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Abstract. Object Bank (OB) [1] has been recently proposed as an
object-level image representation for high-level visual recognition. OB
represents an image from its responses to many pre-trained object fil-
ters. While OB has been validated in general image recognition tasks,
it might seem ridiculous to represent a face with OB. However, in this
paper, we study this anti-intuitive potential and show how OB can well
represent faces amazingly, which seems a proof of the saying that “Every-
thing is in the face”. With OB representation, we achieve results better
than many low-level features and even competitive to state-of-the-art
methods on LFW dataset under unsupervised setting. We then show
how we can achieve state of the art results by combining OB with some
low-level feature (e.g. Gabor).

1 Introduction

To achieve accurate automatic face recognition, faces must be modeled appro-
priately. In the past decades, faces are widely represented by computer vision re-
searchers with hand-crafted local features, e.g., Gabor [2], Local Binary Pattern
(LBP) [3] and its high dimensional variant [4], patterns of oriented edge magni-
tudes(POEM) [5], Local Quantized Pattern (LQP) [6], Scale-Invariant Feature
Transform (SIFT) [7], and Histogram of Oriented Gradients (HOG) [8], etc.
However, designing an effective local descriptor demands considerable domain
specific knowledge and a great deal of efforts.

Recently, data-driven representation learning is becoming popular and re-
ports promising accuracy. In [9] and [10], filters are learned to maximize the
discriminative power for face recognition. In [11], a multi-layer face representa-
tion framework is constructed based on large-scale random filter searching. In
[12], [13] and [14], codebook learning technologies are utilized for robust face
representation design. More recently, faces are represented with mid-level or
high-level semantic information. For instance, the attributes and simile classifier
[15] represents faces by the mid-level face attributes and so-called simile feature.
And the Tom-versus-Pete classifier [16] encodes faces with high-level semantic
information by the output scores of a large number of person-pair classifiers. In
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the last two years, deep learning methods are applied to face recognition to learn
hierarchical face representation and report state-of-the-art results [17, 18].

On the other hand, general object recognition has also been studied exten-
sively in the past decade [19, 20] and has achieved significant progress recently
[21]. Actually, in terms of representation, general object recognition roughly
shares similar conceptual paradigms to those for face recognition, i.e., low-level
local features [22–24], mid-level features [25], high-level semantic features [1],
and their combination via hierarchical deep models [21]. Especially, many low-
level features, such as SIFT and HOG, have been applied successfully to both
face recognition [7, 8] and general object recognition [22, 26]. However, it is un-
clear whether the same mid-level features and high-level features can be general
enough to boost both face recognition and general object recognition.

Intuitively, it seems ridiculous to apply mid-level attribute or high-level se-
mantic features for general object representation to face recognition. This intu-
ition is further strengthened by the findings in the cognitive neuroscience liter-
ature that human vision system seems to have specific vision cortices for face
recognition, separated from those for general object recognition. There is a lot
of evidence that the primary locus for human face perception is found on the
fusiform gyrus (so called fusiform face area, abbr. as FFA) of the extra-striate
visual cortex [27, 28]. In other words, perception mechanism of face recognition
should be different from general object recognition. At least, the high-level se-
mantic features for general object recognition are probably not sharable to face
recognition, as there is indeed neither truck nor ship on human faces. Thus,
computationally, it will seem silly to represent a face with general object filters
like OB [1].

However, in this paper, we reach an anti-intuitive observation that faces
can be computationally represented by high-level general “object filters”, which
seems to validate the saying that “everything is in the face”. Specifically, we
model faces by encoding the responses of OB filters operated on the input faces.
With this OB representation, we surprisingly achieve results better than many
low-level features and even competitive to state-of-the-art methods on LFW
dataset [29] under unsupervised setting. We also investigate the influence of
pooling methods, the scales of object filters, and importance of various objects.
Finally, we show how we can achieve state-of-the-art results by combining OB
with some low-level features (e.g. Gabor).

Our finding, i.e., faces can be represented by high-level object-based models,
seems incredible at first glance. Nevertheless, we argue that it might be actually
consistent with some cognitive observations, which supports the argument that
faces are not processed specifically different from general object recognition [30].
It has been suggested that rather than being a true face module, the FFA may
be responsible for performing either subordinate or expert-level categorization
of generic objects, as suggested from both behavioral studies [31, 32] and neu-
roimaging studies [33]. However, we must admit that it is still too early to make
any determinate decision on what our findings suggest.
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The rest of this paper is organized as follows: section 2 briefly reviews OB
and presents its application to face recognition. Then, in section 3, we evaluate
its accuracy on LFW restricted face recognition evaluation under unsupervised
setting. The following section then describes how performance can be further
improved by combining OB with other low-level features. Finally, we conclude
the work and discuss future work in the last section.

