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Abstract

Mobile devices can carry large amounts of personal
data, but are often left unsecured. PIN locks are inconve-
nient to use and thus have seen low adoption (33% of users).
While biometrics are beginning to be used for mobile device
authentication, they are used only for initial unlock. Mo-
bile devices secured with only login authentication are still
vulnerable to data theft when in an unlocked state. This
paper introduces our work on a face-based continuous au-
thentication system that operates in an unobtrusive manner.
We present a methodology for fusing mobile device (uncon-
strained) face capture with gyroscope, accelerometer, and
magnetometer data to correct for camera orientation and,
by extension, the orientation of the face image. Experiments
demonstrate (i) improvement of face recognition accuracy
from face orientation correction, and (ii) efficacy of the pro-
totype continuous authentication system.

1. Introduction
Since the first mobile telephone call in 1973, mobile

phones have evolved from simple call-making implements
to full-featured pocket computers, or smartphones1 (see
Fig. 1). Smart mobile devices encompass both smartphones
and tablets running operating systems designed for smart-
phones. Mobile computing has expanded to the point where
the number of mobile devices in use is nearly equal to the
world’s population. In 2013, 77% of such devices sold were
smartphones.2

1A smartphone is defined as a mobile telephone possessing a variety of
sensors and that has an operating system capable of running applications
more advanced than simple Java ME or BREW programs.

2www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/white_paper_c11-520862.html

Figure 1. The evolution of the mobile phone.5

Mobile devices are rapidly becoming data hubs, used
to store e-mail, personal photos, online history, passwords,
and even payment information.3 Despite all this sensitive
data, 67% of users do not password protect their devices4,
leaving their personal information accessible to malicious
individuals.

The 2013 Meeker Report6 indicated that the average
smartphone user checks their device 150 times per day.
If unlocking the device takes 2 seconds, the typical user
spends 5 minutes unlocking their device every day. This
inconvenience leads individuals to make less security-
conscious decisions like setting long timeouts before their
phone locks or even leaving it unprotected. Current efforts
to improve security convenience, such as Bluetooth login
tokens, have critical vulnerabilities which make them less
secure than simple PINs.

The current authentication model - provide credentials

3www.cnet.com/how-to/how-nfc-works-and-mobile-
payments/

4www.sophos.com/en-us/press-office/press-
releases/2011/08/67-percent-of-consumers-do-
not-have-password-protection-on-their-mobile-
phones.aspx

5www.businessinsider.com/complete-visual-
history-of-cell-phones-2011-5?op=1, www.google.
com/nexus/5/.

6www.kpcb.com/insights/2013-internet-trends



once, lock when use is over - was developed for desktop ma-
chines, and it was assumed that users would de-authenticate
upon leaving the vicinity. It is comparatively easy for a ma-
licious individual to remove a mobile device from the con-
trol of the genuine user by snatching it from a table, or even
a pocket or hand. If the user is logged in, the thief would be
fully authenticated on the stolen device; through VPN and
remote desktop apps, they may be able to gain access to the
user’s other devices. Current NIST guidelines for mobile
security do not specify any form of automatic locking as
long as someone is using the device, regardless of whether
or not they are the authorized user. Instead they recom-
mend waiting until the device is idle for a certain amount of
time before locking it.7 In the case of stolen devices, cor-
porate systems such as Symantec Mobile Security rely on
remote locking to deny unauthorized users access to mobile
devices.8 Such action can take several minutes, as the user
must either use another device or call a technical support
agent to initiate the lock.

The aforementioned flaws necessitate a fundamental
overhaul of mobile security. User authentication needs to be
both unobtrusive and continuous. By regularly conducting
unobtrusive identity checks of the mobile user, continuous
authentication verifies that it should still be in an authenti-
cated state. With this system active, if the mobile device is
stolen, it should quickly recognize the presence of an unau-
thorized user and lock itself. While biometric sensors for
fingerprint, face, voice, and iris are available in mobile plat-
forms, they are still used only for unlocking the device or
authenticating users for mobile payments. Mobile devices
possess other sensors (such as gyroscope, magnetometer,
accelerometer, GPS, and touchscreen), which could assist in
user authentication by deriving soft biometrics such as gait
as well as typing/scrolling pattern. Figure 3 shows an exam-
ple framework for mobile authentication based on physical
and behavioral biometric traits; this framework is both con-
tinuous and unobtrusive.

