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Abstract

This paper presents a method named Discriminant Anal-

ysis on Riemannian manifold of Gaussian distributions

(DARG) to solve the problem of face recognition with image

sets. Our goal is to capture the underlying data distribution

in each set and thus facilitate more robust classification. To

this end, we represent image set as Gaussian Mixture Model

(GMM) comprising a number of Gaussian components with

prior probabilities and seek to discriminate Gaussian com-

ponents from different classes. In the light of information

geometry, the Gaussians lie on a specific Riemannian man-

ifold. To encode such Riemannian geometry properly, we in-

vestigate several distances between Gaussians and further

derive a series of provably positive definite probabilistic k-

ernels. Through these kernels, a weighted Kernel Discrim-

inant Analysis is finally devised which treats the Gaussians

in GMMs as samples and their prior probabilities as sam-

ple weights. The proposed method is evaluated by face i-

dentification and verification tasks on four most challenging

and largest databases, YouTube Celebrities, COX, YouTube

Face DB and Point-and-Shoot Challenge, to demonstrate its

superiority over the state-of-the-art.

1. Introduction

In contrast to traditional face recognition task based on

single-shot images, image-set based face recognition prob-

lem attracts more and more attention recently. For the task

of image-set based face recognition, both the gallery and

probe samples are image sets, each of which contains many

facial images or video frames belonging to one single per-

son. Compared with recognition from single image, the nu-

merous images in each set naturally cover more variations

in the subject’s face appearance due to changes of pose, ex-

pression and/or lighting. Therefore, how to represent the

variations and further discover invariance from them are the

key issues of image-set based face recognition [23, 36, 34].

To represent the variations in an image set, a probabilis-

tic model seems a natural choice. Among many others,

Gaussian Mixture Model (GMM) can precisely capture the

data variations with a multi-modal density, by using a vary-

ing number of Gaussian components. Theoretically, after

modeling image set by GMM, the dissimilarity between any

two image sets can be computed as the distribution diver-

gence between their GMMs. However, divergence in distri-

bution is not adequate for classification tasks that need more

discriminability. Especially, when the gallery and probe sets

have weak statistical correlations, larger fluctuations in per-

formance were observed [23, 36, 6, 18, 13].

To address the above problem, in this paper we propose

to learn a discriminative and compact representation for

Gaussian distributions and thus measure the dissimilarity of

two sets with the distance between the learned representa-

tions of pair-wise Gaussian components respectively from

either GMM. However, Gaussian distributions lie on a spe-

cific Riemannian manifold according to information geom-

etry [1]. Therefore, discriminant analysis methods devel-

oped in the Euclidean space cannot be applied directly. We

thus propose a novel method of Discriminant Analysis on

Riemannian manifold of Gaussian distributions (DARG). In

this method, by exploring various distances between Gaus-

sians, we derive corresponding provably positive definite

probabilistic kernels, which encode the Riemannian geom-

etry of such manifold properly. Then through these kernels,

a deliberately devised weighted Kernel Discriminant Anal-

ysis is utilized to discriminate the Gaussians from different

subjects with their prior probabilities incorporated.

1.1. Previous work

For face recognition with image sets, a lot of relevant

approaches have been proposed recently. According to how

to model the image sets, these approaches can be roughly

classified into three categories: linear/affine subspace based

methods, nonlinear manifold based methods and statistical
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model based methods. They are briefly reviewed as follows.

Linear/affine subspace based methods [38, 23, 6, 18,

39, 14, 16, 8, 10] assume that each image set spans a lin-

ear or affine subspace. Among them, the Mutual Sub-

space Method (MSM) [38] and Discriminant-analysis of

Canonical Correlations(DCC) [23] represent each image set

as a single linear subspace and compute the principal an-

gles of two linear subspaces for classification. While in

[6, 18, 39, 10], each image set is approximated with one or

multiple convex geometric region (the affine or convex hull)

and a convex optimization is used to match the closest “vir-

tual” points. Further Chen et al. [8] model image sets sim-

ilarly, but propose a Dual Linear Regression Classification

(DLRC) method to perform classification by a regression

technique. Grassmann Discriminant Analysis (GDA) [14]

and Grassmann Embedding Discriminant Analysis (GEDA)

[16] both formulate the image sets as points (i.e. linear sub-

space) on the Grassmann manifold, and define Grassmann

kernel based on principal angles to conduct discriminative

learning on the manifold.

