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Abstract

In this paper, we propose a Generalized Unsupervised Manifold Alignment (GU-
MA) method to build the connections between different but correlated datasets
without any known correspondences. Based on the assumption that datasets of the
same theme usually have similar manifold structures, GUMA is formulated into
an explicit integer optimization problem considering the structure matching and p-
reserving criteria, as well as the feature comparability of the corresponding points
in the mutual embedding space. The main benefits of this model include: (1)
simultaneous discovery and alignment of manifold structures; (2) fully unsuper-
vised matching without any pre-specified correspondences; (3) efficient iterative
alignment without computations in all permutation cases. Experimental results on
dataset matching and real-world applications demonstrate the effectiveness and
the practicability of our manifold alignment method.

1 Introduction

In many machine learning applications, different datasets may reside on different but highly corre-
lated manifolds. Representative scenarios include learning cross visual domains, cross visual views,
cross languages, cross audio and video, and so on. Among them, a key problem in learning with such
datasets is to build connections cross different datasets, or align the underlying (manifold) structures.
By making full use of some priors, such as local geometry structures or manually annotated coun-
terparts, manifold alignment tries to build or strengthen the relationships of different datasets and
ultimately project samples into a mutual embedding space, where the embedded features can be
compared directly. Since samples from different (even heterogeneous) datasets are usually located
in different high dimensional spaces, direct alignment in the original spaces is very difficult. In
contrast, it is easier to align manifolds of lower intrinsic dimensions.

In recent years, manifold alignment becomes increasingly popular in machine learning and computer
vision community. Generally, existing manifold alignment methods fall into two categories, (semi-
)supervised methods and unsupervised methods. The former methods [15, 26, 19, 33, 28, 30] usually
require some known between-set counterparts as prerequisite for the transformation learning, e.g.,
labels or handcrafted correspondences. Thus they are difficult to generalize to new circumstances,
where the counterparts are unknown or intractable to construct.

In contrast, unsupervised manifold alignment learns from manifold structures and naturally avoid-
s the above problem. With manifold structures characterized by local adjacent weight matrices ,
Wang et al. [29] define the distance between two points respectively from either manifold as the
minimum matching scores of the corresponding weight matrices in all possible structure permuta-
tions. Therefore, when K neighbors are considered, the distance computation for any two points
needs K! permutations, a really high computational cost even for a small K. To alleviate this prob-
lem, Pei et al. [21] use a B-spline curve to fit each sorted adjacent weight matrix and then compute
matching scores of the curves across manifolds for the subsequent local alignment. Both methods
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in [29] and [21] divide manifold alignment into two steps, the computation of matching similari-
ties of data points across manifolds and the sequential counterparts finding. However, the two-step
approaches might be defective, as they might lead to inaccurate alignment due to the evolutions of
neighborhood relationships, i.e., the local neighborhood of one point computed in the first step may
change if some of its original neighbors are not aligned in the second step. To address this problem,
Cui et al. [7] propose an affine-invariant sets alignment method by modeling geometry structures
with local reconstruction coefficients.

In this paper, we propose a generalized unsupervised manifold alignment method, which can global-
ly discover and align manifold structures without any pre-specified correspondences, as well as learn
the mutual embedding subspace. In order to jointly learn the transforms into the mutual embedding
space and the correspondences of two manifolds, we integrate the criteria of geometry structure
matching, feature matching and geometry preserving into an explicit quadratic optimization model
with 0-1 integer constraints. An efficient alternate optimization on the alignment and transforma-
tions is employed to solve the model. In optimizing the alignment, we extend the Frank-Wolfe (FW)
algorithm [9] for the NP-hard integer quadratic programming. The algorithm approximately seeks
for optima along the path of global convergence on a relaxed convex objective function. Extensive
experiments demonstrate the effectiveness of our proposed method.

Different from previous unsupervised alignment methods such as [29] and [21], our method can
(i) simultaneously discover and align manifold structures without predefining the local neighbor-
hood structures; (ii) perform structure matching globally; and (iii) conduct heterogeneous manifold
alignment well by finding the embedding feature spaces. Besides, our work is partly related to oth-
er methods such as kernelized sorting [22], latent variable model [14], etc. However, they mostly
discover counterparts in a latent space without considering geometric structures, although to some
extend the constrained terms used in our model are formally similar to theirs.