In this paper, we outline our development of an un-
obtrusive continuous authentication system based on face
matching. Performance and accuracy for unconstrained
face matching is improved by integrating data from the de-
vice’s accelerometer, gyroscope, and magnetometer (collec-
tively called the Inertial Measurement Unit or IMU) to cor-
rect camera sensor orientation and hence face image. Our
approach is generalizable to any mobile device with a front-
facing camera and IMU.

7nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-53r4.pdf

8www.symantec.com/content/en/us/enterprise/
fact\_sheets/b-mobile-security-DS-21260542.pdf

Figure 2. Sensors (a) and axes (b) of a Nexus 5 Android phone.

2. Background
Android is currently the most popular mobile phone op-

erating system, with 84.7% of the current market share.9

Unlike iOS, the second most popular system, Android al-
lows device sensors to be accessed from background ser-
vices. Android devices also commonly have multi-core pro-
cessors, allowing continuous authentication to run seam-
lessly in the background while the user accesses other appli-
cations. Development of the proposed continuous authenti-
cation system will be focused on the Google Nexus 5.10 The
Nexus line incorporates the full set of device sensors and
allows for low-level operating system modification, an im-
portant characteristic for continuous authentication research
and prototype building.

Continuous authentication monitors and authenticates
the user throughout the use of the device [16]. While pass-
words and tokens are commonly used in one-shot authen-
tication, the characteristic of periodical monitoring in con-
tinuous authentication excludes them for our task. Instead,
continuous authentication systems have been seeking bio-
metric trait-based approaches.

The published literature on continuous authentication
can be grouped into two main categories: computers (desk-
top and laptop) and smart mobile devices. Continuous
authentication systems periodically verify the identity of
a user by collecting both physical (e.g., fingerprint [15],
face [15, 8]) and behavioral (e.g., keystroke dynamics
[14, 7, 10], and mouse movement [6, 13]) traits. For mobile
devices, the touch screen and internal sensors (e.g., gyro-
scope, accelerometer, GPS, and Bluetooth) become the im-
portant sources for collecting behavioral traits such as touch
pattern [2, 3, 17], motion pattern [1], gait [9, 18], location
and context [4] information.

Obtrusive authentication requires users’ cooperation
which significantly limits its usability. By contrast, unob-
trusive authentication does not require cooperative input by
the user; the system performs authentication by automati-
cally collecting person specific information, such as various
biometric traits and other sensory data. Compared with ob-

9www.idc.com/prodserv/smartphone-os-market-
share.jsp

10The Nexus 6, the successor to the Nexus 5, was not available at the
time this study began.



Figure 3. A general framework of unobtrusive continuous authentication on mobile based on biometric system.

Figure 4. Flowchart of the implementation of the proposed unob-
trusive continuous authentication system based on unconstrained
face images and IMU data. tdelay (default 30 seconds) controls
how often the user’s identity is verified, while Tlogin (default 0.6)
controls the minimum confidence needed to keep the user authen-
ticated.

trusive authentication based on PIN or token, an unobtrusive
authentication system may provide relatively low-security
access control, but has a higher usability. For the mobile
device domain, the usability is critical, because users do not
want to break from their workflow to verify their identity.

The main contributions of this paper are: (i) Real-time
orientation correction of face images captured unobtru-
sively on a mobile device using gyroscope, accelerometer
and magnetometer data, thereby improving the face match-
ing accuracy. (ii) A person-specific (one-vs-all) method for
discriminating the genuine mobile device user from a ma-
licious individual. (iii) A prototype continuous authentica-
tion system on a mobile device.