Since the image sets usually have a relatively large num-

ber of images and cover complicated variations of view-

point, lighting and expressions, linear/affine subspace based

methods are hard to satisfactorily model the nonlinear vari-

ations in facial appearance. To address the limitation of

subspace modeling, image set is modeled by more sophis-

ticated nonlinear manifold in the literature [36, 33, 13, 9].

In Manifold-Manifold Distance (MMD) [36], each image

set is assumed to span a nonlinear manifold that can be

partitioned into several local linear models and the simi-

larity between manifolds is converted into integrating the

distances between pair-wise subspaces. Manifold Discrim-

inant Analysis (MDA) [33] further extends MMD to work

in a discriminative feature space rather than the original im-

age space. Cui et al. [13] adopt the similar set modeling

strategy with MMD, but align the image sets with a generic

reference set for more precise local model matching. Chen

et al. [9] propose to utilize joint sparse approximation to

search the nearest local linear subspaces and consequently

measure the image set distance using distance between the

nearest pair of subspaces.

In the literature, statistical models have also been em-

ployed for image set modeling due to their capacity in char-

acterizing the set data distribution more flexibly and faith-

fully. Two pioneering works [31, 2] in earlier years repre-

sent the image set with some well-studied probability den-

sity functions, such as single Gaussian in [31] and Gaus-

sian Mixture model (GMM) in Manifold Density Method

(MDM) [2]. The dissimilarity between two distributions

is then measured by the classical Kullback-Leibler Diver-

gence (KLD). Since both approaches are unsupervised, it

was observed that their performance may have large fluctu-

ations when the gallery and probe data sets have weak statis-

tical correlations [23]. More recently, Covariance Discrim-

inative Learning(CDL) [34] is proposed to model the im-

age set by its natural second-order statistic, i.e. covariance

matrix, and further derive a Riemannian kernel function to

conduct discriminative learning on the manifold spanned

by non-singular covariance matrices. While only covari-

ance information is modeled in CDL, Lu et al. [28] propose

to combine multiple order statistics as features of image

sets, and develop a localized multi-kernel metric learning

(LMKML) algorithm for classification.

Besides the above three main trends, there also exist

some other methods with different set models. For instance,

video-based dictionary [11] and joint sparse representation

[12] generalize the works of sparse representation and dic-

tionary learning from still image based to video-based face

recognition. More recently, Lu et al. [27] propose to learn

discriminative features and dictionaries simultaneously. In

addition, an Adaptive Deep Network Template (ADNT)

[17] uses deep model to represent image sets. For these

works, classification is conducted based on the minimum

reconstruction error from the learned class-specific models.

1.2. Overview of our approach

In this paper we propose a new method named Discrim-

inant Analysis on Riemannian manifold of Gaussian distri-

butions (DARG) for face recognition with image sets. Fig. 1

shows the overall schematic flowchart of our approach.

As mentioned above, we aim at not only modeling the

rich variations in each image set but also discovering dis-

criminative invariant information hidden in the variations.

Therefore, our method includes two main stages: model-

ing each image set statistically with GMM and discriminant

analysis of the component Gaussians of the GMMs. The

first stage is quite standard, which can be achieved by EM-

like techniques. Each component Gaussian is then repre-

sented by its sample mean and covariance matrix, as well as

an associated prior probability.

The second stage is however non-trivial. In the light of

information geometry, Gaussian distributions lie on a Rie-

mannian manifold [1]. But unfortunately, most existing

discriminant analysis techniques only work in Euclidean s-

pace. This motivates us the idea of Discriminant Analy-

sis on the Riemannian manifold of Gaussian distributions

(DARG). Specifically, by exploring various distances be-

tween Gaussian distributions, we first derive several kernel-

s to embed the Riemannian manifold of Gaussians into a

high-dimensional Hilbert space, which is then further dis-

criminatively reduced to a lower-dimensional subspace.

Our kernel-based solution respects the Riemannian ge-

ometry of the manifold and simultaneously enables seam-

less combination with conventional discriminative algo-

rithms in Euclidean space. In our implementation, by treat-

ing the Gaussians in GMMs as samples and their prior prob-
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Figure 1: Conceptual illustration of the proposed approach. (a) Training image sets in the gallery. Without loss of generality,

we only demonstrate the image sets of three subjects here, with different colors denoting different subjects. (b) Modeling each

image set with GMM. Different legends (i.e. star, circle and triangle) denote the component Gaussians of different subjects.