2 Problem Description

We first define the notations used in this paper. A lowercase/uppercase letter in bold denotes
a vector/matrix, while non-bold letters denote scalars. Xi· (X·i) represents the ith row (col-
umn) of matrix X. xij or [X]ij denotes the element at the ith row and jth column of matrix
X. 1m×n,0m×n ∈ Rm×n are matrices of ones and zeros. In ∈ Rn×n is an identity matrix.
The superscript ᵀ means the transpose of a vector or matrix. tr(·) represents the trace norm.
∥X∥2F = tr(XᵀX) designates the Frobenius norm. vec(X) denotes the vectorization of matrix
X in columns. diag(X) is the diagonalization on matrix X, and diag(x) returns a diagonal matrix
of the diagonal elements x. X ⊗ Z and X ⊙ Z denote the Kronecker and Hadamard products,
respectively.

Let X ∈ Rdx×nx and Z ∈ Rdz×nz denote two datasets, residing in two different manifolds Mx

and Mz , where dx(dz) and nx(nz) are respectively the dimensionalities and cardinalities of the
datasets. Without loss of generality, we suppose nx ≤ nz . The goal of unsupervised manifold
alignment is to build connections between X and Z without any pre-specified correspondences. To
this end, we define a 0-1 integer matrix F ∈ {0, 1}nx×nz to mark the correspondences between X
and Z. [F]ij = 1 means that the ith point of X and the jth point of Z are a counterpart. If all
counterparts are limited to one-to-one, the set of integer matrices F can be defined as

Π = {F|F ∈ {0, 1}nx×nz ,F1nz = 1nx ,1
ᵀ
nx
F ≤ 1ᵀ

nz
, nx ≤ nz}. (1)

nx ̸= nz means a partial permutation. Meanwhile, we expect to learn the lower dimensional intrinsic
representations for both datasets through explicit linear projections, Px ∈ Rd×dx and Pz ∈ Rd×dz ,
from the two datasets to a mutual embedding space M. Therefore, the correspondence matrix F
as well as the embedding projections Px and Pz are what we need to learn to achieve generalized
unsupervised manifold alignment.

3 The Model

Aligning two manifolds without any annotations is not a trivial work, especially for two heteroge-
neous datasets. Even so, we can still make use of the similarities between the manifolds in geometry
structures and intrinsic representations to build the alignment. Specifically, we have three intuitive
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observations to explore. First, manifolds under the same theme, e.g., the same action sequences of
different persons, usually imply a certain similarity in geometry structures. Second, the embeddings
of corresponding points from different manifolds should be as close as possible. Third, the geometry
structures of both manifolds should be preserved respectively in the mutual embedding space. Based
on these intuitions, we proposed an optimization objective for generalized unsupervised manifold
alignment.

Overall objective function

Following the above analysis, we formulate unsupervised manifold alignment into an optimization
problem with integer constraints,

min
Px,Pz,F

Es + γfEf + γpEp (2)

s.t. F ∈ Π, Px,Pz ∈ Θ,

where γf , γp are the balance parameters, Θ is a constraint to avoid trivial solutions for Px and Pz ,
Es, Ef and Ep are three terms respectively measuring the degree of geometry matching, feature
matching and geometry preserving, which will be detailed individually in the following text.

Es: Geometry matching term

To build correspondences between two manifolds, they should be first geometrically aligned. There-
fore, discovering the geometrical structure of either manifold should be the first task. For this pro-
pose, graph with weighted edges can be exploited to characterize the topological structure of mani-
fold, e.g., via graph adjacency matrices Kx,Kz of datasets X and Z, which are usually non-negative
and symmetric if not considering directions of edges. In the literatures of manifold learning, many
methods have been proposed to construct these adjacency matrices locally, e.g., via heat kernel func-
tion [2]. However, in the context of manifold alignment, there might be partial alignment cases, in
which some points on one manifold might not be corresponded to any points on the other manifold.
Thus these unmatched points should be detected out, and not involved in the computation of the
geometry relationship. To address this problem, we attempt to characterizes the global manifold
geometry structure by computing the full adjacency matrix, i.e., [K]ij = d(X·i,X·j), where d is
geodesic distance for general cases or Euclidean distance for flat manifolds. Note that, in order to
reduce the effect of data scales, X and Z are respectively normalized to have unit standard deviation.
The degree of manifold matching in global geometry structures is then formulated as the following
energy term,

Es = ∥Kx − FKzF
ᵀ∥2F , (3)

where F ∈ Π is the (partial) correspondence matrix defined in Eqn.(1).

