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Abstract—With the explosive growth of web data, effective
and efficient technologies are in urgent needs for retrieving
semantically relevant contents of heterogeneous modalities.
Previous studies construct global transformations to project
the heterogeneous data into a measurable subspace. However,
global projections cannot appropriately adapt to diverse con-
tents, and the naturally existing multi-level semantic relation in
web data is ignored. We study the problem of semantic coherent
retrieval, where documents from different modalities should be
ranked by the semantic relevance to the queries. Accordingly,
we propose TINA, a correlation learning method by adapTive
hIerarchical semaNtic Aggregation. First, by joint modeling of
content and ontology similarities, we build a semantic hierarchy
to measure multi-level semantic relevance. Second, with a set
of local linear projections aggregated by gating functions, we
optimize the structure risk objective function that involves
semantic coherence measurement, local projection consistency
and the complexity penalty of local projections. Therefore,
semantic coherence and a better bias-variance trade-off can be
achieved by TINA. Extensive experiments on widely used NUS-
WIDE and ICML-Challenge datasets demonstrate that TINA

outperforms state-of-the-art, and achieves better adaptation to
the multi-level semantic relation and content divergence.

Keywords-Cross-modal retrieval; Semantic hierarchy; Local
correlation learning.

I. INTRODUCTION

The multi-modal data refer to contents from heteroge-

neous modalities describing the same or relevant topics, e.g.,

web images and their surrounding texts, video frames and

their accompanied voice messages. When online users input

queries for seeking complementary information of other

modalities about certain topics, the retrieval results that are

ranked according to the semantic relevance are expected.

Therefore, the need for effective and efficient cross-modal

retrieval techniques has arisen along with the proliferation

of multi-modal data and diversified user demands.

Previous text-based techniques compare the similarities

of the textual query and the surrounding texts of web

images, while they suffer from the mismatch between textual

descriptions and web images. Semantic-based techniques

rely on an intermediate risky semantic annotation process,

which in turn delivers the cross-modal retrieval problem into

a “chicken-egg” dilemma. A goal-oriented solution routine is

to transform the heterogeneous modalities into measureable

low-dimensional representations, hence semantically similar

cross-modal documents can be directly retrieved as nearest

neighbor search. Canonical Correlation Analysis (CCA) [15]

and its variants [6] [12] [28] which conduct dimensionality

reduction by maximizing the cross-modal correlation, have

been the workhorse in cross-modal retrieval [25]. Correla-

tion learning is investigated with various models such as

regression [26], graph embedding [29] and boosting [5]. In

this paper, we address the challenges that hinder existing

correlation learning models from real applications.

First, existing approaches learn the cross-modal statistical

dependencies by inter-modal correspondence [15] and intra-

modal similarity (dissimilarity) [21] [22]. However, there

exists multi-level semantic relation among large scale real

data. For example, if the query text describes “dog”, a

semantic coherent retrieval result should be “dog” images

that are naturally co-occurred in certain webpages with the

text document, and followed by other “dog” images; “cat”

images are also relevant as they belong to “carnivore”;

“horse” images are somehow relevant since they are four-

leg mammals. But “building” images are unexpected so

that they should be positioned behind. A natural way to

represent the multi-level semantic relation is hierarchical

category structures [11] [20], which can serve as knowledge

ontology to boost the end tasks such as image retrieval

[8] [10] and recognition [16] [20] [32]. However, existing

semantic structures [11] [13] are not constructed towards

cross-modal correlation learning.

To achieve semantic coherent retrieval, an appropriate

multi-level semantic structure should be constructed to mod-

el the general-to-specific semantic relationship [20] on multi-

modal data. In this paper, we propose to build an adaptive

semantic hierarchy by integrating multi-modal content and

semantic information. Based on the hierarchy, we organize

the cross-modal data into training pairs with multi-level

semantic relevances. Accordingly, we model the multi-level

semantics by large margin bilateral constraints like Support

Vector Regression (SVR). The distances between the train-

ing pairs are optimized towards their semantic relevances,

which makes the learned distance measure better reflect the



multi-level semantics of cross-modal data.

Besides the multi-level semantics, real world multi-modal

data are diversified in content. Existing global transformation

strategies [15] [26] are not well adapted to cluttered data dis-

tribution. By exploiting the local property in single modality,

localized expert strategies [37] [36] [35] are effective to

deal with the intra-class divergence in classification, instance

search [36] and manifold learning [35]. However, how local

experts are adapted to content divergence and multi-level se-

mantics has not been well addressed in correlation learning.

In this paper, we construct local experts by learning multiple

projections. The projected representations are softly weight-

ed and aggregated by gating functions. The parameters of

the gating functions are optimized to minimize the empirical

loss and maximize the local projection consistency, so that

each learned local projection will play a dominant role

in constructing correlation among a subset of similar and

semantically relevant data. Consequently, more robustness

and consistency can be achieved.

In summary, we propose TINA, a cross-modal correla-

tion learning method by adapTive hIerarchical semaNtic

Aggregation. By optimizing the structure risk objective func-

tion that involves semantic coherence measurement, local

projection consistency and model complexity penalty, a set

of local projections and gating functions are constructed for

both modalities. Our key contributions include:

• We encode the multi-level sematic relevance by a

large margin regression framework into the cross-modal

distance. To our best knowledge, our work is the first

to study semantic coherence in cross-modal retrieval.

• We construct a semantic hierarchy for cross-modal

retrieval with joint modeling of visual, textual and

ontology similarities. It appropriately encodes the rela-

tion of cross-modal documents from both content and

semantic perspectives.