3. Proposed continuous authentication system

Figures 3 and 4 illustrate the proposed mobile device
continuous authentication system using unconstrained face
images and IMU data. Ideally, such a system would be truly
continuous, monitoring for impostors at all times. However,
this is not feasible due to battery and processing power con-
straints. Instead, periodic sampling is used to determine the
user’s identity, with tdelay seconds between two sampling
sessions, lasting tsample seconds. Each sampling session is
compared with the enrollment face image set (e.g., multiple
face images of the genuine user). Simply thresholding the
face match score Sface for each sample removes a great deal
of granularity and will inevitably result in a large number of
false accepts and rejects. Rather, a function fmap of the face
score is used to increment or decrement a second score, the
login score Slogin. This score represents the confidence in
the user’s identity and is set to 1.0 when the user logs in. At
this point, the face template can be updated if necessary, as
this is the only time that the authorized user has been ob-
trusively verified to be using the device.11 If the login score
ever drops below a confidence threshold Tlogin (in this case
0.6), the user is immediately logged out of the device. The
confidence in the user’s identity should not simply change
when a face score is obtained, but should rather decrease
in the time between such instances. This decrease is speci-
fied by the integral of a function fdec over the time between
sessions. fdec can be constant or can vary with time since
the last login. The latter allows for greater control over the
system behavior.

3.1. Uprightness correction

It is unreasonable to assume that mobile device users will
keep their devices oriented perfectly vertical at all times. If
the camera is oriented with some z-axis rotation (see Fig.
2(b)) relative to the face, face detection and matching will
become more difficult [11]. In most cases, a face will be
oriented so that the major axis has a small angle from ver-
tical in face roll. Given this assumption, a correction of
the input image so that a face will appear at a similar angle

11The issue of face spoofing is not addressed here



from vertical in the image will significantly improve match-
ing accuracy. Such a correction can be accomplished either
through interpretation of image data or through fusion with
additional sensor data.

As noted above, Android devices are equipped with an
IMU which can be used to determine the in-plane device
rotation θ w.r.t. the z-axis. This information, along with the
width and height of the input and output images, is used to
define a rotation matrix M :

M =

0 0 wo
2

0 0 ho
2

0 0 1

×

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

×

0 0 −wi
2

0 0 −hi
2

0 0 1

 ,
where wi and hi are the width and height of the raw image
to be rotated, respectively; wo and ho are the width and
height of the output image, respectively. These are specified
separately to allow for a larger output image so that none of
the input image data is “cut off” by the rotation.

One challenge in obtaining an accurate value of θ, and
by extension M , is that the Android IMU does not provide
data at user-requested times. Rather, it samples the sensors
at one of several selectable fixed rates (ranging from 5 to
200 Hz on the Nexus 5) and provides only those values.
Slower sampling rates are more desirable because they con-
sume less battery power than high sampling rates; however,
lower sampling rates lead to higher error in rotation. The
motion of the device is continuous, and fixed rate sampling,
especially at a lower data rate than the camera provides, ne-
glects the change in orientation experienced between the
capture of IMU data and camera data, which may be sig-
nificant. If the corrected images are viewed as a continuous
stream, this phenomenon manifests itself as a “jittering” of
the image.

Using the times the orientation and image are captured,
the estimate of θ can be refined. After image data is cap-
tured, the system waits for the next IMU value to be re-
ported. The device rotation θimg at the instant of capture is
then interpolated.

Formally, given the rotation measurements θi and θj
from the IMU, taken at times ti and tj (ti < tj), respec-
tively, a linear interpolation for the device rotation θimg at
time timg (ti < timg < tj) when the image was captured
can be calculated as

θimg = f(θi, θj , ti, tj , timg) = θi
tj − timg

tj − ti
+θj

timg − ti
tj − ti

.

Once the rotation matrix M is obtained, it is applied to
the image. To handle clipping in the case where the output
image dimensions are insufficient to hold the rotated image,
M−1 is used to transform the coordinates (x, y) of each
pixel in the output image to the corresponding input image
coordinates (x′, y′). The transformed coordinates do not
exactly correspond to pixels in the input image, so bilinear

Figure 5. Examples of face image orientation correction using gy-
roscope, accelerometer and magnetometer data. (a) Captured face
images, and (b) corrected face images in which faces are kept up-
right during the rotation of the mobile device.

interpolation is used to estimate the true color of the rotated
pixel. Examples of the original and corrected face images
of one subject are shown in Fig. 5.

This method only corrects for sensor orientation, not face
orientation. Since phone users may sometimes incline their
heads at the same angle as the device screen in order to bet-
ter view it, the assumption of head uprightness may not al-
ways hold. To this end, it is best that the orientation cor-
rected image be matched in addition to, rather than instead
of, the uncorrected image to maximize face detection prob-
ability and matching performance.