Ef : Feature matching term

Given two datasets X and Z, the aligned data points should have similar intrinsic feature repre-
sentations in the mutual embedding space M. Thus we can formulate the feature matching term
as,

Ef = ∥Pᵀ
xX−Pᵀ

zZF
ᵀ∥2F , (4)

where Px and Pz are the embedding projections respectively for X and Z. They can also be ex-
tended to implicit nonlinear projections through kernel tricks. This term penalizes the divergence of
intrinsic features of aligned points in the embedding space M.

Ep: Geometry preserving term

In unrolling the manifold to the mutual embedding space, the local neighborhood relationship of
either manifold is not expected to destroyed. In other words, the local geometry of either manifold
should be well preserved to avoid information loss. As done in many manifold learning algorithms
[23, 2], we construct the local adjacency weight matrices Wx and Wz respectively for the datasets
X and Z. Then, the geometry preserving term is defined as

Ep=
∑
i,j

∥Pᵀ
x(xi−xj)∥2wx

ij+
∑
i,j

∥Pᵀ
z (zi−zj)∥2wz

ij=tr(Pᵀ
xXLxX

ᵀPx +PzZLzZ
ᵀPz), (5)

where wx
ij(w

z
ij) is the weight between the ith point and the jth point in X (Z), Lx and Lz

are the graph Laplacian matrices, with Lx = diag([
∑

j w
x
1j , . . . ,

∑
j w

x
nxj

]) − Wx and Lz =

diag([
∑

j w
z
1j , . . . ,

∑
j w

z
nzj

])−Wz .
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4 Efficient Optimization

Solving the objective function (2) is difficult due to multiple indecomposable variables and integer
constraints. Here we propose an efficient approximate solution via alternate optimization. Specif-
ically, the objective function (2) is decomposed into two submodels, corresponding to the opti-
mizations of the integer matrix F and the projection matrices Px,Pz , respectively. With Px and
Pz fixed, we can get a submodel by solving a non-convex quadratic integer programming, whose
approximate solution is computed along the gradient-descent path of a relaxed convex model by
extending the Frank-Wolfe algorithm [9]. When fixing F, an analytic solution can be obtained for
Px and Pz . The two submodels are alternately optimized until convergence to get the final solution.

4.1 Learning Alignment

When fixing Px Pz , the original problem reduces to minimize the following function,

min
F∈Π

Ψ0(F) = Es + γfEf . (6)

Let X̂ = Pᵀ
xX and Ẑ = Pᵀ

zZ denote the transformed features. After a series of derivation, the
objective function can be rewritten as

min
F∈Π

Ψ0(F) = ∥KxF− FKz∥2F + tr(Fᵀ11ᵀFKzz) + tr(FᵀB), (7)

where Kzz = Kz ⊙Kz and B = γf (11
ᵀ(Ẑ⊙ Ẑ)− 2X̂ᵀẐ)− 11ᵀKzz . This quadratic alignment

problem is NP-hard with n! enumerations under an exhaustive search strategy. To get effective and
efficient solution, we relax this optimization problem under the framework of Frank-Wolfe (FW)
algorithm [9], which is designed for convex models over a compact convex set. Concretely, we have
following two modifications:

(i) Relax Π into a compact convex set. As the set of 0-1 integer matrices Π is not closed, we can
relax it to a compact closed set by using right stochastic matrices [3] as

Π′ = {F|F ≥ 0,F1nz = 1nx ,1
ᵀ
nx
F ≤ 1ᵀ

nz
, nx ≤ nz}. (8)

Obviously, Π′ is a compact convex set.

(ii) Relax the objective function Ψ0 into a convex function. As Ψ0 is non-convex, its optimization
easily suffers from local optima. To avoid local optima in the optimization, we can incorporate an
auxiliary function ϕ(F) = λ tr(FᵀF), with λ = nx ×max{−min(eig (Kzz)), 0}, into Ψ0 and get
the new objective as

Ψ(F) = ∥KxF− FKz∥2 + tr(Fᵀ11ᵀFKzz + λFᵀF) + tr(FᵀB). (9)

In Eqn.(9), the first term is positive definite quadratic form for variable vec(F), and the Hessian
matrix of the second term is 2(Kᵀ

zz ⊗ (11ᵀ) + λI) which is also positive definite. Therefore, the
new objective function Ψ is convex over the convex set Π′. Moreover, the solutions from minimizing
Ψ0 and Ψ over the integer constraint F ∈ Π are consistent because ϕ(F) is a constant.