• We propose a structure risk objective function to learn

the local projections which are probabilistically aggre-

gated by gating functions. Our model better adapts

to the cross-modal content divergence and multi-level

semantic relation, then semantic coherent retrieval can

be performed by simple ranking with the distances.

• Extensive cross-modal retrieval experiments on large

scale NUS-WIDE and ICML-Challenge data show that

TINA outperforms state-of-the-art approaches.

II. RELATED WORK

A. Correlation Learning on Heterogeneous Modalities

The aim of correlation learning is to construct measure-

able representations on heterogeneous modalites. Existing

works can be categorized as follow.

The subspace learning learns a pair of transformations to

project data into a measureable low dimensional subspace.

CCA [15] and its variants [6] [14] provide direct solutions.

Partial least square (PLS) [26] formulates the problem with

a bilateral regression model. As a supervised extension of

CCA, Sharma et al. [28] proposed a generalized multi-view

analysis model to learn (non-)linear subspace using label

information. A boosting based hashing method is proposed

in [5]. Graph based methods [18] [29] encode intra-modal

similarity and inter-modal co-occurrence into a unified graph

representation.

The subspace learning is closely related with the proba-

bilistic graphical methods, when we build connections be-

tween subspaces and latent topics. Archambeau et al. [1] and

Virtanen et al. [33] have provided Bayesian interpretation of

CCA-based models. Correspondence LDA (Corr-LDA) [4]

captures the topic-level relations between images and texts.

The model of [17] can be seen as Markov random field over

LDA topic model. Zhen et al. [34] developed a latent binary

embedding approach.

To deal with the diversified content, the complicated

function learning has been investigated thenceforth. Wang et

al. [19] proposed a locally aligned multi-view transformation

approach. Deep structure has been applied to correlation

learning recently. Galen et al. [12] proposed Deep CCA to

learn complex nonlinear transformations. The multi-modal

auto-encoders [24] and multi-modal restricted Boltzmann

machines [30] are used as building blocks for shared repre-

sentation learning. Masci et al. [21] [22] constructed multi-

layered neuro-networks with both intra-modal similarity

and inter-modal correlation. Cross-modal topic classifiers

[25] are constructed on the CCA representations, and map

heterogeneous data into a unified semantic space.

TINA models the hierarchical semantic relation in cross-

modal data which are neglected by the above-mentioned

approaches on feature level or semantic level. The learned

local projections are endowed with better adaptation to

complicated semantic relations.

B. Modeling Semantic Hierarchy

Semantic hierarchy [11] is a formally defined taxonomy

or ontology structure in natural language processing. It has

been used to other domains, such as image and multimedia

[9]. It can be general or domain specific. WordNet [11] de-

fines a general lexical database for English language. A large

scale image database ImageNet [9] has been constructed by

collecting images for each semantic concept in WordNet.

Based on the inter-category classification confusion [13],

the hierarchical structure of object categories can be auto-

matically created by top-down or bottom-up recursive clus-

tering processes. Besides the visual features, Li et al. [20]

integrated tags to automatically build the “semantivisual”

hierarchy, which encodes the general-to-specific semantic

and visual relationship. Marszalek et al. [23] constructed

the class hierarchies that postpone decisions in the presence

of uncertainty. Sivic [31] proposed to automatically discover

a hierarchical structure from an unlabeled image collection.
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Figure 1. The framework of TINA. First, we build an adaptive semantic hierarchy by top-down hierarchical clustering in Step 1. Based on the semantic
hierarchy, a set of training pairs are sampled from the database, where each document is associated with the cross-modal documents ranked by their
semantic relevances, as shown in Step 2. By optimizing a structure risk objective function, we learn a set of local linear projections and gating functions
for semantic coherent cross-modal retrieval, as shown in Step 3.

Organizing semantic concepts from general to specific

has been shown to be effective in boosting the performance

of real world applications. Deselaers et al. [10] computed

the semantic distance between images by measuring the

divergence of concept distribution of their neighborhoods.

Deng et al. [8] developed a semantic vector representation,

and constructed a hierarchical bilinear similarity function

based on the pairwise semantic affinity. Verma et al. [32]

associated the separated visual similarity metric for every

concept in the hierarchy, and the metrics are learned jointly

through hierarchical aggregation for nearest neighbor classi-

fiers. A tree of metrics is learned by Hwang et al. [16], which

imposes the appropriate (dis)similarity constraints among its

subtree members. However, to the best of our knowledge,

the hierarchical semantics have not been well-studied for

cross-modal correlation learning. In this paper, to deal with

multi-level semantics, we propose a large margin regression

framework for local projection learning. Our method better

adapts to the cross-modal content divergence and multi-level

semantic relation by sub-model aggregation.

III. PROBLEM AND SOLUTION FRAMEWORK

Definition 1: The semantic coherence of cross-modal

retrieval means that the retrieved documents from heteroge-

nous modality are ranked according to the semantic rele-

vances of their category labels to the given query document.

For example, on NUS-WIDE data (Figure 2), given an

image query of “statue”, the idealized retrieval result should

be: the top ranked document is the corresponding textual

description of the query image, followed by text documents

of “temple” (the sibling of “statue”), then followed by

“castle” (the sibling of the second upper layer), and then

by “road” (the sibling of the third upper layer), etc..

To this end, the proposed TINA consists of the following

key steps (see Figure 1):

Step 1: Semantic hierarchy organization (Section IV).

We propose a data-driven semantic hierarchy organization

approach by top-down hierarchical clustering on joint visual,

textual and ontology similarity modeling. The nodes in

the hierarchy share different levels of visual and semantic

relations with respect to their tree path distances and the

depth of their parent nodes on the tree.