2 Object Bank Face: Face Representation with Object
Bank

In this section, we firstly briefly review the OB method [1]. Then, we describe
how we apply OB to represent faces for face recognition.

2.1 Object Bank

OB is a high-level image representation which explicitly encodes the appearance
and spatial location information of object in the image. OB represents image by
collecting its responses to a large number of pre-trained object filters.

Root Filter Part Filters Deformation Costs

Root Filter Part Filters Deformation Costs

Fig. 1. An example DPM of bicycle trained on ImageNet dataset [20]. Two components
are demonstrated, each component consists of a coarse root filter (1), multiple part
filters (2) and a spatial model indicates the relative position of each part (3). The
upper row shows the first component, which captures sideways views of bicycles. The
lower row shows the second component, which captures frontal and near frontal views
of bicycles.
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In the OB framework, Deformable Part Model (DPM) [26] is employed as
the object detector/filter. DPM is a widely used method for learning multi-view
object detectors, and it is able to discriminatively learn a part-based object
detector model using training samples only with the bounding box labels. This
is done by treating the object parts as latent variables and learning by latent
SVM method [26]. Each DPM is defined by a coarse root filter with multiple
part filters. Fig. 1 shows an example DPM of bicycle.

In Fig. 2, we demonstrate the feature extraction procedure of OB, including
two main steps: convolution and pooling.
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Fig. 2. Illustration of the OB. The convolution step is encircled by blue dotted box
and the pooling step is encircled by dark red dotted box.

In the convolution step, pre-trained object filters are convolved with a multi-
scale image pyramid of the input image. The response maps of all object filters
in different scales are collected all together. Note that each object filter has two
sets of filters with respect to different viewpoints, i.e., frontal and profile. So, in
each scale, there are two response maps for each object filter. The final number
of response map is NumObject ∗NumScale ∗ 2. The value of each location on
the response map indicates how likely an image patch contains a specific object.

In the pooling step, OB encodes both the appearance and spatial location
information of objects. OB employs a 3-level pyramid pooling strategy. Each
response map is divided into 1 ∗ 1 (L0), 2 ∗ 2 (L1) and 4 ∗ 4 (L2) grids. Two
kinds of pooling operators are considered in this work. The first is the max-
pooling, which computes the maximum response value in each grid. The second
is the mean-pooling, which computes the mean response value in each grid. After
pooling, the dimension of OB will be NumObject ∗NumScale ∗ 2 ∗ 21.
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2.2 Object Bank Face (OBF)

Here we simply apply OB to face representation and name it as Object Bank
Face (OBF). OBF can be seen as a high-level face representation, which is driven
by models learned from the general object classes rather than the specific face
classes.

Clearly, face images do not contain any general object, but face images can
still form meaningful responses to OB filters. The response value reflects how
likely a face patch “looks alike” the specific object in the HOG [23] feature space,
as the object filters in OB do convolution on the HOG feature maps [26]. One
can refer to [34] for more interesting discovery on how object detectors see this
world in the HOG feature space.

3 Experimental Evaluation

In this section, we validate the OBF on face recognition task. Firstly, we in-
troduce the evaluation dataset LFW [29] and setting of parameters. Then, we
evaluate OBF on LFW and analyze the influence of different OBF setting in face
recognition. Lastly, we discuss the novelty and insight of OBF.

3.1 Dataset and Setting of Parameters

In this subsection, we briefly introduce the LFW dataset, as well as the setting
of parameters in our experiments.

Evaluation Dataset. LFW is a very challenging real-world face verification
benchmark. The LFW dataset contains 13, 233 face images of 5, 749 persons.
The face images in LFW have large variations in pose, expression, illumination,
occlusion, etc. In Fig. 3, we show some example images of LFW.

Fig. 3. Example images in LFW which show the variations of face images in pose,
expression, illumination and occlusion.
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Face Normalization. In this work, we utilize the LFW-a images [35] pro-
vided by Lior Wolf et al. and crop the face image to 120 ∗ 96 pixels with fixed
eye center locations as (29, 51) and (66, 51);

OBF Details. We use the 208 pre-trained object filters provided by Li-Jia Li
et al. [36], which are trained on ImageNet dataset [20]. Six detection scales and
3-Level pyramid pooling are used as suggested in [1]. The dimension of the final
OBF representation is 208∗4∗2∗21 = 52, 416. Without additional specification,
we take max-pooling as default pooling operator. In this work, whitening PCA
(WPCA) is employed to reduce the dimensionality of OBF feature to 1, 000, and
finally cosine similarity is exploited for face matching.