The extended FW algorithm is summarized in Alg.1, which iteratively projects the one-order ap-
proximate solution of Ψ into Π. In step (4), the optimized solution is obtained using the KuhnC-
Munkres (KM) algorithm in the 0-1 integer space [20], which makes the solution of the relaxed
objective function Ψ equal to that of the original objective Ψ0. Meanwhile, the continuous solution
path is gradually descending in steps (5)∼(11) due to the convexity of function Ψ, thus local optima
is avoided unlike the original non-convex function over the integer space Π. Furthermore, it can
be proved that the objective value Ψ(Fk) is non-increasing at each iteration and {F1,F2, . . .} will
converge into a fixed point.

4.2 Learning Transformations

When fixing F, the embedding transforms can be obtained by minimizing the following function,

Ec+γpEp=tr (Pᵀ
xX(γfI+γpLx)X

ᵀPx+Pᵀ
zZ(γfF

ᵀF+γpLz)Z
ᵀPz−2γfP

ᵀ
xXFZᵀPz) . (10)
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Algorithm 1 Manifold alignment

Input: Kx,Kz, X̂, Ẑ,F0

1: Initialize: F⋆ = F0, k = 0.
2: repeat
3: Computer the gradient of Ψ w.r.t. Fk:

∇(Fk) = 2(Kᵀ
xKxFk + FkKzK

ᵀ
z − 2Kᵀ

xFkKz + 11ᵀFkKzz + λFk) +B;
4: Find an optimal alignment at the current solution Fk by minizing one-order Taylor expansion

of the objective function Ψ, i.e., H = arg min
F∈Π

tr(∇(Fk)
ᵀF) using the KM algorithm;

5: if Ψ(H) < Ψ(Fk) then
6: F⋆ = Fk+1 = H;
7: else
8: Find the optimal step δ = arg min

0≤δ≤1
Ψ(Fk + δ(H− Fk));

9: Fk+1 = Fk + δ(H− Fk);
10: F⋆ = argmin

F∈{H,F⋆}
Ψ(F);

11: end if
12: k = k + 1;
13: until ∥Ψ(Fk+1)−Ψ(Fk)∥ < ϵ.
Output: F⋆.

To avoid trivial solutions of Px,Pz , we centralize X,Z and reformulate the optimization problem
by considering the rotation-invariant constraints:

max
Px,Pz

tr (Pᵀ
xXFZᵀPz) , (11)

s.t. Pᵀ
xX(γfI+ γpLx)X

ᵀPx = I, Pᵀ
zZ(γfF

ᵀF+ γpLz)Z
ᵀPz = I.

The above problem can be solved analytically by eigenvalue decomposition like Canonical Correla-
tion Analysis (CCA) [16].

4.3 Algorithm Analysis

By looping the above two steps, i.e., alternating optimization on the correspondence matrix F and the
embedding maps Px,Pz , we can reach a feasible solution just like many block-coordinate descent
methods. The computational cost mainly lies in learning alignment, i.e., the optimization steps in
Alg.1. In Alg.1, the time complexity of KM algorithm for linear integer optimization is O(n3

z). As
the Frank-Wolfe method has a convergence rate of O(1/k) with k iterations, the time cost of Alg.1
is about O( 1ϵn

3
z), where ϵ is the threshold in step (13) of Alg.1. If the whole GUMA algorithm

(please see the auxiliary file) needs to iterate t times, the cost of whole algorithm will be O( 1ϵ tn
3
z).

In our experiments, only a few t and k iterations are required to achieve the satisfactory solution.

5 Experiment

To validate the effectiveness of the proposed manifold alignment method, we first conduct two man-
ifold alignment experiments on dataset matching, including the alignment of face image sets across
different appearance variations and structure matching of protein sequences. Further application-
s are also performed on video face recognition and visual domain adaptation to demonstrate the
practicability of the proposed method.

The main parameters of our method are the balance parameters γf , γp, which are simply set to 1.
In the geometry preserving term, we set the nearest neighbor number K = 5 and the heat kernel
parameter to 1. The embedding dimension d is set to the minimal rank of two sets minus 1.

5.1 GUMA for Set Matching

First, we perform alignment of face image sets containing different appearance variations in poses,
expressions, illuminations and so on. In this experiment, the goal is to connect corresponding face
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images of different persons but with the same poses/expression. Here we use Multi-PIE database
[13]. We choose totally 29,400 face images of the first 100 subjects in the dataset, which cover 7
poses with yaw within [−45◦,+45◦](15◦ intervals), different expressions and illuminations across 3
sessions. These faces are cropped and normalized into 60×40 pixels with eyes at fixed locations. To
accelerate the alignment, their dimensions are further reduced by PCA with 90% energy preserved.

