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Abstract. The k-NN rule is a simple, �exible and widely used non-
parametric decision method, also connected to many problems in image
classi�cation and retrieval such as annotation and content-based search.
As the number of classes increases and �ner classi�cation is considered
(e.g. speci�c dog breed), high accuracy is often not possible in such chal-
lenging conditions, resulting in a system that will often suggest a wrong
label. However, predicting a broader concept (e.g. dog) is much more
reliable, and still useful in practice. Thus, sacri�cing certain speci�city
for a more secure prediction is often desirable. This problem has been
recently posed in terms of accuracy-speci�city trade-o�. In this paper
we study the accuracy-speci�city trade-o� in k-NN classi�cation, evalu-
ating the impact of related techniques (posterior probability estimation
and metric learning). Experimental results show that a proper combina-
tion of k-NN and metric learning can be very e�ective and obtain good
performance.

1 Introduction

Visual recognition is a basic problem in computer vision, and is a key component
in image retrieval and automatic annotation systems. User generated annotations
tend to be ambiguous and noisy, and often not representative of the content. In
addition, the tagging process is tedious and time consuming, so often users just
do not annotate their own content. Automatically classifying and annotating
images is thus highly desirable.

Exploiting hierarchical semantic relations between related classes can im-
prove the classi�cation accuracy[1] and can be used to speed up classi�cation[2].
However, the goal of these methods is still to predict a label among the original
set of training labels (leaf nodes in the hierarchy).

In practice, when the number of categories becomes larger and the di�er-
ences between them are more subtle (�ne-grained classi�cation), the accuracy
is not high, and the suggested label is often not accurate. Recently, Deng et
al[3] proposed a di�erent approach with the objective of trading o� accuracy
and speci�city. When the con�dence in a particular SVM prediction is not high
enough, hierarchical semantic relations are leveraged to suggest less speci�c tags,
but with higher con�dence. Thus, if the prediction of a dog breed is not reliable,
perhaps just simply suggest dog.
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The k-nearest neighbors (k-NN) rule is a widely used non-parametric clas-
si�cation method despite its simplicity. It has the advantage of not requiring
training and the capability to easily incorporate new information. The idea is
to �nd the k nearest neighbors training samples to a query feature vector and
select the most frequent class. However, this may be di�cult in practice when
the number of classes increases and becomes more di�cult to discriminate be-
tween closely related classes, leading to high uncertainty in the prediction (see
Fig. 1a). Recently, semantic hierarchies have been used in k-NN classi�cation, in
particular to learn tree structured metrics[4], but accuracy-speci�city trade-o�s
in k-NN have not been studied.
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Fig. 1. k-NN classi�cation with semantic hierarchy: (a) votes in �at classi�cation, (b)
vote aggregation in broader concepts.

In this paper we study the accuracity-speci�ty trade-o� in k-NN classi�-
cation, by considering voting in internal nodes of the hierarchy (see Fig. 1b).
We focus on related techniques, such as metric learning[3,5,6,7] and posterior
probability estimation[8,9]. We include speci�c analysis and evaluation metrics
(semantic similarity, accuracy-speci�city F score) to evaluate the performance
of the method in the accuracy-speci�city framework. The rest of the paper is
organized as follows. Section 2 describes the accuracy-speci�city framework. In
Section 3 we describe its extension to k-NN classi�cation. Section 4 and 5 present
the experimental evaluation and the conclusions.

2 The accuracy-speci�city framework

In this section we brie�y review the speci�city-accuracy framework and the Dual
Accuracy Reward Trade-o� Search (DARTS) algorithm proposed by Deng et
al[3].
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2.1 Accuracy and speci�city

In �at classi�cation, only one class is considered correct, so the prediction is
either right or wrong. However, in hierarchical classi�cation not only the leaf
concept is correct but also the ancestors. The main di�erence is that broader
concepts are easier to predict correctly but at the same time provide less useful
information. This can be modeled as a trade-o� between accuracy and speci�city.
We can describe a hierarchy of concepts as a graph H = (V,E), with each node
v∈V representing a concept. The leaf nodes Y ⊂ V are mutually exclusive
concepts and form the classes for �at classi�cation. Let x ∈ X represent a
training feature vector and y∈Y the corresponding label. A classi�er ỹ = f (x̃)
predicts a label ỹ∈V for the test feature vector x̃. Now, evaluating the classi�er on
a test set, we can obtain the average accuracy as A (f) = 1

|S|
∑
x∈S [f (x) ∈ π (y)]

where π (y) represents the set of correct predictions (i.e. those in the path from
the correct leaf node to the root node, including y), and [P ] is 1 if the statement
P is true, otherwise is 0.

