

/1’17 ) Tr(L;;quSbLmv)v (7)

:\3
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Fig.4. Examples of multi-view images from MV dataset. Pose, viewpoint and
illuminance variations can be observed across camera views.

of distances of images from the same class:

n

nli "
JC - Z n dL(Xi’“’li) = Tr(L;)rwawLmv)y (8)
=1

where the within-class covariance matrix S, = > i (ng,)/(n)(x} — py, ) (x} —
Hzi)T-

To obtain the optimal L,,,, the following objective function should be
maximized:

L} . =argmax TI‘(L:—nvaLmv)
L. (9)
s.t. L;;’vSwLmv =1

This problem can be efficiently solved by generalized eigenvalue decom-
position Sp0; = BxS.0k,where (i is the kth largest generalized eigenvalue.
The matrix L7, is then constituted of the corresponding eigenvalues 0, k =
1,2,...,d.

v
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3 MYV Dataset and Evaluation Protocol

MYV is a new multi-view pedestrian dataset we constructed for the research on
the multi-view person re-identification problem. To our best knowledge, MV is
the largest dataset in terms of the number of persons and annotated view-angles.
The following subsection will describe the construction and evaluation protocol
of the MV dataset.

3.1 Construction of MV Dataset

The dataset is collected from two HD (1920 x 1080) cameras in different locations
of a sport square. 1000 participants from the local university or residents walk
along the same ‘S’-type route in the sport square. We record video clips for
each person using the two cameras simultaneously. Then we perform background
substraction [23] to locate the person. With estimation of the walking direction
at each location, we can get full range of views. We quantify the range and define
8 discrete view-angles: 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°. To cover the
variations of an individual, we sampled 5 frames for each person in each of the 8
different view-angles and cropped them out from background with resolution of
48 x 128. Fig. 4 shows examples with different view-angles from the two cameras.

3.2 Evaluation Protocol

To allow consistent comparison of different methods, we define a standard
evaluation protocol about dataset splitting and evaluation. We randomly split
the dataset into two sets of 500 persons each, one for training and one for testing.
This process is carried out 10 times. For each splitting, there are two testing
scenarios:

— S2S (single-shot vs single-shot). In the testing set, we select one view from
Camera A as gallery set P and another view from Camera B as probe
set G. Totally, there are 4 combinations of P and G: (0°,180°), (135°,315°),
(225°,45°) and (270°,90°). In each combination, P and G both have size
of 500 images, each represents a different individual and its corresponding
view-angle is considered to be unknown. This is a general setting which can
be found in [7, 24, 2].

— M2M (multi-shot vs multi-shot). The only difference from S2S scenario is
that each person is described by multiple images in both gallery set G and
probe set P, following previous work[3, 25]. In this scenario, the number of
images of each person are set to 3.

There are several established evaluation methods for evaluating person re-
identification system. Among them, cumulative matching characteristic (CMC)
curve is used to indicate performance of various methods. In our evaluation
protocol, we average the multi-view recognition results of the 4 combinations
of probe set and gallery set to present average CMC curve. To measure the
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Fig. 5. Comparisons to metric learning method on MV dataset under S2S and M2M
protocol using CMC curve. The rank-1 ARR of VAML is much higher than others. It
indicates that VAML achieves state-of-the-art performance.

performance of multi-view person re-identification, we also propose average
recognition rate(ARR) which results from averaging recognition rates of all
combinations.

4 Experiments

We evaluate our approach on MV dataset and the public VIPeR dataset. The
reason we choose VIPeR is that it is the most widely used dataset for evaluation
and it provides most of the challenges faced in real-world person re-identification
applications, e.g., viewpoint, pose, different background, illumination variation,
low resolution, occlusions, etc. Experimental results are shown in terms of
recognition rate, by the Cumulative Matching Characteristic (CMC) curve.