The quantitative matching results1 on pose/expression matching are shown in Fig.1, which contains
the matching accuracy2 of poses (Fig.1(a)), expressions (Fig.1(b)) and their combination (Fig.1(c)).
We compare our method with two state-of-the-art methods, Wang’s [29] and Pei’s [21]. Moreover,
the results of using only feature matching or structure matching are also reported respectively, which
are actually special cases of our method. Here we briefly name them as GUMA(F)/GUMA(S), re-
spectively corresponding to the feature/structure matching. As shown in Fig.1, we have the follow-
ing observations:

(1) Manifold alignment benefits from manifold structures as well as sample features. Although
features contribute more to the performance in this dataset, manifold structures also play an
important role in alignment. Actually, their relative contributions may be different with different
datasets, as the following experiments on protein sequence alignment indicate that manifold
structures alone can achieve a good performance. Anyway, combining both manifold structures
and sample features promotes the performance more than 15%.

(2) Compared with the other two manifold alignment methods, Wang’s [29] and Pei’s [21], the pro-
posed method achieves better performance, which may be attributed to the synergy of global
structure matching and feature matching. It is also clear that Wang’s method achieves relatively
worse performance, which we conjecture can be ascribed to the use of only the geometric simi-
larity. This might also account for its similar performance to GUMA(S), which also makes uses
of structure information only.

(3) Pose matching is easier than expression matching in the alignment task of face image sets. This
also follows our intuition that poses usually vary more dramatic than subtle face expressions.
Further, the task combining poses and expressions (as shown in Fig.1(c)) is more difficult than
either single task.
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(c) Pose & exp. matching

Figure 1: Alignment accuracy of face image sets from Multi-PIE [13].
Besides, we also compare with two representative semi-supervised alignment methods [15, 28] to
investigate“how much user labeling is need to reach a performance comparable to our GUMA
method?”. In semi-supervised cases, we randomly choose some counterparts from two given sets
as labeled data, and keep the remaining samples unlabeled. For both methods, 20%∼30% data is
required to be labeled in pose matching, and 40%∼50% is required in expression and union match-
ing. The high proportional labeling for the latter case may be attributed to the extremely subtle face
expressions, for which first-order feature comparisons in both methods are not be effective enough.

Next we illustrate how our method works by aligning the structures of two manifolds. We choose
manifold data from bioinformatics domain [28]. The structure matching of Glutaredoxin protein
PDB-1G7O is used to validate our method, where the protein molecule has 215 amino acids. As
shown in Fig.2, we provide the alignment results in 3D subspace of two sequences, 1G7O-10 and
1G7O-21. More results can be found in the auxiliary file. Wang’s method [29] reaches a decent
matching result by only using local structure matching, but our method can achieve even better
performance by assorting to sample features and global manifold structures.

1Some aligned examples can be found in the auxiliary file.
2Matching accuracy = #(correct matching pairs in testing)�#(ground-truth matching pairs).
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Figure 2: The structure alignment results of two protein sequences, 1G7O-10 and 1G7O-21.

5.2 GUMA for Video-based Face Verification

In the task of video face verification, we need to judge whether a pair of videos are from the same
person. Here we use the recent published YouTube faces dataset [32], which contains 3,425 clips
downloaded from YouTube. It is usually used to validate the performance of video-based face
recognition algorithms. Following the settings in [5], we normalize the face region sub-images to
40×24 pixels and then use histogram equalization to remove some lighting effect. For verification,
we first align two videos by GUMA and then accumulate Euclidean distances of the counterparts as
their dissimilarity. This method, without use of any label information, is named as GUMA(un). After
alignment, CCA may be used to learn discriminant features by using training pairs, which is named
as GUMA(su). Besides, we compare our algorithms with some classic video-based face recognition
methods, including MSM[34], MMD[31], AHISD[4], CHISD[4], SANP[17] and DCC[18]. For the
implementation of these methods, we use the source codes released by the authors and report the best
results with parameter tuning as described in their papers. The accuracy comparisons are reported
in Table 1. In the “Unaligned” case, we accumulate the similarities of all combinatorial pairs across
two sequences as the distance. We can observe that the alignment process promotes the performance
to 65.74% from 61.80%. In the supervised case, GUMA(su) significantly surpasses the most related
DCC method, which learns discriminant features by using CCA from the view of subspace.