3.2. Person-specific modeling

Considering the unconstrained and uncooperative sce-
narios in continuous authentication, relying on a single
uprightness-corrected face image is not reliable. Therefore,
we propose to match all the uprightness-corrected face im-
ages in a session to the enrollment face images of the mobile
device user. Using a score-level fusion (with sum rule) of
the face match scores from individual testing and enroll-
ment face images, we generate a match score between a
session of testing face images and the device user’s enrolled
face images. We use the commercial off-the-shelf (COTS)
PittPatt SDK as our baseline face matcher.

Continuous authentication is composed of periodic one-
shot authentication, each of which determines whether the
current user is the enrolled user or not. This can be for-
mulated as a one-vs-all classification problem. Therefore, a
person-specific model should be used to take into account
changes in face appearance over time to represent the “one”
class. All the enrollment face images of a mobile device
user are used as the samples of “one” class. To get a better
representation for the “all” class, we used the entire collec-
tion of face images in the Labeled Faces in the Wild (LFW)
database which includes 13, 233 face images of 5, 749 sub-
jects.12

Given the training data of the “one” and “all” classes of
a mobile device user, we extract features using Biologically

12vis-www.cs.umass.edu/lfw/



Figure 6. Function fdec(t) mapped from 0 to 10 minutes

Inspired Model (BIM) [12] from six different facial com-
ponents (the forehead, eyebrows, eyes, nose, mouth and the
whole face) of each subject, where the facial components
are located using a method proposed in [5]. Different from
[5], we use PittPatt instead of Viola-Jones face detector
to detect the (unconstrained) face before performing facial
landmark detection. We train a one-vs-all SVM classifier
with RBF kernel for each of the six facial components, and
the six per-component classifiers are fused in score-level (z-
score normalization is applied) to produce a person-specific
classifier.

3.3. Confidence functions

As mentioned above, two functions, fmap and fdec are
being used to compute the confidence score. fdec maps the
decrease in the confidence score over time, accounting for
the decline in confidence in the user’s identity between ses-
sions. fdec is a piecewise function with a single parameter,
tlogout, which is defined as the time the device should take
to log the user out if no face match data is obtained.

tswitch = 1.5 ∗ tlogout − 6

fdec(t) =

{ − −0.1
t2switch

t2 t < tswitch

−0.1 t ≥ tswitch
.

fdec dictates the slope of Slogin at any given time (except
for discontinuities when face match data is obtained). The
quadratic portion corresponds to a cubic decline in login
confidence. Confidence that the genuine user is in control
of the device should decline slowly after login, when the
identity of the user is confirmed, and should decline faster
as time goes on. The slope is bounded at -0.1 per minute to
prevent a loss of confidence that is too rapid. fdec is plotted
in Fig. 6. All times are specified in minutes. If faces are
not detected during a given image capture, fdec completely
governs the behavior of the system. In cases where there
are multiple sessions where there is no face detected, the
reaction will vary based on the time since login. The system
is more tolerant to multiple sessions without a face that are
encountered when the device has not been in use for long
than it is once the device has been used for several minutes.

Table 1. Confidence function parameters.
Parameter Value
tlogout 10 minutes
Tlogin 0.6
tsample 10 seconds
tdelay 30 seconds

Table 2. Rules used to determine the influence of a face match
score from a session on the login score. The scores at individual
FARs are calculated from an independent dataset.

Values of Sface Changes of Slogin

Sface ≥ score at 1% FAR 1.0− Slogout

Sface = score at 5% FAR 0.1× (tdelay + tsample)
Sface = score at 10% FAR 0
Sface ≤ score at 20% FAR −(1.0− Slogout)

During the continuous authentication, the face matching
score Sface of each session (calculated as session-session
match score) must be transformed into some increment or
decrement to Slogin. Values for false acceptance rate (FAR)
and true acceptance rate (TAR) at various values of Smatch

from a pilot study are used to define the cubic transforma-
tion function fmap. Table 2 defines the points to which the
function is fit.

The resulting fit function is used as fmap, which in this
case uses scores from PittPatt SDK as values of Sface

fmap =

 0.4 FAR(Sface) ≤ 1%
f ′(Sface) 1% < FAR(Sface) < 20%
−0.4 FAR(Sface) ≥ 20%

,

where f ′(Sface) = 0.608S3
face−0.853S2

face+0.648Sface.
These two functions (fmap and fdec), along with the time

of the previous session, tprev , are used to determine the lo-
gin score at time tses

Slogin(tses) = Slogin(tprev) +

∫ tses

tprev

fdecdt+ fmap(Sface).

