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Abstract— This paper proposes a framework based on the
Hidden Markov Models (HMMs) benefited from the low rank
approximation of the original sign videos for two aspects. First,
under the observations that most visual information of a sign
sequence typically concentrates on limited key frames, we apply
an online low rank approximation of sign videos for the first
time to select the key frames. Second, rather than fixing the
number of hidden states for large vocabulary of variant signs,
we further take the advantage of the low rank approximation to
independently determine it for each sign to optimise predictions.
With the key frame selection and the variant number of hidden
states determination, an advanced framework based on HMMs
for Sign Language Recognition (SLR) is proposed, which is
denoted as Light-HMMs (because of the fewer frames and
proper estimated hidden states). With the Kinect sensor, RGB-D
data is fully investigated for the feature representation. In each
frame, we adopt Skeleton Pair feature to character the motion
and extract the Histograms of Oriented Gradients as the feature
of the hand posture appearance. The proposed framework
achieves an efficient computing and even better correct rate in
classification. The widely experiments are conducted on large
vocabulary sign datasets with up to 1000 classes of signs and
the encouraging results are obtained.

I. INTRODUCTION

Sign Language (SL) is very important to exchange infor-
mation in communication within deaf community as well as
between deaf and hearing societies. Hence, Sign Language
Recognition (SLR) has great potential applications in the
fields such as SL translation, tutor and education [1] [2] [3].

Early researchers achieved great successes when using
data gloves [4][5]. One typical work was from Gao et al.
[5], which achieved a good performance of 90.8% over
more than 5000 signs in signer-dependent test. However, the
expensive price and wearable character made the SLR system
difficult to popularization. Gradually, pure vision based SLR
attracted the researchers’ attentions, but it was difficult for
precise hand tracking and segmentation. Zafrulla et al. [6]
tackled the problem by using colored gloves, where a pair
of accelerometers were strapped on, to make segmentation
and hands tracking easily. Microsoft Kinect, with its real
time provision of RGB and depth data [7], contributes to
SLR vastly. Selebi et al. [8] used skeleton data for gesture
recognition with weighted Dynamic Time Warping method.
Several other researchers integrated skeleton feature and
hand posture feature to realize more robust SLR[3][9]. In
[9], a discriminative exemplar coding method was proposed

and obtained about 85.5% recognition rate with 73 classes
of the American Sign Language (ASL) signs.

Although there are published datasets on body actions
captured by Kinect sensor [10] [11], for sign language,
there is still lacking of available large vocabulary datasets,
especially those captured by Kinect sensor to the best of
our knowledge. Some experiments were conducted on small
datasets. For example, on a datasets with vocabulary of
twelve with depth cue, Kurakin et al. [12] proposed a real-
time system for dynamic hand gesture recognition on ASL.
The other experiments were conducted on large datasets and
yet without depth cue. For example, Eng-Jon Ong et al.
[13] created a discriminative, multi-class classifier based on
sequential pattern trees recently. Their experiment showed
74.1% correct rate on 982 signs in singer-dependent test,
which can be taken as the state-of-the-art in SLR research.
In the work of Wang et al. [14], in user-independent ex-
periments, the correct sign in the top 10 was 78% with a
system vocabulary of 1,113 signs. Chai et al. [15] recently
proposed a method and developed a system to recognize
signs using trajectory feature with depth cues. To further
promote the performance of SLR by the assistant of the
depth cue, we collected three datasets using Kinect sensor
for research usage. Two of them contains up to 1000 classes
of signs.