4.1 MYV Dataset

We randomly split the dataset as described in the protocol. The color and texture
features are extracted from images with resolution of 48 x 128. Then, we use PCA
to reduce the feature dimension by keeping 90% energy for all the metric learning
methods. For view estimation, we set the parameter k, the number of nearest
neighbors in kNN Classifier, to be 100. This process repeats 10 times.
Cross-view experiments are conducted under the S2S and M2M scenarios.
We select images from one view as probe set and images from another view
as gallery set(totally 4 combinations). In Figure 5 we report the average CMC
curve under S2S and M2M scenarios for LMNN [12], ITML[13], KISSME [15],
MCCA [18], our method(VAML), the Mahalabonis distance of the similar pairs
and pairwise Fisher Discriminant Analysis (PW-FDA) [26] as baseline. Note
that PW-FDA and MCCA use the view-angle of input image when testing. It
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Table 1. Rank-1 recognition rates in % on MV dataset under S2S and M2M scenarios
respectively.

(a) Rank-1 recognition rate in % on MV dataset under S2S scenario

Method 0° = 180° [ 135° = 315° [ 225° = 45° | 270° = 90° [ ARR
VAML 53.4 48.5 47.1 55.3 51.1
MCCA[18] 40.6 36.4 33.4 43.0 38.4
PW-FDA 39.8 37.2 39.8 45.4 40.6
KISSME[15] 22.2 16.4 15.0 14.8 17.1
LMNN[12] 18.2 13.2 14.6 11.8 145
ITML[13] 2.0 1.8 2.0 3.4 2.3

Mahalabonis 16.8 11.2 15.6 11.0 13.7
SDALF[3] 7.4 5.2 5.8 6.2 6.2

LLADF[17] 21.0 12.2 13.2 17.8 16.1
LFDA[16] 18.2 11.2 11.6 18.0 14.8
SM[11] 9.2 5.0 6.2 8.5 7.2

[P-VAML | 539 | 479 | 472 [ 550 [ 51.0 |

(b) Rank-1 recognition rate in % on MV dataset under M2M scenario

Method 0° = 180° [ 135° = 315° | 225° = 45° [ 270° = 90° | ARR
VAML 60.6 57.4 58.0 65.0 60.3
MCCAT[18] 49.2 42.2 41.8 51.4 46.2
PW-FDA 48.8 45.4 49.0 54.0 49.3
KISSME[15] 21.8 16.6 20.0 14.8 18.3
LMNN[12] 20.2 14.8 16.6 11.8 15.9
ITML[13] 4.6 3.2 3.4 3.6 3.7

Mahalabonis 19.2 11.0 17.0 10.4 14.4
SDALF[3] 3.8 5.4 7.8 7.2 7.3

| P-VAML | 612 56.8 58.2 64.6 | 60.2 |

is obvious that using the proposed VAML metric leads to a large performance
gain over traditional metric learning methods and that VAML also outperforms
the two methods using labeled view.

Moreover, in Table 1 we show the result of rank-1 recognition rate on each
cross-view combination. It can be seen that our VAML under two scenarios
is significantly better than other methods reported results on MV dataset.
Specifically under S2S scenario, rank-1 ARR is 51.1% for VAML, versus 38.4%
for MCCA [18], 16.1% for LLADF[17], 14.8% for LFDA[16], 7.2% for SM[11],
17.1% for KISSME [15], 14.5% for LMNN [12], 2.3% for ITML [13], 13.7% for
Mahalabonis and 6.2% for SDALF[3]. In particular, VAML outperforms the
rank-1 ARR of the second best PW-FDA [26] by 10.5%. This improvement
is due to our view-adaptive strategy, which can make full use of multi-view
information from the same class and is robust to viewpoint change and pose
variations. In M2M, set-to-set distance is introduced because each person in
probe and gallery set contains 3 images. To recognize one person, we compare
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the distance of each possible pair from different persons, associating the person
to the one from gallery set with lowest distance. In Table 1(b), all the methods
have performance gain under M2M compared to that under S2S. Specifically,
rank-1 ARR of VAML is improved by 9.2%, versus 7.8% for MCCA [18] and
8.7% for PW-FDA [26]. In particular, the rank-1 ARR difference between our
method and KISSME is increased to 42.0%. By comparing the results of all
methods on different combinations, it also can be observed that (135°,315°) and
(225°,45°) are the most challenge combinations because worst performance of
most methods are reported on them.