Table 1: The comparisons on YouTube faces dataset (%).
Method MSM[34] MMD[31] AHISD[4] CHISD[4] SANP[17] DCC[18] Unaligned GUMA(un) GUMA(su)

Mean Accuracy 62.54 64.96 66.50 66.24 63.74 70.84 61.80 65.74 75.00
Standard Error ±1.47 ±1.00 ±2.03 ±1.70 ±1.69 ±1.57 ±2.29 ±1.81 ±1.56

5.3 GUMA for Visual Domain Adaptation

To further validate the proposed method, we also apply it to visual domain adaptation task, which
generally needs to discover the relationship between the samples of the source domain and those of
the target domain. Here we consider unsupervised domain adaptation scenario, where the labels of
all the target examples are unknown. Given a pair of source domain and target domain, we attempt
to use GUMA to align two domains and meanwhile find their embedding space. In the embedding
space, we classify the unlabeled examples of the target domain.

We use four public datasets, Amazon, Webcam, and DSLR collected in [24], and Caltech-256 [12].
Following the protocol in [24, 11, 10, 6], we extract SURF features [1] and encode each image with
800-bin token frequency feature by using a pre-trained codebook from Amazon images. The features
are further normalized and z-scored with zero mean and unit standard deviation per dimension. Each
dataset is regarded as one domain, so in total 12 settings of domain adaptation are formed. In the
source domain, 20 examples (resp. 8 examples) per class are selected randomly as labeled data from
Amazon, Webcam and Caltech (resp. DSLR). All the examples in the target domain are used as
unlabeled data and need to predict their labels as in [11, 10]. For all the settings, we conduct 20
rounds of experiments with different randomly selected examples.

We compare the proposed method with five baselines, OriFea, Sampling Geodesic Flow (SGF) [11],
Geodesic Flow Kernel (GFK) [10], Information Theoretical Learning (ITL) [25] and Subspace
Alignment (SA) [8]. Among them, the latter four methods are the state-of-the-art unsupervised
domain adaptation methods proposed recently. OriFea uses the original features; SGF and its ex-
tended version GFK try to learn invariant features by interpolating intermediate domains between
source and target domains; ITL is a recently proposed unsupervised domain adaptation method; and
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Figure 3: Performance comparisons in unsupervised domain adaptation. (A: Amazon, C: Caltech,
D: DSLR, W: Webcam)
SA tries to align the principal directions of two domains by characterizing each domain as a sub-
space. Except ITL, we use the source codes released by the original authors. For fair comparison,
the best parameters are tuned to report peak performance for all comparative methods. To compare
intrinsically, we use the NN classifier to predict the sample labels of target domain. Note SGF(PLS)
and GFK(PLS) use partial least square (PLS) to learn discriminant mappings according to their pa-
pers. In our method, to obtain stable sample points from space of high-dimensionality, we perform
clustering on the data of each class for source domain, and then cluster all unlabeled samples of tar-
get domain, to get the representative points for subsequent manifold alignment, where the number
of clusters is estimated using Jump method [27].

All comparisons are reported in Fig.3. Compared with the other methods, our method achieves more
competitive performance, i.e., the best results in 9 out of 12 cases, which indicates manifold align-
ment can be properly applied to domain adaptation. It also implies that it can reduce the difference
between domains by using manifold structures rather than the subspaces as in SGF, GFK and SA.
Generally, domain adaptation methods are better than OriFea. In the average accuracy, our method
is better than the second best result, 44.98% for ours v.s. 43.68% for GFK(PLS).

6 Conclusion

In this paper, we propose a generalized unsupervised manifold alignment method, which seeks for
the correspondences while finding the mutual embedding subspace of two manifolds. We formulate
unsupervised manifold alignment as an explicit 0-1 integer optimization problem by considering
the matching of global manifold structures as well as sample features. An efficient optimization
algorithm is further proposed by alternately solving two submodels, one is learning alignment with
integer constraints, and the other is learning transforms to get the mutual embedding subspace. In
learning alignment, we extend Frank-Wolfe algorithm to approximately seek for optima along the
descent path of the relaxed objective function. Experiments on set matching, video face recognition
and visual domain adaptation demonstrate the effectiveness and practicability of our method. Next
we will further generalize GUMA by relaxing the integer constraint and explore more applications.
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