As tdelay gets longer, it becomes more possible that fdec
will cause the login score to dip below zero between ses-
sions. To prevent the impostor from having extra time with
the device from that point to the next session evaluation,
a future (e.g. at time tfut) estimate of Slogin is calculated
using tdelay and tsample

Slogin(tfut) = Slogin(tses) +

∫ tfut

tses

fdecdt,

where tfut = tses + tdelay + tsample. The score at tfut
is compared with the login threshold Tlogin to determine if
continued access to the device is permissible. If it falls be-
low this threshold, the device is automatically locked. Note
that due to the variable amount of time needed to calculate
Smatch, tfut may not be the actual time that the login score
is next calculated.



3.4. Prototype Implementation

We provide a prototype implementation of the proposed
continuous authentication system on the Nexus 5. A ses-
sion begins with the capture of images and correction of
their orientation. One challenge is that the application of
M−1 and bilinear interpolation of the output image, while
simple operations, are time consuming to execute for the
2 × 106 pixels in a typical image. Android provides a na-
tive interface to the system hardware via RenderScript, a
Just-In-Time compiled language for performing large num-
bers of parallel operations. By porting the rotation code to
RenderScript to run on the device Graphics Processing Unit
(GPU), image uprightness correction is made to operate at
15 frames per second (fps) on the Nexus 5. For the over-
all system, images are captured using still mode instead of
video mode for better image quality, averaging 3.9 fps im-
age acquisition speed.

Following image acquisition, faces are extracted from
the images and sent to a server for evaluation. Sface is
calculated on a session-session basis by a matcher13 and is
transmitted back to the device. As shown in Figure 4, the
enrollment template is updated every time the user logs into
the device, provided at least 5 faces can be extracted from
the initial session. The last 5 enrollment sessions are used
for matching.

4. Experimental results

4.1. Face matching accuracy

Using a customized mobile application running on an
Android smartphone, we collected images of 10 partici-
pants over a period of 1-6 weeks. The application cap-
tured images at variable framerates (3.9 fps on average) and
saved IMU orientation correction data. Images were cap-
tured for one minute at a time every time the user turned
on their device and every eleven minutes subsequently (ten
minute spacing between sessions). In total, we corrected
over 250, 000 images from about 3, 600 sessions, with an
average of about 70 images per session.14 The average num-
bers of images and sessions per subject are about 25, 000
and 360, respectively.

Effectiveness of the proposed uprightness correction
method and the person-specific model was validated by re-
porting the face verification performance on this dataset,
which we divided into an enrollment set (target set) and
a testing set (query set). We randomly select 30 sessions
from each subject to make the enrollment set. The remain-
ing sessions (about 330 sessions) of each subject are used
for testing. This results in about 6,300 genuine session pairs
and 56,000 impostor session pairs for each subject. We do

13For the system evaluated in Section 4.2, the PittPatt matcher was used.
14The numbers of original and corrected images are both 250, 000.

Figure 7. Example images of one subject from our database under
different scenarios, where (a) full faces, (b) only partial faces, and
(c) no faces are captured in the images.

the random selection 5 times, and report the average per-
formance with standard deviation. The reason why only 30
sessions of each subject are used for enrollment is to better
replicate the scenarios in real applications. A mobile device
user is less likely to spend a long time (e.g., more than a few
minutes) for enrollment. We perform experiments by using
each session of images as a data point. Due to the uncon-
strained nature of the smartphone dataset, about half of the
images do not contain a face (see examples in Fig. 7(c)).

• Uprightness correction improves face matching ac-
curacy. We perform face matching on both the origi-
nal images and the uprightness corrected images using
the baseline matcher (PittPatt SDK). High true accep-
tance rate (TAR) at low false acceptance rates (FAR),
e.g., 1%, is important for the targeted applications. The
ROC curves from the original images and the upright-
ness corrected images in the FAR range of 0.1%–1%
are shown in Fig. 8(a). We can see that the proposed
automatic uprightness correction method improves the
face matching accuracy. For example, uprightness cor-
rection leads to 6% higher performance at 0.1% FAR
(40% vs. 34%). Example sessions where the up-
rightness correction improves the face matching per-
formance are shown in Fig. 9(a).