Inspired by the improvement of speech recognition, many
researchers used generative models such as Hidden Markov
Models (HMMs) to model a large size of vocabulary
[3][5][16][17]. We also recur to HMMs to tackle the SLR
problems by considering the powerful modeling ability.
However, confronted with the high dimensional visual fea-
tures, the traditional dense frame based HMMs consume
lots of time. Motivated by the observation that most dis-
criminative information concentrates on the features ex-
tracted from few key frames, the sign videos can potentially
be represented more compact. If the key frames selection
procedure can be embedded into the model constructing
online, the traditional HMMs are able to be optimized for
SLR. Thus, we propose an online low rank approximation
to obtain key frames from a sign video. The low rank
approximation is realized by minimizing the Residual Sum
of Squares (RSS) of the previously selected features before
current time. The corresponding parameters will be updated
online as well. What’s more, it can also adaptively determine



Fig. 1. The framework of Light-HMMs for SLR.(a) Face, hand detection and skeleton detection. (b) Skeleton and hand posture extraction. (c) Selected
frames mask using low rank approximation approach. (d) The variant hidden states are determined by low rank approximation in training stage.

the proper number of the HMMs’ hidden states for each
sign independently. Hence, it is not necessary to fix an
arbitrary hidden state number for all the signs. Based on the
traditional HMMs and aiming to push the SLR technique to
be practice, this paper selects the key frames through low
rank approximating and adaptively determine the number of
hidden state in HMMs. We denote such HMMs, with fewer
frames and proper estimated numbers of hidden states, as
the Light-HMMs in this paper. The signs are characterized
by combining both the appearance and skeleton pair feature.
Figure 1 shows the framework of our algorithm.

Our main contributions are summarized as follows. First,
benefited from the low rank approximation, time cost of the
HMMs can be efficiently reduced by key frame selection
while maintaining or even promoting the recognition accu-
racy. Second, the number of hidden state for sign models
are also automatically determined by the low rank approx-
imation approach and further speed up the recognition.
Third, a discriminative and compact feature representation
is generated by fusing the posture appearance and skeleton
pair feature from RGB-D data captured by Kinect sensor.
In addition, datasets used in this paper are subsets of a
large SL database, which has been partial released recently
(“http://vipl.ict.ac.cn/homepage/KSL/home.html”). The re-
maining part of this paper is organized as follows. Section II
shows the basic framework and brief formulations. Section
III is the detailed implementations, including the strategies
of RGB-D feature, key frame selection and the number of
hidden states determination by low rank approximation. Sec-
tion IV gives the experimental results and analysis. Section
V is our conclusion and future work.

II. FRAMEWORK AND FORMULATION

Figure 1 illustrates both the training and test procedures
based on the Light-HMMs benefited from low rank approx-
imation from two aspects. Figure 1 (c) shows that low rank
approximation removes the abundant frames and selects the

key frames for HMMs training and test. Figure 1 (d) shows
that instead of using a fixed hidden state number for all
the sign class models, low rank approximation adaptively
determine the number for each sign model independently.

Since a sign sequence typically concentrates on features
from several key frames, our target is to select the most
discriminative frames. The key frames selection should be
an online procedure that can be embedded in the HMMs
framework. Denote the feature matrix from all the frames
in the sequence as F = [f1,f2, ...,fK ], where fi is the
feature vector of a frame and K is the total frame number.
We propose an online approach that applying the criterion
of RSS to select a compact feature matrix E, which is the
subset of F .

To model the signs, a typical HMMs are represented as
λ = (A,B, π), where A is the matrix of state transition
probability, π is the initial states and B = bi(O) is the
likelihood, which is evaluated by Gaussian Mixture Model
as shown in Eq. 1

bi (O) =

M∑
j=1

cijG [µij , Eij , O] , 1 ≤ i ≤ N, (1)

where N is the state number, M is the number of mixture
components and cij is the mixture weight. Along with the
generation of E by low rank approximation, the correspond-
ing mask l is recorded. The mask l indicates whether the
frames in F are selected or not by label 1 or 0. Since
the temporal region sharing the same labels belongs to one
segmentation, l can also be acted as indicator to segment
the sign video. Given the probe sign, the most likely class is
found by straightforward Viterbi algorithm in the test stage.

III. IMPLEMENTATION
This section gives a detailed description of feature ex-

traction on both hand postures and motion trajectories.
More importantly, a key frame selection method by low
rank approximation is proposed. The novel Light-HMMs



(a) (b) (c)

Fig. 2. (a) Posture dominated signs. (b) Trajectory dominated signs (c)
Together represented signs.

also features on their adaptive numbers of hidden states,
which is automatically determined by the number of signs’
segmentations.