In a hierarchy of concepts, several nodes are correct classi�cations, how-
ever we should choose the most informative one, which in our case is the most
speci�c one. Thus, we would prefer cat to entity, and Siamese to cat, pro-
vided that all of them are correct predictions. A suitable measure is the in-
formation gain with respect to predicting the root node[3], measured as gv =
log2 |Y | − log2

∑
y∈Y [v ∈ π (y)] which increases from the root node (zero gain)

to leaf nodes (maximum gain). We assumed all leaf nodes are equally probable
(i.e. uniform prior). Fig. 2a shows the corresponding information gain of the
semantic hierarchy in Fig. 1b. We can compute the average information gain (of
correct predictions) in the classi�er f as G (f) = 1

|S|
∑
x∈S gf(x) [f (x) ∈ π (Y )].
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Fig. 2. Example of k-NN classi�cation with hierarchical concepts: (a) information gain
at each node, (b) estimation of the likelihood in the example in Fig. 1a (k = 7).
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2.2 Making conservative predictions

A typical �at classi�er does not consider other option than venturing a (�ne
grained) prediction, no matter whether it is right or wrong. However, sometimes
it is possible to estimate the con�dence of the classi�er in its prediction, which
enables a way to reject the prediction. In the accuracy-speci�city framework this
can be seen as predicting the root node, when the classi�er estimates that the
prediction is highly probable to be wrong

f (x) =

{
f (x) if p (v|x) ≥ α
ṽ otherwise

where ṽ∈V , and 0 < α ≤ 1 is an arbitrary minimum accuracy to accept a
prediction.

When a full hierarchy is available, intermediate nodes can also be selected,
allowing a �ner trade-o� between accuracy and speci�city. In particular, the
objective of the DARTS algorithm[3] is to maximize the information gain given
a certain accuracy guarantee α

maximize G (f)
s.t. A (f) ≥ α (1)

Using Lagrange multipliers, the constrained optimization problem (1) can be
expressed as

L (f) = G (f) + λ (A (f)− α) (2)

and then �nd the value of λ maximizing the Lagrange function L (f). In the
DARTS algorithm, this value is found by estimating posterior probabilities and
selecting the node with the maximum expected information gain. For SVMs,
Platt scaling[10] is used to estimate probabilities at each node, and the value of
λ is found via binary search.

3 Application to k-nearest neighbors classi�cation

Including the internal nodes of a hierarchy in k-NN can be done by simply
aggregating votes from children nodes (see Fig. 1b). Then the only parameter to
be set is k. However, good performance depends on the metric used to measure
the distance. To include rejection and trading o� accuracy and speci�city, we
also need to estimate posterior probabilities.

3.1 Estimating class probabilities

For a given k and a test image x, we can de�ne its k-nearest neighborhood
Nk (x) as a set with the points in the training set with lower distance to x. For
convenience we assume they are ordered by increasing distance. The simplest
estimator of the posterior probability k-NN is the fraction of neighbors that
belong to that class[8]
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p (v|x) = k(v)

k
=

1

k

∑
u∈Nk(x)

[u ∈ v] (3)

where k(v) indicates the number of the k-nearest neigbors belonging to the class
represented by the node v. Note that this estimator is also valid for internal
nodes.

The probability estimator in (3) ignores the distance and the order of the
neighbors. We can include weights in (3) to emphasize closer neighbors and
estimate the probability as

p (v|x) = 1

k

k∑
i = 1

ui ∈ Nk (x)

wi [ui ∈ v] (4)

where ui represents the i-th nearest neighbor and wi ≥ 0 the corresponding
weight. The weights are learned using the method proposed by Atiya[9], which
uses a softmax representation to model weights and then maximizes the likeli-
hood. We enforce decreasing weights with distance w1 ≥ . . . ≥ wi ≥ . . . ≥ wk to
avoid randomness.

3.2 Metring learning

The selection of the nearest neighbors depends essentially on the particular met-
ric d (xi, xj) used to evaluate distances. Common used metrics (e.g. , such as
the Euclidean distance, may not be the most suitable in general. If training
data is available, an appropriate metric can be learned to capture the speci�c
characteristics of the feature space.