Each component Gaussian is parameterized by its sample mean and covariance matrix. (c) Discriminant analysis for the

Gaussians. By using kernels defined on Riemannian manifold of Gaussian distributions M, the Gaussian components are

mapped to a high-dimensional Hilbert space H, which is further discriminatively reduced to a lower-dimensional subspace

R
d. As in space H and R

d each component Gaussian is transformed to a vector, the legends are changed from solid shapes

to hollow ones to reflect this changes.

abilities as sample weights, we devise a weighted Kernel

Discriminant Analysis, which aims to maximize the margin

between Gaussians from different classes.

After each component Gaussian is transformed to a vec-

tor representation in the low-dimensional Euclidean space

R
d, classification can be easily performed by exploiting the

minimal distance between component Gaussians from ei-

ther GMM of the gallery and probe image sets.

From above description, we can summarize that the pro-

posed DARG method has three key ingredients: (a) GM-

M modeling of image sets, (b) Kernels derived from vari-

ous Gaussian distances, (c) Kernel discriminative learning.

These key ingredients are respectively detailed in the fol-

lowing three sections.

2. GMM modeling

In face recognition with image sets, it is often insufficient

to model the face image set with one single model, because

the image sets are usually highly nonlinear and cover large

data variations. Therefore, a multi-modal density mixture

model, i.e. Gaussian Mixture Models (GMM), is utilized to

represent these variations efficiently in this study.

Formally, given an image set containing K images,

denoted by X = {x1, x2, ..., xK}, where xj is the D-

dimensional feature vector of the j-th image, we start with

estimating GMM by the Expectation-Maximization (EM)

algorithm. The estimated GMM can be written as:

G(x) =

m
∑

i=1

wigi(x),

gi(x) = N (x|µi,Σi),

(1)

where x denotes the feature vector of an image in this set,

gi(x) is a Gaussian component with prior probability wi,

mean vector µi, and covariance matrix Σi. To facilitate sub-

sequent processing, a small positive perturbation is added to

the diagonal elements of this covariance matrix, which can

make the matrix non-singular.

As an optimization method, the EM algorithm often gets

stuck to local optima, and hence is particularly sensitive to

the initialization of the model. The simplest way to initial-

ize GMM is to set a few clusters of data points randomly or

by k-means clustering. However, different image sets usu-

ally have varying numbers of samples and thus the initial

number of Gaussian components for each set should also be

determined according to the set size. Considering the non-

linear data distribution in image set, we resort to the local

linear model construction algorithm in [33, 35], i.e. Hierar-

chical Divisive Clustering (HDC), which is able to generate

the initialization adaptively and efficiently.

3. Kernels derived from various Gaussian dis-

tances

By GMM modeling, each image set that typically con-

tains tens to hundreds of image samples is reduced to a

number of Gaussian components with prior probabilities,

which lie on a specific Riemannian manifold. Since Gaus-

sian distribution functions have jointly encoded both the

first order (mean) and second order (covariance) statistics, it

is nontrivial to manipulate them with traditional algorithms

in Euclidean space. Inspired by recent progress of learning

on manifold [14, 16, 34, 20, 15], we derive corresponding

positive definite kernels to encode the geometry of mani-
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fold of Gaussians. Unlike existing methods, the kernel here

is a measure of similarity between probability distributions

rather than similarity between points in a feature space [7].

For constructing probabilistic kernels for Gaussians, we

investigate the statistical distances quantifying the differ-

ence between two statistical distributions. The important

and well established statistical distances include the follow-

ing: f-divergence such as Kullback-Leibler Divergence and

Hellinger distance, Bhattacharyya distance, Mahalanobis

distance, Bregman divergence, Jensen-Shannon divergence,

etc. Besides, there are also some distances specifically for

Gaussians, such as the distance based on Lie Group [26, 24],

the distance based on Siegel Group [5], etc. Because pos-

itive definite kernels can define valid Reproducing Kernel

Hilbert Space (RKHS) and further allow the kernel meth-

ods in Euclidean space to be generalized to nonlinear man-

ifolds, it should be guaranteed that the defined kernels are

positive definite. Therefore, we study several representative

distances that can be computed in closed-form and further

derive provably positive definite probabilistic kernels.