Step 2: Training data collection (Section V-A). Based

on the hierarchy, a set of training data pairs are sampled

from the database, where each document is associated with

its correspondence and documents from different semantic

levels. Accordingly, we calculate the semantic distance and

intra-modal similarity matrices on the selected data pairs for

the subsequent model training.

Step 3: Localized correlation learning (Section V).

We utilize the training pairs with multi-level semantic re-

lations collected in Step 2, and construct the large-margin

regularized regression learning framework. With a set of

local projections and gating functions learned for both

modalities, semantic coherent cross-modal retrieval can be

easily performed by nearest neighbor search on the projected

representations.

We begin by introducing the method of semantic hierarchy

organization in the next section.

IV. SEMANTIC HIERARCHY

We are given a cross-modal dataset D = {xi, yi, ci}
N
i=1,

where xi ∈ R
dx and yi ∈ R

dy denote the ith training

data pair from X and Y modalities, respectively. ci ∈
{1, 2, . . . , C} denotes the category index of the ith training

pair. Since there is complicated semantic relation among

the categories, we construct the semantic category hierarchy

H on D by combining the similarity modeling from visual

domain, textual domain and the ontology relatedness.

A. Visual Similarity

The appearances of visual categories are divergent. The

intra-class visual divergence is even larger than that of inter-

class. We develop a simple and effective method based

on visual subcategory similarity. First, we use K-means to

divide category c into kc subcategories, Xc,k = {xi}, ci =



c, k = 1, ..., kc, where each subcategory contains images

with more visual cohesiveness. Then, the average visual

feature in each subcategory vc(k) =
∑
xi

nk
c
, xi ∈ Xc,k is

calculated, where nkc is the number of samples in Xc,k. We

define the distance between two categories as:

Dv(c1, c2) = min
k1,k2

||vc1(k1)− vc2(k2)||
2
2 (1)

The similarity of two categories is calculated as:

Sv(c1, c2) = exp(−
Dv(c1, c2)

σ2
v

) (2)

where σv is a bandwidth parameter that controls the sen-

sitivity to the distance range. The min rule identifies the

similarity between categories with their most similar images.

As a result, the scheme guarantees that the category level

visual similarity is robust to uncontrolled variations brought

by light, angle and occlusion.

B. Textual Similarity

Textual information is represented by a constant set of

lexical terms. We use the average of the BOW features as the

textual description of category c, denoted by tc. We define

the similarity between c1 and c2 as:

St(c1, c2) =
t⊤c1tc2

‖tc1‖ ‖tc2‖
(3)

C. Ontology Similarity

Ontology similarity reflects the semantic relatedness be-

tween two concepts from a taxonomic point of view. Most

of conceptual similarity between two concepts is computed

according to their shortest path on WordNet [11] [3] [2]

[27]. In our ontology similarity computation, we adopt the

normalized similarity with the depth of their parent node

[39]. The ontology similarity matrix is denoted as So.

D. Tree Hierarchy

We linearly combine the above three similarities to get

the semantic similarity matrix:

S = α1Sv + α2St + α3So (4)

where α1 + α2 + α3 = 1, α1, α2, α3 ≥ 0, which are

optimally tuned on a validation set. Based on the combined

similarity matrix, we seek to exploit a new hierarchical

category structure H in a top-down partition fashion. From

the root node, we divide each internode into n child nodes

using spectral clustering successively, until we reach the tree

layer whose internodes include no more than n leaf nodes.

Compared to WordNet, the hierarchy structure H is more

balanced and coherent in semantic and feature level. Two

examples are shown in Figure 2 and Figure 3, where the

hierarchies are built on NUS-WIDE (n = 3) and ICML-

Challenge (n = 5), respectively.

In Figure 2 and 3, the semantic hierarchies we build

are consistent in both content and semantic perspectives.

Figure 2. Semantic hierarchy on NUS-WIDE with n = 3.

Figure 3. Semantic hierarchy on ICML-Challenge with n = 5.

For example, in Figure 2, “elk”, “bear” and “zebra” are

close on the hierarchy since they are all mammals. “elk”

and “bear” are more consistent in visual appearance and

textual description, e.g., furry and gray. “zebra” with obvious

stripes is the sibling node of the parent of “elk” and “bear”.

In Figure 3, “boat”, “truck” and “car” are transportations.

“desk”, “chair” and “bed” are furnitures. They belong to

instruments, so that their parent nodes are siblings of each

other.

On a hierarchy tree, the length of shortest path does

not appropriately indicate the specificity of ontology [39]

[8]. Intuitively, the depth of parent node of two concepts

represents the category specificity [39]. To encode such

knowledge, we define a normalized distance of two nodes

on H as follows:

h(c1, c2) =
p(c1, c2)

Lh · de(pa(c1, c2))
(5)

where de(pa(c1, c2) is the depth of the parent node of c1 and

c2, p(c1, c2) is the length of the shortest path, and Lh is the

length of the longest path on H. The larger distance between

the two categories is, they will be more semantically distinct.

The normalized category distance is used to calculate the

semantic distance dij in each empirical training pair, as will

be introduced in Section V and Eqn. 10.



V. CORRELATION LEARNING

A. Model

Given the cross-modal data D, and its semantic hierarchy

tree H, we want to learn local linear transformations fx
and fy to project cross-modal data into a comparable space,

where the correlations of cross-modal data are consistent

with their relations on H, so that the semantic coherence of

cross-modal retrieval is better achieved.