During the last ten years, automatic metric learning has been intensively
studied, resulting in large number of learning methods (see [7] for a recent sur-
vey). There is no clear algorithm performing better than others, and sometimes
the Euclidean distance still has better performance than a learned metric. Due
to the complexity of visual feature spaces, the performance of di�erent meth-
ods usually varies signi�cantly from problem to problem, and from dataset to
dataset. For that reason, we will consider three widely used metric learning ap-
proaches and evaluate them in our case.

Most metric learning methods learn a distance of the form dM (xi, xj) =√
(xi − xj)T M (xi − xj). The metric is parametrized by the positive semi-de�nite

matrixM , which is usually learned from a regularized convex optimization prob-
lem, with constraints representing the relations between pairs of samples. In
such pairwise relations, pairs can be reduced to two classes: similar (same label)
and dissimilar (di�erent label). In particular the ITML[11] algorithm enforces
constants of the type d2M (xi, xj) ≤ tsimilar if yi = yj for similar pairs ( and
d2M (xi, xj) ≥ tdissimilar if yi 6= yj for dissimilar pairs). The cost function is the
Bregman divergence between M and a target matrix (typically the identity).
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In the large margin metric learning (LMNN) framework, the goal is to pull
target neighbors (same label) into the k-neighborhood, and push impostors (dif-
ferent label) away. Here, the constraints are relative and local to the neigh-
borhood. Given triplets (xi, xj , xk), the distance to impostors must be larger
(with a safety margin) than the distance to target neighbors ( d2M (xi, xj) ≤
d2M (xi, xk) + 1, where xj represents a genuine neighbor of xi and xk an impos-
tor. We considered the original LMNN algorithm[5] and BoostMetric[6] which
decomposesM in a combination of rank-one matrices which enables fast learning
using boosting.

To satisfy the constraints, in practice slack variables are included in the
constraints and in the objective function. One problem with these formulations
is the polynomial complexity, as the number of constraints grows as O

(
n2
)
in the

case of pairwise constraints and as O
(
n3
)
in the case of triplets. In practice, a

small subset of these constraints is subsampled to keep a reasonable complexity.

4 Experimental evaluation

4.1 Dataset and settings

We evaluated the performance of k-NN classi�cation over the ILSVCR65 dataset
and the corresponding semantic hierarchy[3]1. The dataset contains images of
animals and vehicles further classi�ed in birds, cats and dogs, and boats and
cars, respectively (see Fig. 1b). Note that there is no mammal category in this
taxonomy, so birds are as similar to cats and dogs as cats are to dogs. Finally
these categories are further classi�ed in 7, 5, 31, 5 and 9 �ne-grain categories (57
leaf nodes), respectively. Although leaf nodes are balanced (each �at classi�er is
trained with the same number of images) the semantic hierarchy is not, resulting
in a strong bias towards some parent nodes, such as animal, and particularly dog.
Labels are assigned only at leaf nodes, represented each with 100/50/150 images
in the training/validation/test sets.

To represent the images we used the LLC[12] features provided with the
dataset. The original features include two spatial pyramid levels (1x1 and 3x3),
for a total of 100K dimensions. As k-NN is not practical in such high dimensional
space, we only kept the �rst level of the spatial pyramid (10K dimensions) and
reduced the features to 50 dimensions using PCA.

4.2 Results

In our experiments we study the performance of di�erent accuracy-speci�city
strategies, including �at k-NN classi�cation (FLAT), �at with rejection (FLAT-
REJ) and the DARTS method, evaluated for di�erent values of α. We learned

1 The ILSVCR65 dataset, hierarchy and the DARTS source code are available at
http://www.image-net.org/projects/hedging/
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metrics using the LMNN, BoostMetric and ITML algorithms using the imple-
mentations provided by their authors234. Due to the large number of samples,
considering all the possible pairs/triplets constraints is extremely costly, so we
sampled a signi�cant number (i.e. still millions of constraints). We used grid
search to adjust the corresponding parameters, measuring the k-NN classi�ca-
tion accuracy (k=20) in the validation set to prevent over�tting.

The average classi�cation accuracy in the test set is shown in Table 1. We
see that, unfortunately, using the metrics learned with LMNN and BoostMetric
lead to worse performance than simply using the Euclidean distance. In con-
trast, the metric learned with ITML improves signi�cantly the accuracy. This
may suggest that the large margin framework is not suitable for this particular
problem, due to the huge number of triplet constraints, of which only a small
fraction are considered in practice. This small fraction (still millions of con-
straints) may not be large enough to learn a metric properly. Typically, these
algorithms are evaluated with very successful results for smaller datasets with
relative low dimensional feature spaces and few classes, when all or a signi�cant
fraction of triplet constraints can be considered. Our case is more challenging
and in practice we had to discard a large amount of triplet constraints to keep
the training time reasonable. In contrast, ITML considers pairwise constraints,
which scale better with the number of samples and classes, and results in an
improved accuracy.