3.1. KullbackLeibler Kernel

A common distance between Gaussian distributions is

Kullback-Leibler Divergence (KLD). Formally, given two

Gaussian distributions gi = (µi,Σi) and gj = (µj ,Σj),
their KLD is computed by

KLD(gi‖gj) =
1

2

(

tr(Σ−1
j Σi) + (µj − µi)

TΣ−1
j (µj − µi)

− ln (
detΣi

detΣj
)−D

)

,

(2)

where D is the feature dimension and thus the dimension of

Gaussian distributions.

By exponentiating the symmetric KLD (a.k.a. Jeffreys

divergence), we define Kullback-Leibler kernel for Gaus-

sian distributions as follows,

KKLD(gi, gj) = exp(−
KLD(gi‖gj) +KLD(gj‖gi)

2t2
), (3)

where t is the kernel width parameter. Hereinafter, it is sim-

ilarly used in the following kernel functions.

3.2. Bhattacharyya Kernel

Bhattacharyya Distance (BD) is also a widely-used dis-

tance measure in statistics. For Gaussian distributions gi
and gj , BD can be computed as follows,

BD(gi, gj) =
1

8
(µi − µj)

TΣ−1(µi − µj)

+
1

2
ln

(

detΣ
√

detΣi detΣj

)

,

(4)

where Σ =
Σi+Σj

2 .

Then, by exponentiating BD, we define Bhattacharyya

kernel for Gaussian distributions as

KBD(gi, gj) = exp

(

−
BD(gi, gj)

2t2

)

. (5)

3.3. Hellinger Kernel

Hellinger Distance (HD) is closely related to BD, and

can be formulated as

HD(gi, gj) =
√

1−BC(gi, gj), (6)

where Bhattacharyya Coefficient (BC) is

BC(gi, gj) = exp(−BD(gi, gj)). (7)

Thus the corresponding Hellinger kernel is

KHD(gi, gj) = exp

(

−
HD2(gi, gj)

2t2

)

. (8)

3.4. Kernel based on Lie Group

Under the framework of information geometry, it is de-

veloped in [26] that the space of D-dimensional Gaussian

distributions can be embedded into a space of (D+1)×(D+
1) symmetric positive definite (SPD) matrices. The embed-

ding is accomplished via mapping from affine transforma-

tion (µ,Σ1/2) into a simple Lie Group and then mapping

from the Lie Group into the space of (D+1)×(D+1) SPD

matrices. Thus Log-Euclidean distance [3] can be readily

used to measure the distance in this space of (D+1)×(D+
1) SPD matrices. Let Pi and Pj denote the SPD matrices

corresponding to two Gaussian distributions gi and gj re-

spectively. Then, the distance based on Lie Group (LGD) is

defined as follows:

LGD(Pi, Pj) = ‖ log(Pi)− log(Pj)‖F , (9)

where P = |Σ|−
1

D+1

(

Σ+ µµT µ

µT 1

)

.

Then by exponentiating the square of LGD, we define

a kernel based on Lie Group to measure the similarity be-

tween (D+1)× (D+1) SPD matrices, which further mea-

sures the similarity between Gaussians as follows.

KLGD(gi, gj) = exp

(

−
LGD2(Pi, Pj)

2t2

)

. (10)

3.5. Kernel based on Mahalanobis distance and
LogEuclidean distance

Besides the above statistical distances, we can also mea-

sure the similarity respectively for the two main statistics

in Gaussian distribution, i.e. mean and covariance matrix.

While the former lies in the Euclidean space, the latter, af-

ter regularized to symmetric positive definite (SPD) matrix,

lies on the SPD manifold. We choose Mahalanobis distance

(MD) to measure the dissimilarity between means

2051



MD(µi, µj) =
√

(µi − µj)T (Σ
−1
i +Σ−1

j )(µi − µj), (11)

and Log-Euclidean distance (LED) [3] for covariance ma-

trices

LED(Σi,Σj) = ‖ log(Σi)− log(Σj)‖F . (12)

Then we tend to fuse the two distances and construct an

integrated kernel for Gaussians. However, simply exponen-

tiating their sum cannot yield a positive definite kernel and

will suffer from a problem in numerical stability. Instead,

we derive kernels from the two distances respectively and

then linearly combine them to form a valid kernel for Gaus-

sian distributions. Specifically, the kernel based on MD is

defined as

KMD(µi, µj) = exp

(

−
MD2(µi, µj)

2t2

)

, (13)

while the kernel based on LED is formulated by

KLED(Σi,Σj) = exp

(

−
LED2(Σi,Σj)

2t2

)

. (14)

Finally we fuse the two kernels in a linear combination form

to measure the similarity between Gaussians as follows,

KMD+LED(gi, gj)

= γ1KMD(µi, µj) + γ2KLED(Σi,Σj),
(15)

where γ1 and γ2 are the combination coefficients.