Local linear projection. We learn a set of local projection

functions W = {Wx
k ∈ R

d×dx ,W
y
k ∈ R

d×dy}Kk=1. xi and

yj are projected using the K local projections as:

fx(xi) =
∑

k

gxi (k)W
x
kxi, fy(yj) =

∑

k

g
y
j (k)W

y
kyj (6)

where W
x
k is the kth local projection for X modality, and

W
y
k is the kth local projection for Y modality. gxi (k) and

g
y
j (k) denote the non-negative probabilistic local projection

aggregation weights for fx(xi) and fy(yj), define as:

gxi (k) =
exp(φ⊤k xi)∑
k
′ exp(φ⊤

k
′xi)

, g
y
j (k) =

exp(ψ⊤k yj)∑
k
′ exp(ψ⊤

k
′ yj)

(7)

where {φk ∈ R
dx} and {ψk ∈ R

dy} are parameters of the

kth gating function. Then we define distance in the projected

space as:

D(xi, yj) = ||fx(xi)− fy(yj)||
2 (8)

There are several other types of projection functions.

The unified correlation model [15] lacks the adaptability to

content divergence and complicated semantic relation. The

sample specific projection [35] learns one projection for each

data point, which involves intensive computational burdens,

and is sensitive when the tangent structure is influenced

by outliers. Our local linear projection achieves a better

bias-variance trade-off between the two existing approaches.

The local projections are probabilistically aggregated by

gating functions that are adaptively fit to each cross-modal

training datum. Consequently, the complicated non-linear

cross-modal semantic relation can be well approximated by

our local linear projections.

Local projection consistency. We impose local projection

consistency on the gating functions gxi and g
y
j , which man-

ifests that the adjacent and semantically related data should

possess similar gating values. The consistency measurement

is calculated by intra-modal similarity as:

Lφ =
∑
ij s

x
ij(g

x
i − g

x
j )

2, Lψ =
∑
ij s

y
ij(g

y
i − g

y
j )

2

sxij = exp(−
dij
2σ2

d

) exp(−
(xi−xj)

2

2σ2
x

)

s
y
ij = exp(−

dij
2σ2

d

) exp(−
(yi−yj)

2

2σ2
y

)

(9)

where dij denotes the semantic distance for training pair of

xi(yi) and xj(yj). The intra-modal similarity sxij and s
y
ij

jointly consider semantic similarity and feature similarity,

where σd and σx (σy) represent the sensitivity parameters

for semantic distance and feature distance. By imposing the

local projection consistency, each local expert W
x
k (W

y
k)

will play a dominant role in constructing correlation among

a subset of similar and semantically relevant data, thus more

robustness and consistency can be achieved. For example,

dog and cat are similar in feature representation as they

are “four-leg” in shape and fluffy, and they are discussed as

pets. They are also semantically relevant on both WordNet

and H. By optimizing the local projection consistency in

Eqn. 9, the correlations among documents of two similar

categories will be encoded by some specific local experts,

where local projection selectivity is learned and performed

by the gating functions.

Additionally, to deal with multi-label that widely existing

in real-world data, we revise the semantic distance as:

dij = minxi(yi)∈c1,xj(yj)∈c2h(c1, c2) (10)

where h(c1, c2) is the distance of concepts c1 and c2 on H

as in Eqn. 5.

Semantic coherence measurement. The learned cross-

modal distance on training data D is expected to be con-

sistent with their semantic distance on hierarchy H. The

consistency is considered to be matched if their absolute

differences on all training pairs are less than ε, a predefined

tolerance. Unfortunately, not all the training pairs perfect-

ly satisfy the semantic consistency in practical situations.

Therefore, we introduce two slack variables for each training

pair to measure the inconsistency out of ε. The relaxed

formulation is defined as:

D(xi, yj)− dij ≤ ε+ ε+ij , ε+ij ≥ 0

dij −D(xi, yj) ≤ ε+ ε−ij , ε−ij ≥ 0
(11)

where dij is the semantic distance of xi and yj as in

Eqn. 10. ε+ij and ε−ij are the slack variables of the positive

side and negative side, respectively. The constraint in Eqn.

11 is similar in spirit with Support Vector Regression.

The correlation measures among data pairs are optimized

towards the multi-level semantic distances on H. A possible

alternative is to employ the relative measurement such as

ranking SVM loss, which involves a semantic relevance

comparison among different training pairs, and thus results

in a more complicated model solution.

Loss function. With the local projection consistency de-

fined in Eqn. 9 and semantic coherence measurement defined

in Eqn. 11, we jointly learn local projections {Wx,Wy}
and gating functions {φ,ψ} by minimizing the following

structure risk objective function:

LW,φ,ψ = 1
2

∑
k

(
||Wx

k ||
2 + ||Wy

k||
2
)

+C1

N1

∑
i,i(ε

−
ii + ε+ii) +

C2

N2

∑
i,j 6=i(ε

−
ij + ε+ij)

+ β
N3

∑
i,j s

x
ij(g

x
i − g

x
j )

2 + γ
N4

∑
i,j s

y
ij(g

y
i − g

y
j )

2

s.t. D(xi, yj)− dij ≤ ε+ ε+ij , ε+ij ≥ 0

dij −D(xi, yj) ≤ ε+ ε−ij , ε−ij ≥ 0

(12)



Algorithm 1 Model Optimization of TINA

1: Initialize W
x,Wy, φ, ψ, T1, T2, T3, l← 0;

2: repeat
3: Step 1: Fix {φ, ψ}, optimize {Wx,Wy};
4: t← 0;
5: repeat
6: Find α+

ij(t) > 0 and α−ij(t) > 0;