3.2 Evaluation of OBF on LFW

We follow the LFW restricted protocol, which splits the LFW View 2 dataset
into 10 subsets with each subset containing 300 positive pairs and 300 negative
pairs. In this work, we follow the unsupervised setting. As requested by the
protocol, we perform 10-fold cross-validation, among which 9 folds are used to
train the WPCA model and the rest one is used for testing. The evaluation
results are shown in Table. 1. Note that, we use “(sqrt)” behind a specific method
to denote additional signed square root operation of features. These results are
given because many previous works have shown the effectiveness of sqrt operator
especially for histogram-like features.

Table 1. Comparisons between OBF and state-of-the-art methods on LFW dataset
under unsupervised setting.

Method Mean Accuracy Rate(%)

LHS [37] 73.40±0.40
LARK [38] 78.90
MRF-MLBP [39] 80.08±0.13
POEM [5] 82.71±0.59
OCLBP [40] 82.78±0.41
High-dim LBP [4] 84.08
High-dim LE [4] 84.58
I-LQP [6] 86.20±0.46
SFRD [14] 84.81

OBF 83.80±0.42
OBF (sqrt) 83.75±0.46

As can be seen from the table, the OBF surprisingly achieves 83.80% mean
accuracy on LFW View 2 under unsupervised setting, which outperforms many
specifically designed face representation methods such as LARK [38], POEM [5]
and OCLBP [40]. The performance of OBF is even competitive to state-of-the-
art methods, which seems a proof of the saying that “Everything is in the face”.
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In terms of face recognition, it seems that who you are is determined by what
objects are in your face.

3.3 Analysis of OBF

In this section, we analyze the role of each component in OBF. We demonstrate
the sensitivity of object filters on face and the influence of different OBF setting
on face recognition performance. We eventually provide a good understanding
of OBF.

Sensitivity of Object Filters to Face. In order to visualize the sensitivity
of object filters to face, we do statistic of the mean response maps of each object
filters on face. In this experiment, we use all the 13, 233 face images from LFW
dataset View 2 [29]. We randomly choose eight object filters and demonstrate
the mean response maps in Fig. 4. Interesting phenomenon can be explored: big
response value appears mostly around the eyes, nose and mouth. “Everything is
in the face” has intuitive explanations.

KeyboardBird Printer Rug

Shield Tree Truck Sky

Max

Min

Fig. 4. Mean response maps of selected object filters on face.

Comparisons of Different Pooling Operator. As described earlier, the
pooling process in OB encodes the spatial location and semantic meaning of
objects in the input image. In this experiment, we analyze the performance of
different pooling operator, i.e., max-pooling and mean-pooling, on face verifica-
tion. We conduct the experiment on LFW View 2 under unsupervised setting.
We reduce the original features to 1, 000 dimensions using WPCA and take
the cosine similarity. As it is shown in Table. 2, the max-pooling outperforms
mean-pooling. The same conclusion is also presented in [1], where mean-pooling
outperforms max-pooling when applying OB for scene classification task.
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Table 2. Comparisons of the pooling operators of OBF on LFW dataset under unsu-
pervised setting.

Pooling Strategy Mean Accuracy Rate(%)

OBF + Mean-Pooling 80.35±0.55
OBF + Mean-Pooling (sqrt) 80.32±0.54
OBF + Max-Pooling 83.80±0.42
OBF + Max-Pooling (sqrt) 83.75±0.46

Table 3. Comparisons of the performance of each scale of OBF on LFW dataset under
unsupervised setting. The left column presents the feature map size, and the object
filter kernel size is around 10 ∗ 8 or 8 ∗ 10.

Feature Map Size in Pixel Mean Accuracy Rate(%)

S1: 61 *48 75.92±0.78
S2: 42*33 76.82±0.79
S3: 29*23 78.78±0.76
S4: 20*16 79.52±0.70
S5: 14*11 80.33±0.65
S6: 9*7 79.78±0.75

Role of Scale. In OBF, there are totally six detection scales. In this exper-
iment, we evaluate the pooled features of each scale independently. The results
are demonstrated in Table. 3. One can see that individual scale performs different
with each other, and small size scales delivers better performance. Furthermore,
in this experiment, we also study single object performance in different scale.
The same conclusion is also hold, and the single object filter performs best on
small size scale S5 or S6. This phenomenon is not hold when applying OB for
scene classification task as reported in [1], where middle size scale performs bet-
ter. An intuitive interpretation is that in natural image, object often occupies
middle size of the input image. While for face image, it shares common visual
pattern with general object in bigger face regions.