3.6. Positive definiteness of the kernels

Following the definition, we can easily prove that such

kernels (except Kullback-Leibler kernel) derived above are

positive definite. For space limitation, please refer to our

supplementary materials for detailed proof and analysis of

the validity and positive definiteness of these kernels. While

currently it is hard to theoretically justify the positive def-

initeness of Kullback-Leibler kernel, it can still be used as

a valid kernel and the numerical stability is guaranteed by

shifting the kernel width [29].

4. Kernel discriminative learning

Exploiting the kernels for Gaussian distributions intro-

duced in the above section, we can naturally extend the ker-

nel algorithms in Euclidean space to Riemannian manifold

of Gaussian distributions. Here we develop a weighted Ker-

nel Discriminant Analysis to discriminate component Gaus-

sians of different classes with their prior probabilities incor-

porated as sample weights.

Formally, suppose we have n image sets belonging to c

classes for training. From their GMM models, we collect

all the N Gaussian components denoted by g1, g2, ..., gN ,

which lie on a Riemannian manifold M. Among them, the

Gaussians from the i-th class are denoted as gi1, g
i
2, ..., g

i
Ni

,

(
∑c

i=1 Ni = N), with each gij accompanied a prior

probability wi
j . Let k(gi, gj) = 〈φ(gi), φ(gj)〉 denote

a kernel function (which can be any one of the kernel-

s in Sec. 3) measuring similarity of two Gaussians, where

φ(·) maps points on M into a high-dimensional Hilbert

space H. For a local Gaussian gij , we denote kij =

[k(gij , g1), ..., k(g
i
j , gN )]T ∈ R

N .

To perform discriminative learning with the samples gij
as well as their corresponding weights wi

j , in this study we

develop a weighted extension of KDA, which can be formu-

lated as maximizing the following optimization objective

J(α) using kernel trick similar to [4].

J(α) =

∣

∣αTBα
∣

∣

|αTWα|
, (16)

where

B =
c
∑

i=1

Ni(mi −m)(mi −m)T ,

W =

c
∑

i=1

1

wi

Ni
∑

j=1

(kij −mi)(k
i
j −mi)

T ,

(17)

and

mi =
1

Niwi

Ni
∑

j=1

wi
jk

i
j , m =

1

N

c
∑

i=1

1

wi

Ni
∑

j=1

wi
jk

i
j , (18)

Note that wi =
∑Ni

j=1 w
i
j is used to normalize the

weights of samples belonging to a single class to guaran-

tee the sum of them is equal to 1. Then the optimization

problem can be reduced to solving a generalized eigen-

value problem: Bα = λWα. Supposing its (c − 1)
leading eigenvectors are α1, α2, ..., αc−1, we obtain A =
[α1, α2, ..., αc−1] ∈ R

N×(c−1). Furthermore, the discrim-

inative projection of a new Gaussian gt ∈ M is given by

zt = AT kt, where kt = [k(gt, g1), ..., k(gt, gN )]T ∈ R
N .

In the testing stage, given a test image set modeled by a

GMM, we first compute the discriminative representations

of its component Gaussians. Then face recognition can be

simply achieved by finding the maximal one among all pos-

sible cosine similarities between the discriminative compo-

nent Gaussian representations of the test set and those of all

the training sets. The Algorithm 1 summarizes the training

and testing process of our proposed DARG method.

5. Discussion

While our method represents the image set with a statis-

tical model (i.e. GMM) comprising of multiple local models

(i.e. Gaussian components) and performs set classification

in a discriminative way, it bears certain relationship and al-

so has its unique merits comparing with related works in the

literature. We highlight them in the following.
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Algorithm 1 DARG

Input:
GMMs and labels of n image sets for training:
{G1, l1}, ..., {Gn, ln}. Denote the number of Gaus-
sians in the k-th image set by Nk, and the Gaussian-
s from all the training GMMs by g1, ..., gN , where
N = Σn

k=1Nk;

GMM of an image set Gte for test, and its component
Gaussians are denoted by gte1 , ..., gteM ;

Output:
Label of the test image set lte.