A. Feature Extraction from RGB-D Data

Intrinsically, sign is multi-modalities activity containing
at least posture appearance and hand movement. The depth
information can be used to accurately segment the human
hands and the 3D movement is able to explore the skeleton
movements along Z coordinate rather than merely on the
X−Y plane. The Chinese sign language vocabularies can be
classified into three categories, which are posture dominant
signs, trajectory dominant signs and together represented
signs as shown in Figure 2. Therefore, we combine the
hand posture appearance feature and the skeleton feature
together to form a powerful feature representation. The
column vectors of F are the combined feature as in Eq.
2.

fi = [fp,fs]i, i = 1, 2, . . . , k, (2)

where fp is the feature of hand posture and fs is the skeleton
motion feature. k is the total number of all the selected key
frames. The details of generating fp and fs are introduced
below.

1) Hand posture feature: HOG feature [18] is extracted
from hand region, which is segmented by using self-adaptive
skin model and depth constraint. The self-adaptive skin
model is initialized by the skin of human face and updated
by the skin of the detected human hands in previous frames.
The details are omitted due to the limited length of the
paper. Since the dimension of the original HOG is too high,
Principal Component Analysis is applied for dimensionality
reduction and to retain only most salient dimensions. There-
fore, the hand posture feature fp is obtained with the reduced
dimension d.

2) Skeleton Pair feature: For the skeleton feature, a direct
way is to use the normalized (x, y, z) coordinates. To better
extract the intrinsic motion feature, we consider the pairwise
relative position features proposed by Wang et al. [11].
Since the signs are essentially upper-body activities, we
only select 5 important skeleton points including head, left
elbow, right elbow, left hand and right hand. The feature
has a dimension of C2

5 = 10 and is invariant to rotation,
scaling and translation. Figure 1(b) gives the illustration of
the skeleton pairs connected by green lines.

B. Frame Selection Strategy In Light-HMMs

Dense frame based HMMs is practical and reasonable
when using data glove due to the accurate measurement

(a) (b)

Fig. 3. Low rank approximation strategy for SLR. (a) Concise illustration
of relationship among F , l and E. Colorful blocks represent features from
frames. (b) Three examples of the frames selection. Segmentations are
separated by symbol “+”.

and small size of feature dimensions. However, there are
many drawbacks when HMMs is applied to visual based
SLR. First, the high dimensionality of the visual feature costs
much computing time in the traditional frame-based way.
Second, since the measurement accuracy of visual based SLR
is limited, the features vary even within class. One method
to solve the problem is to select the key frames, which
have discriminative features. Therefore, not only frames
down sampling but also key frames selection are desired
for HMMs. The basic idea is that the frames with linearly
independent features will be selected for the HMMs’ training
and test while the others will be discarded. Such online key
frame selection procedure is proposed for the first time for
SLR and is proved to be efficient.

In the online implementation, if the feature of current
frame can be linearly represented by previous selected frames
with less residual, current frame will be removed from the
video of the sign. While F is the matrix consists of features
from all the frames in a sign video, we define E as the
incrementally expanded matrix consisting of all the features
of selected frames, and define fc as the feature of current
frame. The goal is to minimize the RSS ε of current frame
feature by ε = (fc−Eβ)T (fc−Eβ), where the coefficient
β is searched to minimize the RSS. A unique solution to β
can be given by

β = (ETE)−1ETfc =METfc, (3)

where M = (ETE)−1 is denoted as the core matrix.
Therefore, the RSS can be computed as follows

ε = (fc − Eβ)T (fc − Eβ)
=

∥∥fc − E(METfc)
∥∥2. (4)

If ε is smaller than a threshold ε0, then current frame fc will
be abandoned. Otherwise, fc will be selected and used to
update the E, as well as the other corresponding parameters.