7: Compute the gradient G(Wx(t)), G(Wy(t));
8: W

x(t+ 1) = W
x(t)− λt

w ·G(Wx(t));
9: W

y(t+ 1) = W
y(t)− λt

w ·G(Wy(t));
10: t← t+ 1;
11: until t > T1

12: Step 2: Fix {Wx,Wy}, optimize {φ, ψ};
13: t← 0;
14: repeat
15: Find α+

ij(t) > 0 and α−ij(t) > 0;

16: Compute the gradient G(φ(t)) and G(ψ(t));
17: Find the stepsize λt

g with Armijo linear search;

18: φ(t+ 1) = φ(t)− λt
g ·G(φ(t));

19: ψ(t+ 1) = ψ(t)− λt
g ·G(ψ(t));

20: t← t+ 1;
21: until t > T2

22: l← l + 1
23: until l > T3

where the first term is the complexity penalty of local

projections to avoid over-fitting. ε+ii and ε−ii are the slack

variables for the cross-modal pair with correspondence,

where xi and yi are the complementary description to each

other. ε+ij and ε−ij , i 6= j, are for the multi-level semantic

relevance. And their weights are adjusted by C1 and C2.

In the constraints, if i = j, dij = 0, otherwise, dij is

calculated using the semantic distance defined in Eqn. 5

and 10. N1 and N2 denote the numbers of training pairs

with correspondence and multi-level semantic relevance,

respectively. N3 and N4 denote the numbers of intra-modal

training pairs used to learn the gating functions for X and

Y modalities, respectively.

LW,φ,ψ is convex with respect to each model parameter.

Therefore, the model can be solved by alternating optimiza-

tion, until a local optimal solution is achieved.

B. Optimization

We optimize the loss function in Eqn. 12 alternatively on

the local projections and the gating functions. The overall

objective function in Eqn. 12 is decomposed into two convex

subproblems. First, fixing {φ, ψ}, we learn the local pro-

jections {Wx,Wy} with primal-dual coordinate gradient

descent. Second, fixing {Wx,Wy}, we learn the gating

functions {φ, ψ} with gradient descent and line search.

Step 1: Fix {φ, ψ}, optimize {Wx,Wy}. The loss

function of Eqn. 12 w.r.t. {Wx,Wy} is rewritten as:

LW = 1
2

∑
k(||W

x
k ||

2 + ||Wy
k||

2)+
C1

N1

∑
i,i(ε

−
ii + ε+ii) +

C2

N2

∑
i,j 6=i(ε

−
ij + ε+ij)

s.t. D(xi, yj)− dij ≤ ε+ ε+ij , ε
+
ij ≥ 0

dij −D(xi, yj) ≤ ε+ ε−ij , ε
−
ij ≥ 0

(13)

By applying the Karush-Kuhn-Tucker (KKT) conditions

on the Lagrangian L, we have:

∂L
∂Wx

k

= W
x
k +

∑
i,j(α

+
ij − α

−
ij)

∂D(xi,yj)
∂Wx

k

= 0
∂L
∂W

y

k

= W
y
k +

∑
i,j(α

+
ij − α

−
ij)

∂D(xi,yj)
∂W

y

k

= 0
∂L

∂ε+
i,j

= C
ij
N − α

+
ij − η

+
ij = 0, η+ijε

+
ij = 0

∂L

∂ε−
i,j

= C
ij
N − α

−
ij − η

−
ij = 0, η−ijε

−
ij = 0

α+
ijα

−
ij = 0

(14)

where α+
ij ≥ 0 and α−ij ≥ 0 denote the Lagrange multipliers

for positive and negative side, respectively. η+ij and η−ij
denote the Lagrange multipliers for ε+ij ≥ 0 and ε−ij ≥ 0,

respectively. When i = j, we have C
ij
N = C1

N1
, otherwise

C
ij
N = C2

N2
. If ε+ij ≥ 0, then η+ij = 0, α+

ij = C
ij
N , and α−ij = 0.

If ε−ij ≥ 0, then η−ij = 0, α−ij = C
ij
N , and α+

ij = 0.

In the first two equations of Eqn. 14, Wx
k and W

y
k are

still evolved in
∂D(xi,yj)
∂Wx

k

and
∂D(xi,yj)
∂W

y

k

. Therefore, given an

intermediate solution {Wx
k(t),W

y
k(t)}, the model can be

further optimized by calculating the gradient G(Wx
k(t)) and

G(Wy
k(t)) using the support vectors α+

ij(t) and α−ij(t) on the

current solution. After the model update, we get Wx
k(t+ 1)

and W
y
k(t+ 1). Based on this update rule, the sub-problem

in Eqn. 13 is minimized until an (local) optimal solution is

achieved.

Step 2: Fix {Wx,Wy}, optimize {φ, ψ}. The sub-

problem in Eqn. 12 with respect to the gating functions can

be represented as:

Lφ,ψ = C1

N1

∑
i,i(ε

−
ii + ε+ii) +

C2

N2

∑
i,j 6=i(ε

−
ij + ε+ij)

+ β
N3

∑
i,j s

x
ij(g

x
i − g

x
j )

2 + γ
N4

∑
i,j s

y
ij(g

y
i − g

y
j )

2

s.t. D(xi, yj)− dij ≤ ε+ ε+ij , ε+ij ≥ 0

dij −D(xi, yj) ≤ ε+ ε−ij , ε−ij ≥ 0
(15)

Again, by checking the Lagrangian, only the empirical

training pairs with non-zero support vectors will contribute

to the gradient G(φ(t)) and G(ψ(t)). Therefore, the support

vectors should also be identified before gradient calculation.