We also measured the semantic similarity between the prediction and the
ground truth (leaf node) as[13]

s (v, y) =
|π′ (v)

⋂
π′ (y)|

max (|π′ (v)| , |π′ (y)|)

where v is the predicted node, y is the ground truth leaf node and π′ (v) indicates
the path from v to the root node (excluding v) and |π′ (v)| indicates the length
of that path. In contrast to accuracy, that only considers a binary outcome for
a test sample (either correct or wrong classi�cation), the semantic similarity
gives a graded score which may be a more suitable measure when including
internal nodes as predictions (e.g. a dog should be more similar to a cat than
to a boat, because both are animals). In fact, the �at classi�cation accuracy
of SVM5 is higher than k-NN with ITML, but the semantic similarity is lower,
and as we will see this is related with a poorer accuracy-speci�city performance.
This suggest that, after metric learning, the feature space is structured in a more
semantically meaningful way, in which leaf node misclassi�cations are likely to be
predicted as a still relatively similar leaf node class. In contrast, SVM does not
change the structure of the feature space but �nds nonlinear decision boundaries.

2 http://www.cse.wustl.edu/~kilian/code/lmnn/lmnn.html
3 http://code.google.com/p/boosting/
4 http://www.cs.utexas.edu/~pjain/itml/
5 In [3] SVM achieves higher classi�cation accuracy using spatial pyramid and 100K-
dim features, in contrast to the 50-dim features (no spatial pyramid) used in our
experiments.
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Thus the accuracy may be higher, but misclassi�cations tend to be less related
semantically to the true class than in k-NN with metric learning.

Evaluation metric
k-NN

SVM
Euclidean LMNN BoostMetric ITML

Accuracy (%) 18.02 16.34 9.87 21.19 24.01

Semantic similarity(%) 60.94 59.79 54.15 64.16 62.01
Table 1. Flat classi�cation results.

The corresponding accuracy-speci�city curves were obtained varying the value
of α, from 0 to 0.99 (note that FLAT-REJ with α=0 corresponds to the �at clas-
si�er). Speci�city is measured as normalized information gain. Fig. 3 shows the
curves for di�erent decision, metric learning methods and k = 30. We can observe
that, in terms of accuracy-speci�city trade-o�, DARTS consistently outperforms
FLAT-REJ, increasing the accuracy and still keeping a higher average speci�city.
In addition, an appropriate metric improves signi�cantly the performance, not
only in �at k-NN classi�cation (compare Table 1) but also in accuracy-speci�city
curves.
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Fig. 3. E�ect of metric learning over the accuracy-speci�city curve (k = 30).

As shown in Fig. 4, the choice of the method used to estimate posterior prob-
abilities is not so critical. We also compare the curves for several values of k,
with larger neighborhoods performing better (we show more results later). In-
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terestingly, Atiya's method[9] improves slightly the performance for large neigh-
borhoods, while not being useful in smaller ones.
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Fig. 4. E�ect of the probability estimation method over the accuracy-speci�city curve.

In order to further study the e�ect of the parameter k in the performance,
we also use a variation of the F-score to evaluate the accuracy-speci�city perfor-
mance

F (f) = max
λ∈[0,1)

(
2A (fλ)G (fλ)

A (fλ) +G (fλ)

)
where fλ is the classi�er that maximizes (2) for λ. As mentioned earlier, small
neighborhoods are not suitable in this problem. The size of the neighborhood
trades o� accuracy in the estimation and locality. A more accurate estimation
of the posterior probability requires more neighbors, but then the neighborhood
in the feature space is more spread, leading to less localized prediction. The
accuracy-speci�city F score is a compact way to compare di�erent methods (see
Fig. 5, using Atiya's estimator) and their dependency with k. First, we can see
that the performance gain of both DARTS and metric learning over the �at
classi�ers and the Euclidean distance is consistent and very robust to the partic-
ular choice of k. Actually, for neighborhoods large enough (say k ≥ 20) F scores
are almost constant. For smaller values the performance decreases signi�cantly.
We can also observe a slow but steady decay in the performance due to a less
localized prediction. For that reason we set k = 30 in the remaining experiments.