Algorithm 1 shows more details on key frame selection
with our low rank approximation. We can see that it is
an online procedure with only two parameters (i.e., the
parameter N and threshold ε0 in the initial step). The matrix
E and the vector l are incrementally expanded in Algorithm
1. The core matrix is updated by

M =

[
M + βTβ

/
ε −β/ε

−βT
/
ε 1/ε

]
(5)



Input: Feature matrix F of a sign video.
Output: Low rank matrix E and the corresponding

mask l.
Given the matrix F consists of features vectors;
Down sample the F to F̂ every N frames, and the final
frame number is m, i.e., F̂ = [f1,f2, ...,fm] ;
Define the threshold ε0;
Initial E = f1, M = (ETE)−1 = 1/(fT

1 f1);
Initial the mask l = [ ];
for k = 2 : m do

Choose the current frame, i.e., the kth frame and it
is denoted as fc = fk;
Compute the coefficient β =METfc;
Compute the RSS
ε = (fc − Eβ)T (fc − Eβ) =

∥∥fc − EMETfc
∥∥2;

if ε > ε0 then
Add column fc to E as E = [E,fc];
Update the core matrix

M =

[
M + βTβ

/
ε −β/ε

−βT
/
ε 1/ε

]
;

Update the mask l = [l, 1];
else

Update the mask l = [l, 0];
Continue;

end
end

Algorithm 1: The procedure of low rank approximation.

After all the frames being processed, a mask l is determined.
Figure 3 (a) is the concise illustration of the relationship
among F , l and E. Figure 3 (b) shows the results of
some example signs. Figure 4 gives a real example of sign
“PEOPLE”.

C. Number Of Hidden States In Light-HMMs

The number of hidden states should be determined in the
training stage. Traditional HMMs commonly have fixed num-
ber of hidden states for all the classes despite their variances.
However, the actions and durations of signs different from
each other vastly. For example, there are approximate 89
frames for the sign “CHAIR” with single key action (Figure
2 (a)) while 150 frames for the sign “FRUIT” with two key
actions (Figure 2 (c)). Obviously, it is unwise to share a
fixed number of hidden states for the two signs. If the fixed
number is too small, the models have weak description ability
for those complex signs. On the contrary, with larger fixed
number of hidden states, the time cost increases, which is
actually unnecessary for those simple signs. To tackle this
problem, the hidden states are set to be variant according
to the “segmentation” result of low rank approximation.
Frames with independent features are labeled with “1” (“0”
otherwise) in the mask l. Frames sharing the same label
are regarded as one segmentation. Hence, we segment the
sign video according to the label of “1” in the mask l.
For example, “00110000111000” indicates that two hidden
states HMMs are suitable for the signs since there are two

(a) (b)

Fig. 4. Low rank approximation for the sign PEOPLE and the HMMs
hidden state number determination. (a) The trend of ε, where ε0 = 0.002
(the green line) and γ = 0.005 (the red line). (b) The illustration of the
corresponding Chinese sign PEOPLE.(Best view in color.)

temporal regions of label “1”. In the implementation, the
mask will be smoothed by a median filter to remove outliers.
The number of segmentations is determined by a threshold γ
after the frames selecting procedure. See from Figure 4 (a),
with the threshold γ, there are fewer selected frames. Thus,
the hidden state number can be determined according to the
segmentation number (there are four hidden states in Figure
4 (a) and are emphasized as red bold lines).

In the test stage, since both the likelihood and transition
probabilities are small than 1, the scores turn to be smaller
for classes with larger number of hidden states in the model.
Therefore, in our implementation, for longer states number
S > 3, each translation probability will be multiplied by a
weight S/(3× 1.3). We set the weight experimentally.

IV. EXPERIMENTS

We conduct several SLR experiments on three datasets.
Firstly, the experiment on different features is conducted
to test their discriminative abilities. Then the performances
in efficiency and accuracy are evaluated with our proposed
Light-HMMs, the traditional HMMs, Fast-DTW method [19]
and the method proposed by Chai et al. [15].

A. Datasets and Settings

We have collected three datasets by using Microsoft Kinect
sensor to evaluate our algorithm. The signers are all deaf
students. The distance between Kinect sensor and signer is
1.5 ∼ 2 meters. The Dataset I contains 370 daily signs
of Chinese sign language performed by 1 signer with 5
repetitions. To evaluate the recognition performance on large
vocabulary dataset, we built another challenging Dataset II,
which is composed of 1000 signs from Chinese sign language
performed by 1 signer with 3 repetitions. Further to conduct
the signer-independent SLR, we collected Dataset III, which
has the vocabulary size of 1000 and the data is signed by 7
signers. Table I shows the details of our datasets.