Based on the gradient, a line search on step size for gradient

descent is performed using the Armijo rule. Since the sub-

problem in Eqn. 15 is convex, it is minimized until an

(local) optimal solution is achieved. The whole optimization

procedure is shown in Algorithm 1.

Complexity. The complexity in computing the gradien-

t {G(Wx(t)), G(Wy(t))} is O
(
N̂Kd(dx + dy)

)
, where

N̂ is the average number of support vectors. The com-

plexity in computing the gradient {G(φ(t)), G(ψ(t))} is

O
(
(N̂ + 2N3)Kdx + (N̂ + 2N4)Kdy

)
. In the iterative op-

timization process of TINA, see Algorithm 1, the model can

be sufficiently optimized by setting T1 = 20, T2 = 5, T3 =
15 ∼ 20.



VI. EXPERIMENTS

We conduct extensive experiments to compare TINA

to state-of-the-art approaches on image-to-text and text-to-

image retrieval tasks using the following datasets:

NUS-WIDE [7] consists of 269,648 images and the as-

sociated tags collected from Flickr. We represent the images

by 500-dim bag-of-visual-word on SIFT. The 1000-dim TF-

IDF tag vectors are treated as the textual representations and

81-dim category indicator vectors are treated as ground-truth

class labels. After removing all the images without tags or

textual descriptions, we have 79,659 image-text pairs for

training, 10,000 for parameter validation, and 43,550 for test.

ICML-Challenge [38] contains 100,000 images and their

corresponding textual descriptions. We choose 100 frequent-

ly occurred categories from all the tags as label information.

We represent the images with 10752-dim spatial pyramid

with sparse coding on SIFT, and represent the texts with

5000-dim TF-IDF tag vectors. We randomly select 10,000

for training, 5,000 for validation and the rest for test.

Evaluation criteria. We adopt mean average precision

(MAP) and normalized discount cumulative gain (NDCG).

MAP is widely accepted evaluation paradigm. To measure

the performance on data with multi-level semantic relevance,

we adopt NDCG as a complementary criterion. NDCG is

defined as:

NDCG@K =
1

NK

K∑

j=1

2Rel(j) − 1

log(1 + j)
(16)

where NK is a normalization constant to ensure that the

idealized top K ranking of the query is 1. K is called a

truncation or threshold level. In our evaluation, the relative

gain (i.e., Rel(j)) for the jth cross-modal document is the

hierarchy semantic similarity exp(−
dij
2σ2

d

) of query i and the

jth document.

Compared approaches. We compare the following meth-

ods: (1) PLS: Partial Least Square [26]; (2) CCA: Canonical

Correlation Analysis [15]; (3) SCCA: Sparse Canonical

Correlation Analysis [14]; (4) GMLDA: Generalized Multi-

view LDA [28]; (5) IMH: Inter-Media Hashing [29]; (6)

MMNN: Multi-Modal Neuro-Networks [21]; (7) DeepCCA:

Deep Canonical Correlation Analysis [12].

For GMLDA, the category of a training pair is provided

with a randomly selected category from its multi-class

labels. For MMNN, we set document pairs as the similar

pairs when their labels are the same, and pairs with different

labels as the dissimilar pairs. For fair comparison, we ignore

the binarization step for hashing methods IMH and MMNN.

For deep models, the number of layers is set to 2 for MMNN

and 3 for DeepCCA.

For all the compared approaches except SCCA, we first

use CCA to transform the original features into 150-dim

representations on NUS-WIDE and 200-dim representations

on ICML-Challenge. The projections learned by CCA are
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Figure 4. Parameter validation on K, β, γ of TINA.

used for initializations of {Wx,Wy}. We conduct K-means

on each modality, and the cluster centers are used as initial-

izations of {φ, ψ}. For other parameters of all the methods,

we conduct a validation process to find an optimal setting.

Experiment environment. Experiments are conducted on

2 standard desktop computers (Windows), with Intel (R)

Processor I7-4770K (8M Cache, 3.50 GHz, 4 cores), 32

GB main memory and 7,200RPM hard disks. Our model

is implemented on C++ platform.

A. The Number of Local Projections

We evaluate the performance of TINA on the number of

local projections K. We set C1 = 1000, C2 = 1000, β =
1000, γ = 1000, and the dimension of the comparable

space d = 8. MAP@100 is reported on the validation

sets of NUS-WIDE and ICML-Challenge on image-to-text

task. As shown in Figure 4.(a), the MAP performances

achieve the highest on NUS-WIDE when K = 15, and

on ICML-Challenge when K = 8. Similar observations

are also obtained on text-to-image task on both datasets.

This shows that TINA achieves a better trade-off between

global projection and sample specific projection by setting

an appropriate number of local projections. However, the

larger the number of local projections is, the heavier com-

putation burden becomes. Considering the effectiveness and

efficiency, we set TINA with K = 15 on NUS-WIDE and

K = 8 on ICML-challenge in the subsequent experiments

for both image-to-text and text-to-image tasks.

B. Local Projection Consistency

We evaluate the influence of applying local projection

consistency on local projection aggregation. We set d =
4, C1 = 1000, C2 = 1000, and report the performances of

MAP@100 on the validation sets of NUS-WIDE and ICML-

challenge on image-to-text task in Figure 4.(b). From the

results we can see that, the performance becomes better with

larger values of β and γ, but the performance becomes stable

when β and γ are larger than 1000. Similar observations are

also obtained on text-to-image task on both datasets. This

may be explained by the fact that the gating functions are

also optimized to minimizing the empirical loss, i.e., the

semantic coherence measurement. When β and γ are set

with a relatively large value (e.g., 1000), their contributions

to the final performance have been sufficiently emphasized.