• Person-specific model outperforms the COTS
matcher. We then compare the proposed person-
specific model with the COTS matcher on the upright-
ness corrected images. The ROC curves of these two
methods in Fig. 8(b) show that the proposed person-
specific model outperforms the COTS matcher (4%
higher performance than the COTS matcher at FARs
of 0.1%–1% on average).

A score level fusion of the proposed person-specific
model with the COTS matcher achieves better perfor-



Figure 9. Examples of face detection and matching by the proposed approach. (a, c) show the original images without uprightness correc-
tion, and the face detection results, respectively; (b, d) show the uprightness corrected images and the face detection results, respectively;
(e, f) show impostor face session pairs that are wrongly accepted by COTS, but correctly rejected with the fusion of COTS and person-
specific model; (g, h) show genuine face session pairs that are wrongly rejected by COTS, but correctly accepted with the fusion of COTS
and person-specific model. (e,f,g,h) are shown at 1% FAR.

Figure 8. Performance of the proposed face matching approach.
(a) The proposed automatic uprightness correction method im-
proves the face matching accuracy; (b) The proposed person-
specific (PersonSpec) method outperforms the COTS matcher.
The fusion of the proposed person-specific method and COTS
leads to further improvement.

mance. At 1% FAR, the fusion leads to the perfor-
mance of 73% TAR, compared to the 64% for the
COTS matcher. Example sessions where the fusion
improves the performance are shown in Figs. 9(b,c).

4.2. Authentication performance

While the previous experiment was carried out in a
highly unconstrained set of environments, the verification
of authentication performance was conducted in an office
environment. 24 subjects used a device equipped with the
prototype continuous authentication application. The sub-
ject operated the device for up to 15 minutes, and the time
the user was logged out was noted. For impostor trials, the
user operated the device for about a minute, then handed the
device to an impostor, who used it until they were logged
out. Each participant performed both trials 3-5 times with
different impostors. Results are summarized in Figure 10.
For all of these trials, tlogout was set to 10 minutes, mirror-
ing suggested idle logout time from HIPAA.15

15www.hipaa.com/2009/06/access-control-
automatic-logoff-what-to-do-and-how-to-do-it/

Figure 10. Results of Genuine(a) and Impostor(b) Tests

As Figure 10 (a) shows, in over 96% of the trials, the
genuine user retained access to their device for the entire
duration of the test. Of the remaining 3 trials, the user re-
tained device access for at least 5 minutes. The early lo-
gouts can be attributed in two cases to PittPatt attempting
to match a partial face, and in the third to the user holding



Figure 11. Impostor trial with sample face images.

their head at an angle. Our future work in unconstrained
matching will attempt to detect and address these scenarios.

As indicated in Figure 10 (b), the impostor had access
to the device for less than 1 minute in the majority of tri-
als, and in 89% had access for less than 2 minutes. With
one genuine-impostor pair, the off-the-shelf matcher con-
tinually identified the impostor as a genuine user, allowing
continued access to the device. However, it is important to
note that this worst-case scenario merely offers the same
behavior as an unprotected phone, where any impostor has
unlimited access to the device as long as they continue to
use it.

Figure 11 illustrates the effect of an impostor on the face
and login score. Note that although the face similarity score
is only moderately negative, the impostor is still logged out
relatively quickly.

5. Conclusions and Future Work
We have presented a robust continuous authentication

system for mobile devices. The fusion of camera with the
device’s IMU allows for enhanced face matching perfor-
mance, boosting the effectiveness of the system. The pro-
posed person-specific model enables robust performance on
face images captured unobtrusively (in unconstrained envi-
ronments without altering user behavior). The dual confi-
dence functions proposed will allow for use of increased
granularity of face data and allow for modeling of chang-
ing confidence even between authentications. Experiments
have shown significant reduction in the time that impostors
have access to a device, as well as the high degree of us-
ability for genuine users. In future work, we will modify
the system to perform all functions on-device, eliminating
the need for a separate server for matching. Additionally,
a larger database of subjects will be collected to evaluate
matching performance on unconstrained subjects.
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