Role of Object. In this experiment, we analyze the effectiveness of different
types of objects on face verification performance. It is an interesting problem
that which object contributes more to the performance. The test is also taken
on LFW View 2 under unsupervised setting. We reduce the dimension of original
feature using WPCA and take the cosine similarity. We sort the object filters
according to the 10 folder mean accuracy on LFW View 2. In Fig. 5, we report
the best 20 objects and worst 20 objects together with their mean accuracies.

In this experiment, we also evaluate the performance of using different num-
ber of object filters in OBF. For computation simplicity, we conduct the ex-
periment on LFW View 1 under unsupervised setting. The LFW View 1 has a
training set of 1, 000 positive pairs and 1, 000 negative pairs, and a test set of
500 positive pairs and 500 negative pairs. We reduce the dimension of original
feature using WPCA. Dimension is fixed to the minimum number of principal
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Fig. 5. Performance by using OBF generated by individual object on LFW View 2
under unsupervised setting. (1) The best 20 objects; (2) The worst 20 objects.

components to preserve 80% of the training set variance. By adding one object
at a time, we get the performance curve in Fig. 6. The classification accuracy
increases along with the number of object filters progressively, and we believe
more powerful and discriminative face representation can be constructed with
the growth of number of object filters.

3.4 Discussion

Above experiments and observations suggest that general object filters can in-
deed achieve very promising accuracy for face recognition. This observation seem-
s anti-intuitive, as we are not so silly to believe there are indeed trucks or printer
on face. So, if we were not wrong in implementing, the effectiveness has to be
hidden somewhere in the mechanism. To explain this in principal, we argue
that, each object is actually composed of a large number of low-level features or
mid-level attributes. In other words, an object filter models the co-occurrence of
plenty of low-level filters and/or mid-level filter. Therefore, the effectiveness of
OB for face recognition might essentially come from its modeling of co-occurrence
of many lower-level features. We can imagine that, a truck, in a suitable scale,
can be like human eye, especially in the sense of several horizontal edges.

In terms of cognitive neuroscience, as mentioned in the introduction part, it
has long been controversial whether face processing is a dedicated procedure. Our
findings suggest that, at least, in the low-level or even mid-level, the perception
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Fig. 6. Classification performance on LFW View 1 by using OBF corresponding to
accumulative objects under unsupervised setting. X axis is the number of objects. Y
axis represents the average classification accuracy.

mechanism might be similar (if not the same) for face and general object process-
ing. There is just no need to distinguish the horizontal edges on a truck or those
on a face. What matters is how the low-level features are combined together in
some co-occurrence mode, in the higher level of perceptual organization.

4 Combination with Low-level Features

As a high-level representation, OB is intuitively complementary for low-level
feature based face representation. In the following, we firstly present the exper-
imental setting. Then, we evaluate the proposed method on LFW.

We combine the OBF with LBP Face, SIFT Face or Gabor Face and evaluate
on LFW View 2 under unsupervised setting. We reduce the dimension of original
feature using WPCA and take the cosine similarity. In this experiment, we take
score-level fusion with equal weight by simply summating the corresponding
similarity matrices. The setting of parameters for low-level feature extraction is
presented as follows.

LBP Face Details. We take the uniform LBP setting as suggested in [3],
and we set the block size as 8 ∗ 8 and the radius as 2.

SIFT Face Details. We take the dense SIFT feature, which compute SIFT
descriptor [22] on dense grid on the face image. In this experiment, we set the
grid size as 4 ∗ 4.

Gabor Face Details. In the Gabor face, 40 Gabor wavelets with 5 scales
and 8 orientations are utilized, the parameters are set as suggested in [41]. We
take a 4 ∗ 4 mean pooling on the 40 Gabor magnitude images to reduce the
feature dimensionality.
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Fig. 7. Score-level fusion of OBF and low-level feature based face representation on
LFW dataset under unsupervised setting.

The results are shown in Fig. 7. As it is shown, the fusing of OBF and
low-level feature significantly improves the performance. Specially, we achieve
86.27% mean accuracy by fusing OBF and Gabor (sqrt), which is the state-of-
the-art performance on LFW under unsupervised setting. We can conclude that
OBF is an efficient complementary representation to improve face representation
robustness.

5 Conclusions and Future Work

Face representation is a fundamental problem in face recognition research. In
this work, we apply general object filters, i.e., OB, to face representation. The
experimental evaluations on LFW demonstrate that face representation can well
leverage the high-level models of general objects. Furthermore, by combining
with low-level features, state-of-the-art performance can even be achieved on
LFW.

The observation of this work naturally raises the conjecture whether mid-
level features, e.g., attributes, for general object recognition, can better facilitate
face recognition. So, in the future, we will study how general attribute can be
exploited for face recognition.
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