Therefore, local projection consistency can also improve



the performance of cross-modal retrieval, which plays an

important supplementary role of local projection learning.

In the subsequent experiments, we set β = 5000, γ = 5000
for TINA on both datasets.

C. Image-to-text Retrieval

We evaluate the performance of image-to-text retrieval

on all the approaches. For TINA, we conduct parameter

validation on C1 and C2, and find that the correspondence

and multi-level semantic relation are equally important for

model learning. Therefore, by setting C1 = 1000 and

C2 = 1000, a good performance can be guaranteed. We

conduct correlation learning on different dimensions of the

projected space with d = {4, 8, 16, 32, 64} on NUS-WIDE

and ICML-Challenge. The experimental results are shown

in Table I in terms of MAP@100 and NDCG@100. TINA

generally outperforms others except IMH (d = 64) on NUS-

WIDE by MAP, which means that TINA achieves the best

results at a lower dimensional space. This can be explained

by exploring the local property of TINA, where each local

projection is responsible for only a subset of similar data.

Therefore, using a lower dimension is appropriate to capture

the correlation of the data subset.

When performances are measured with NDCG, our ap-

proach outperforms all the other approaches. The perfor-

mance gains are even more significant when using a low-

er dimension d. The results further demonstrate that by

constructing local projections and the adaptive projection

aggregation mechanism, TINA is more adaptive to the

content divergence and multi-level semantic relation with

parsimonious output dimensions.

D. Text-to-image Retrieval

For text-to-image retrieval, the validation experiments

show that the cross-modal correspondence is more important

than multi-level semantic relation for TINA. Therefore, we

set C1 = 1000, C2 = 200 on NUS-WIDE and C1 =
1000, C2 = 500 on ICML-Challenge. The experimental

results are shown in Table II. Our model outperforms other

approaches under all the settings. Different from image-to-

text retrieval, the best performances of TINA are achieved

on larger d, which can be explained by the fact that the

content divergence in visual modality is significantly larger

than textual modality. Therefore, it requires more dimensions

to encode the information of the retrieval database in text-

to-image retrieval task.

When performances are measured with MAP on text-to-

image retrieval, the performance gains of TINA compared

to others are more significant on NUS-WIDE dataset. When

performances are measured with NDCG, TINA also outper-

forms all the other approaches, and the performance gains

on NUS-WIDE are also more significant.
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Figure 5. Examples of top 5 results on image-to-text on ICML-Challenge
(left column) and NUS-WIDE (right column). Each row of text denotes a
retrieved textual document. The red marked words are strongly relevant to
the query images.
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Figure 6. Examples of top 7 results on text-to-image on ICML-Challenge
(the top three rows) and NUS-WIDE (the bottom three rows). The red
heart shapes marked on the images represent perfectly matched images of
the textual query, and the brown prisms represent relevant images, and the
blue triangles represent “somewhat” relevant images.

E. Findings and Discussions

On the compared approaches. In Table I and II, the

performances of PLS and CCA are diversified with respect

to different tasks, datasets and performance measures. The

results indicate that the overly simple global correlation

models are not capable of dealing with the content diver-

gence. Despite of using simple intra-class similarity and

inter-class correspondence, the performances of GMLDA,

MMNN and IMH under-perform TINA, and sometimes even

under-perform PLS and CCA. The observation indicates that

multi-level semantic modeling is necessary for correlation

learning on real data with a large number of categories.

SCCA performs well on image-to-text at low-dimension

subspace, but poorly on text-to-image. The performance

inconsistency can be explained by the unilateral sparse

constraint imposed on textual modality. TINA outperforms

other approaches because: 1) the learned comparable space

by using multi-level semantic relation; 2) the local linear

projections that better fit the content divergence.

The robustness of TINA. From Table I and II, we see that

the performances of TINA are kept at a comparatively high

level on different settings of d, the types of retrieval task, and

the performance measurements. Our model achieves a better

trade-off between model bias and variance by constructing

the local experts on real data. Moreover, TINA demonstrates

more noise tolerance on real applications, since both NUS-

WIDE and ICML-challenge datasets contain a certain level

of noise. For example, there are about 10% incorrect tag

information on NUS-WIDE.



Table I
THE PERFORMANCE OF IMAGE-TO-TEXT RETRIEVAL

Dataset Methods

MAP@100 NDCG@100

The dimension d The dimension d
4 8 16 32 64 4 8 16 32 64

NUS-WIDE

PLS 14.3525 16.8508 18.8091 26.1502 28.9665 66.7542 68.1409 68.9477 73.4477 74.8207
CCA 17.2468 19.6656 21.2451 22.5493 25.1861 70.0403 70.4156 70.5933 71.0924 72.7897

SCCA 27.7999 26.1951 24.463 20.0961 14.5372 72.7534 72.5648 72.1037 70.6252 66.5929
GMLDA 16.1874 17.6116 22.4797 24.8820 24.8993 69.0176 69.1386 71.6559 71.1641 71.8367

IMH 16.4702 18.505 21.5829 25.453 29.4325 69.2561 70.3686 71.8701 73.8712 76.2639
MMNN 27.5603 23.5747 26.6726 28.5282 28.1334 73.8093 72.0716 72.7696 73.906 74.0629

DeepCCA 26.7495 24.3317 23.0248 24.9704 27.7242 72.9711 72.1691 71.9383 72.5075 73.5949
TINA (K = 15) 29.3755 28.9975 28.9244 30.7638 29.0345 76.8121 76.1071 76.3339 77.2096 76.617