Finally, Fig. 6 compares the performance of DARTS with SVM classi�cation
and DARTS with k-NN. The performance of SVM is comparable to k-NN with
Euclidean distance. Note that in this variation there is no training at all if we
use (3) to estimate posterior probabilities. Using ITML k-NN outperforms SVM
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for this feature space. As we mentioned earlier, a better metric not only helps
to increase the �at accuracy, but also helps to structure the feature space in
such a way that semantic relations are better preserved. The resulting nearest
neighbors are also more semantically related, which provides a better way to
estimate the posterior probability at di�erent levels of the hierarchy, so the
DARTS method can make better decisions. As we discussed earlier, the average
semantic similarity of predictions in the �at classi�er is a good indicator of how
suitable the feature space is for this framework.
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Fig. 6. Comparison of k-NN and SVM approaches.
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Fig. 7 shows the fraction of predictions and their associated information gain
(or predicted incorrectly). The �at classi�er always ventures a prediction so the
amount of both correct and incorrect is relatively high. With a rejection option,
many wrong predictions are rejected and labeled as entity (root node) but also
some correct predictions. DARTS further reduces the amount of very speci�c
correct predictions, and keeps a similar rate of wrong predictions as FLAT-
REJ. However, the amount of predictions assigned to the root node is reduced
considerably, and they are assigned to more speci�c intermediate nodes, which
is more useful. Higher values of α reduce the number of wrong predictions but
also increase the number of uncertain predictions (i.e. entity) and also reduce
the number of correct predictions with highest speci�city.
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Fig. 7. Information gain and wrong predictions.

Fig. 8 shows some examples of how wrong predictions in the �at classi�er can
be recovered as less speci�c labels, but still more useful than a wrong prediction.
FLAT-REJ can sometimes anticipate a wrong prediction but predicts it as entity.
In contrast, DARTS provides more speci�c labels. Some examples of the k-
nearest neighbors for speci�c images are shown in Fig. 9. Although neighbors of
the same class are not as many as desirable, the selected neighbors often belong
to related superclasses (e.g. dog, car), so it seems reasonable to use them to infer
a useful label.

5 Conclusion

The k-NN framework is simple but powerful. It can achieve very competitive
performance, and even outperform SVM using the same features. As a non-
parametric method, it can incorporate new samples to the model without need
for retraining (other than metric learning and/or weights in (4) if desired to
update them, but not strictly necessary).
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cat
Flat tabby Persian cat gri�on tiger cat

Flat-rej tabby entity gri�on tiger cat
DARTS cat cat cat cat
True Persian cat Siamese cat tiger cat tabby

boat
Flat speedboat canoe jeep �reboat

Flat-rej speedboat entity entity �reboat
DARTS boat boat vehicle boat
True canoe speedboat �reboat gondola

Fig. 8. Examples of wrong predictions in �at classi�cation recovered to less speci�c
but correct predictions (k = 30, α = 0.7). Rejected cases in FLAT-REJ are labeled as
entity (non-informative).

We observed that the structure of the feature space after metric learning
re�ects a more suitable structure to deal with �at misclassi�cations, which is
exploited in k-NN classi�cation to e�ectively trade o� accuracy and speci�city.
This results in even better accuracity-speci�city trade-o� than classi�ers with
higher �at classi�cation accuracy, such as SVM. In this case, semantic similarity
is more suitable than �at accuracy to measure the performance. We also no-
ticed that a wrong choice of metric learning method may result in disappointing
results, particularly in the experiments performed with methods using triplet
constraints.

Experiments show promising results with relatively low dimensionality (50
dimensions). SVM can still achieve better performance resorting to very high di-
mensional features (100K dimensions)[3]. In future work we would like to target
larger scale datasets and also higher dimensional features. However, scalability
in k-NN classi�cation is the main obstacle, so approximate search methods and
structures may be necessary. Search in very high dimensional features spaces is
also very demanding. Moreover, current metric learning methods do not scale
well either, due to the use of paiwise and triplet constraints. Thus, further funda-
mental research in k-NN classi�cation tools and metric learning methods seems
necessary to make it practical for larger datasets and higher dimensional spaces.
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cat (Persian cat)

boat (canoe)

Fig. 9. Nearest neighbors (by increasing distance) to the �rst image of each broad
category in Fig. 8. Green (red) frames indicate the level of semantic similarity (dissim-
ilarity).
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