Based on this analysis, VAML outperforms all other metric learning methods
significantly. The main reason for VAML to obtain the best performance
is that latent relationship between different views of the same person is
learned successfully and robustness to large viewpoint variations is improved
by exploiting the view-adaptive metric.

4.2 VIPeR Dataset

VIPeR [19] is the first publicly available dataset for person re-identification
consisting of 632 people captured outdoor with two images for each person with
size at 128 x 48 pixels. The biggest challenges in VIPeR are viewpoint and
illuminance variations, which may cause the change of appearance largely. For
each person, corresponding individuals have viewpoint change up to 90 degrees.

Our setting for the splitting of training/testing set is same to SDALF|[3], by
which VIPeR dataset is splitted into two set with equal size (316 persons), one
as training set and another as testing set. Then we estimate the view vector of
each image by kNN classifier using 20,000 images from MV dataset as training
data. Different from the setting of MV, only three most dominant estimated
view-angles are kept. Thus, the view vector of each data in VIPeR have only 3
dimensions. The whole evaluation procedure is carried out 10 times.

We compare the performance of proposed VAML in the ranging of first
50 ranks to various state of the arts, as illustrated in Table 2. It is noted
that our method outperforms all other appearance-based methods. Specifically,
SM][11] achieves second best results compared to the other appearance-based
methods, like CPS[6], SDALF [3], ELF [7], DDC [25] and ERSVM [8]. However
its recognition rate is 1% lower than ours at rank-1 and have a difference
of 11%, 10%, 5% at rank-10, rank-25 and rank-50 respectively. It shows
that our method can handle the appearance variations caused by viewpoint
change better than traditional appearance-based methods. Moreover, we also
analyze the performance of popular metric learning methods[15,12-14,17, 16].
Our VAML has much better performance compared to LMNNJ[12], ITML[13],
KISSME[15],LFDA[16] and RDC[14], and shows comparable performance with
that of LLADF[17]. The performance of top-25 ranks is also represented with
CMC curve in Figure 6.

The effect of view estimation. One factor affecting the performance
is the accuracy of view estimation. The average accuracy of kNN-based view
classification is 70% on VIPeR dataset and 90% on MV dataset repectively. In
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Table 2. Recognition rates in [%] at different ranks r on VIPeR dataset.

Method r=1 10 25 50
VAML 26 63 82 92
ELF[7] 12 43 66 81
SDALF[3] 20 49 70 83
CPS[6] 22 57 76 87
DDCJ25] 19 52 69 80
ERSVM]§] 13 50 71 85
SMJ[11] 25 52 72 87
RDCJ14] 16 54 76 87
KISSME[15] 21 60 | 81 92
LMNNJ12] 19 53 74 87
ITML[13] 16 51 7 90
LLADF[17] 29 78 | 92 | 97
LFDAJ16] 23 66 84 93
Mahalabonis 17 49 69 82
| P-VAML | 29 [ 68 [ 84 [ 94 |

Cumulative Matching Characteristic (CMC)
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order to evaluate the contribution of view estimation, we propose a ‘perfect’
VAML (P-VAML), in which we use labeled view vector (100 % accuracy) to
form the augmented feature. Table 1 and Table 2 show the results of P-VAML
on VIPeR and MV datasets respectively. It is observed that better performance
can be achieved along with the increasement of classification accuracy on VIPeR
while the improvement is not obvious on MV dataset.

5 Conclusion

In this paper, we have proposed view-adaptive metric learning to learn a
metric which can be adaptive to the views of matching pair for multi-view
person re-identification. Both separability of instances from different classes and
compactness of instances with different views from same class are exploited
in our method. Meanwhile, a multi-view dataset MV, which consists of 1000
persons and has explicit annotation of view-angles, have been released with
our expectation to advance the research of multi-view person re-identification.
Compared with existing competitive methods, the extensive experiments show
that our approach achieves the state-of-the-art results over MV and VIPeR
datasets. In the future, we would like to develop the VAML by considering the
symmetry of views.
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