ICML-Challenge

PLS 38.0154 42.2151 44.1336 44.5546 44.8203 81.1398 82.3662 82.8553 82.8834 83.1322
CCA 37.7149 40.6503 41.1134 42.384 44.0964 81.0545 81.9269 82.2715 82.7781 83.6478

SCCA 31.1677 33.5838 32.8331 33.9194 36.1676 80.0999 81.2869 80.9868 81.335 81.5961
GMLDA 31.1029 32.4329 36.3549 38.2388 39.7494 80.0147 80.3078 81.092 82.3956 82.6069

IMH 29.5054 33.1312 41.185 45.8109 48.9123 78.76 80.3451 81.5703 84.0686 85.2624
MMNN 39.1176 41.9273 46.5337 48.2685 50.5153 81.4853 82.2668 83.8124 84.5703 85.1592

DeepCCA 39.8027 42.1485 45.3101 46.7567 48.6981 81.4942 81.9476 83.1349 83.9704 84.3913
TINA (K = 8) 51.5461 50.7976 50.0178 50.9461 51.3821 87.7468 86.9828 86.6715 86.7442 87.165

Table II
THE PERFORMANCE OF TEXT-TO-IMAGE RETRIEVAL

Dataset Methods

MAP@100 NDCG@100

The dimension d The dimension d
4 8 16 32 64 4 8 16 32 64

NUS-WIDE

PLS 16.8807 18.9383 20.922 22.0693 21.9966 68.493 69.0937 69.4116 69.766 69.5334
CCA 18.2331 21.4304 24.2351 25.0137 25.0741 70.2249 71.1121 71.9574 71.9875 71.8551

SCCA 11.0013 10.0595 9.27424 9.25333 10.1815 62.4884 61.9359 61.4538 61.3893 62.1687
GMLDA 18.0606 18.4597 20.4665 20.8271 21.0703 69.0673 69.411 69.7304 69.8903 70.0237

IMH 16.8332 18.5639 20.2653 21.6111 22.7207 69.467 70.2867 70.8587 71.2365 71.3955
MMNN 20.2692 22.3745 24.0064 24.7844 25.2179 70.9039 71.593 71.647 71.7685 71.8361

DeepCCA 20.6593 19.4891 17.6691 18.2436 21.2359 70.7815 70.8711 70.4611 70.5576 70.9103
TINA (K = 15) 20.8468 24.0288 26.3953 27.664 27.2361 71.6631 72.1929 72.4593 72.7026 72.0914

ICML-Challenge

PLS 42.7854 48.4052 51.8847 52.1931 51.5655 82.934 84.4133 85.3549 85.2897 84.9611
CCA 41.2968 44.4431 44.6885 45.0875 46.0439 82.4765 83.2784 83.3199 83.3468 83.549

SCCA 20.4633 20.3793 20.6187 20.9811 20.5757 73.6916 73.6748 73.8711 73.6928 73.7016
GMLDA 34.2822 35.0631 38.3249 40.3751 41.778 80.9744 81.2764 81.889 82.3867 82.5794

IMH 31.7634 36.1672 46.0654 51.4419 52.3521 79.7613 81.3203 83.9344 85.1238 85.3717
MMNN 40.3599 43.8567 48.0367 47.0989 51.8498 82.2807 83.2779 84.4745 83.8356 84.9885

DeepCCA 39.8991 42.9329 45.0924 49.7908 51.1065 81.9029 82.7436 83.1438 84.4462 84.7896
TINA (K = 8) 43.4969 50.0776 54.846 55.2927 54.3737 83.3368 85.1637 86.3986 86.2669 85.9262

MAP@K. The MAP curves of the top 20 to 200 results

are plotted in Figure 7 on both datasets, where the dimension

d is set to 8 for all the approaches. TINA outperforms other

approaches on MAP@20 to MAP@200. Despite that only

documents of the same class are treated as correct for MAP

evaluation, learning with multi-level semantic relation still

boosts the MAP of TINA. This observation further proves

the necessity of modeling multi-level semantic relation with

local projections for cross-modal retrieval.

Retrieval examples. Some top results of image-to-text

and text-to-image are shown in Figure 5 and 6, respectively.

In Figure 5, take the bottom right challenging query as an

example, each of the top 5 retrieved texts contains one

or more relevant words to the visually cluttered query.

Similar phenomenons can be observed on other examples.

In Figure 6, see the 4th row, when querying with text

about “tiger”, TINA returns the nearly perfect semantically

coherent results, where the top result is tiger image, followed

by other feline animals, canine animals and forest scene

images. At the bottom row, using the “airplane” query text,

the 1st, 5th and 6th retrieved images are perfectly matched

“airplane” images. However, visual contents in the 2nd, 3rd,

4th and 7th images are either similar to visual appearances

of “airplane” images, or they contain “sky” background that

can also be found in almost all “airplane” images.

VII. CONCLUSION

We propose TINA, a cross-modal correlation learning

method by adaptive hierarchical semantic aggregation. Our

approach utilizes the cross-modal training data from differ-

ent levels of semantic relation, i.e., the correspondence and

multi-level semantic relation. The structure risk objective

function that involves semantic coherence measurement,

local projection consistency and the complexity penalty of

local projections is optimized. Consequently, a set of local

projections and gating functions are constructed for both
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Figure 7. MAP of the top K retrieved results.

modalities. Experiments on two large scale cross-modal

datasets demonstrate that TINA achieves a better semantic

coherence by effectively adapting to the content divergence

and complicated semantic relation. In future work, we will

study more types of projection function for modeling cross-

modal correlation, e.g., constructing a domain specific fea-

ture extraction mechanism (e.g., the stacked convolution lay-

ers), or combining stacked auto-encoders with the localized

correlation learning.
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