In the next subsections, the effectiveness of low rank
approximation and adaptive hidden states will be verified to
prove that the Light-HMMs is more suitable for SLR. The
leave-one-out cross-validation strategy is adopted to evaluate
the performance and the average recognition rate will be



TABLE I
THE DETAILS OF OUR COLLECTED DATASETS.

Datasets Vocabulary Signer Repetition Total videos
I 370 1 (female) 5 1850
II 1000 1 (male) 3 3000
III 1000 7 (both) 1 7000

TABLE II
COMPARISON OF THE CS, SP, HOG, SP+HOG FEATURES.

Feature Dimension Top 1 Top 5 Top 10
CS 15 0.452 0.696 0.771
SP 10 0.625 0.820 0.875
HOG 51 0.710 0.856 0.896
SP+HOG 61 0.842 0.946 0.965

given. The baseline HMMs, Fast-DTW [19] and the method
proposed by Chai et al. [15] are evaluated as comparisons.
The evenly sample parameter N in Algorithm 1 is fixed to 1.
The parameter ε of low rank approximation has two values
for key frame selection (ε0 = 0.001, 0.002) and the number
of hidden state determination (γ = 0.0025, 0.005) respec-
tively. For a better comparison, the hidden state number of
the HMMs is fixed to 3 for the evaluations of key frame
selection strategy and will be changed for testing our variant
hidden states.

B. Evaluation on Different Features

In SL representation, different features reveal different
aspects of signs. For example, hand trajectories describe the
dynamic motion and hand postures describe the static appear-
ance. Obviously, they have different discriminative abilities.
This section shows the experimental results on the evaluation
of different features. The experiments are conducted on the
Dataset II. Under the proposed Light-HMMs framework,
we compare the results using 4 different features, which
are directly skeleton coordinates feature (SC), skeleton pair
feature (SP), HOG feature (HOG) and the fused SP+HOG
feature.

Table II shows the comparison of the recognition results
with the 4 different features. For the two dynamic features
(SP and SC), it can be seen that the SP feature is superior
to the directly SC feature with about 17 percentage points
improvement. The appearance feature (HOG) performs the
best when compared with the former two dynamic features in
our experiments. A great promotion is achieved when the two
features (HOG and SP) are combined since the two features
complement each other as illustrated in Figure 2 (c). With
depth cue, the SLR can reach 84.2% correct rate on 1000
vocabularies dataset using Light-HMMs. Considering for the
good performance, in our following experiment, we fix the
feature to be SP+HOG.

C. Experiment on Signer Dependent Test

In this part, we will compare the proposed Light-HMMs
framework with the baseline HMMs which uses the dense
frame based features. The experiments are conducted on two
datasets, which are Dataset I and Dataset II respectively. The

TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS.

Dataset Framework Top 1 Top 5 Top 10 Time
Dataset I
370 signs

Fast-DTW 0.885 0.965 0.978 110.4 ms
Chai et al. [15](Trajectory) 0.810 0.919 0.946 11.2 ms
HMMs 0.922 0.991 0.997 110 ms
Light-HMMs(ε0 = 0.001) 0.940 0.993 0.999 42 ms
Light-HMMs(ε0 = 0.002) 0.931 0.995 0.998 37 ms

Dataset II
1000 signs

Fast-DTW 0.758 0.887 0.920 1168 ms
Chai et al. [15](Trajectory) 0.591 0.77 0.819 34 ms
Baseline 0.832 0.942 0.964 265 ms
Light-HMMs(ε0 = 0.001) 0.842 0.946 0.965 109 ms
Light-HMMs(ε0 = 0.002) 0.830 0.942 0.961 94 ms

TABLE IV
EVALUATION OF ε WITH VARIANT VALUES.

Values Accuracy Time cost (ms/sign)
0.0001 0.943 87
0.0005 0.940 71
0.001 0.940 42
0.002 0.931 37
0.003 0.917 36
0.004 0.913 25

performance comparisons are all given in Table III, which
shows both recognition rate and the time cost. The item
“Time” denotes the processing time for each sign.

From this table, we can see that the proposed Light-
HMMs framework reduces the time cost while maintaining
or even promoting the high recognition rate. The low rank
approximation reduces the frame numbers from 60 to 20 in
average. Meanwhile, the processing time of the Light-HMMs
is around 1/3 when compared to the baseline on two datasets
respectively. The correct recognition rate is also higher than
the baseline on both Dataset I (ε = 0.001, 0.002) and Dataset
II (ε = 0.001) since the selected frames are the most salient
frames with distinctive discriminative power benefited from
low rank approximation. There are only 0.2 percentage point
decreasing on Dataset II when the ε = 0.002. The parameter
ε is evaluated with different values as shown in Table IV.
In conclusion, the low rank approximation strategy makes
HMMs fast, as well as accurate and robust. The performance
(94%, 25 frames per second) on Dataset I, which consists of
daily used signs, ensure the practicability of online SLR.

D. Experiment on Signer Independent Test

Experiments of user independent SLR are conducted on
Dataset III, where 7 groups’ signs performed by 7 different
signers. The results of Leave-One-Out cross validation are
listed in the Table V. The average recognition rates of
traditional HMMs algorithm are also listed as reference.
Light-HMMs maintains the similar recognition score with
approximate 1/3 processing time when compared with the
traditional HMMs. In this challenging dataset, the top 1 cor-
rect rate decreases by 27 percentage points when compared
to the result on user dependent benchmark on dataset II due
to the fact that the same sign with different signers, variant
illuminations or action speed can result in a large variation
on either hand postures or arm skeletons. The correct rate



TABLE V

THE SIGNER-INDEPENDENT TEST RESULT ON DATASET III. ε = 0.001

Light-HMMs Baseline
Top 1 0.561 0.562
Top 5 0.773 0.768
Top 10 0.836 0.833
Time (/sign) 125 ms 322 ms
Frames (/sign) 28.10 70.61

Fig. 5. Part of the results of comparison between variant hidden states and
fixed hidden states.

for top 10 can still reach 83.6%.

E. Evaluation On Variant Hidden States

The number of hidden states of the HMMs can be
characterised as a trade-off between the time cost and the
correct recognition rate. Our variant hidden state strategy
can automatically estimate the state number for all the signs
and reduce the cost time, which further makes the proposed
Light-HMMs fast. We conduct experiments that comparing
fixed hidden state and variant hidden states on the Dataset
I. Figure 5 shows that variant hidden states strategy costs
less time than the cases of 4, 5 hidden states while obtaining
higher correct rate than the cases of 3 and 5 (lower than
case of 4 by 0.2 percentage points). It can be seen that the
variant hidden states strategy is a good balance between time
cost and correct rate. Note that the correct rates decrease
with hidden state number of 5. That is because the intrinsic
hidden state number of signs in Dataset I, which are daily
used, is averagely less than 5. This experiment proves that
our strategy can automatically determine proper hidden state
numbers. The result preferably balances the time cost and
the correct recognition rate and makes SLR more practical.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes a HMMs based framework (Light-
HMMs) benefited from low rank approximation for two
aspects. First, low rank approximation removes redundant
frames and selects key frames for the training and test of
HMMs to be faster. Second, the segmentations generated by
low rank approximation contribute to determine the number
of hidden states for training HMMs. Under the novel Light-
HMMs, the encouraging results are obtained in widely tests
by using the fused posture appearance features (HOG) and
the motion skeleton pair features (SP). Compared with the
baseline HMMs method, our Light-HMMs framework costs

around 1/3 time while maintaining or even promoting the
high recognition rate. From the experiments, it can be seen
that the performance is decreased dramatically when facing
the signer-independent situation. To make SLR more robust
to different signers, further exploration on the deep fusion
among hand posture, body skeleton, and the depth map
should be the focuses of our future work.
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