1: Compute ktri = [k(gi, g1), ..., k(gi, gN )]T and ktej =

[k(gtej , g1), ..., k(g
te
j , gN )]T by (3) (or any of (5), (8),

(10), (15)), i ∈ [1, N ], j ∈ [1,M ];
2: Compute transformation matrix A by maximizing (16);

3: Compute projections zk1 , ..., z
k
Nk

of the Nk Gaussians

belonging to the k-th image set, k ∈ [1, n];
4: Compute projections zte1 , ..., zteM of the M Gaussians

belonging to the test set;

5: Compute cosine similarity cos(ztei , zkj ) between ztei
and zkj ;

6: Compute k̂ = argmax
k

cos(ztei , zkj ), for all i ∈ [1,M ],

j ∈ [1, Nk];
7: return lte = lk̂;

Differences from other statistical model based meth-

ods [31, 2, 34, 28] . Compared with [31] using single Gaus-

sian and [2] using GMM, the main difference is that dis-

criminative information is used in our method such that it

can achieve significantly improved resistance to the weak

statistical correlation between training and test data. CDL

[34] models the image set with its covariance matrix, but ig-

nores the mean information. LMKML [28] combines mul-

tiple order statistics as features of image sets, but simply

treats both the 2nd order covariance matrix and the 3rd or-

der tensor as vectors which ignores the inherent manifold

geometric structure.

Differences from other multi-model based methods

[36, 33, 9]. MMD [36], MDA [33] and SANS [9] all em-

ploy multi-model set representation, but they obtain the lo-

cal models by a hard partition that neglects the probabilistic

distribution of the set data, which is mainly encoded with

the Gaussian distribution in this work. MMD considers the

mean and variance of data, but makes no use of discrimi-

native information. MDA is a discriminative extension of

MMD, but only involves mean information during discrim-

inative learning. SANS measures image set distance with

average distance of the nearest subspace pairs extracted by

sparse approximation, but the distance is based on the rel-

atively weaker principal angles [34, 28]. Again, SANS is

non-discriminative.

Differences from other discriminative methods [33,

(a) (b)

(c) (d)

Figure 2: Some examples of the datasets. (a) YTC (b) COX

(c) YTF (d) PaSC

14, 16]. MDA [33] uses Euclidean distance between mean

vectors to measure the distance between image sets, and G-

DA [14]/GEDA [16] utilize the subspace modeling without

considering mean information. In contrast, our approach

endeavors to measure the distribution distinction of local

Gaussian models with distance incorporating both mean

and covariance information.

In summary, our contributions mainly lie in three folds:

1) we propose a new discriminative framework for learning

with Gaussians on Riemannian manifold; 2) we derive a se-

ries of kernels for Gaussians with proved positive definite-

ness; 3) a weighted extension of KDA is devised to classify

Gaussians with component weights incorporated.

6. Experiments

6.1. Databases description and settings

We used four most challenging and largest datasets: Y-

ouTube Celebrities (YTC) [22], COX [19], YouTube Face

DB (YTF) [37] and Point-and-Shoot Challenge (PaSC)

[30]. In our experiments, their protocol and performance

metric all follow the original literature. Examples in the

four datasets are shown in Fig. 2.

We performed face identification experiments on YTC

and COX. YTC contains 1,910 videos of 47 subjects. We

conducted ten-fold cross validation experiments and ran-

domly selected three clips for training and six for testing

in each of the ten folds. This enables the whole testing set-

s in our experiment to cover all of the 1,910 clips in the

database, which is similar with protocol in [33, 34, 13, 27].

COX contains 3,000 video sequences from 1,000 different

subjects and has a training set containing 3 video sequences

for each subject. Since the dataset contains three settings

of videos captured by different cameras, we conducted ten-

fold cross validation respectively with one setting of video
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clips as gallery and another one as probe.

To evaluate the experimental performance on face verifi-

cation, we used another two datasets, YTF and PaSC. YTF

contains 3,425 videos of 1,595 subjects. We followed the

same settings with benchmark tests in [37]. 5,000 video

pairs are collected randomly and half of them are from

the same subject, half from different subjects. These pairs

are then divided into 10 splits and each split contains 250

’same’ pairs and 250 ’not-same’ pairs. PaSC consists of

2,802 videos of 265 people, and half of these videos are

captured by controlled video camera, the rest are captured

by hand held video camera. It has a total of 280 sets for

training and verification experiments were conducted using

control or handheld videos as target and query respectively.

For all the four datasets, a cascaded face detector [32]

was used to detect faces in the frames, and then the faces

were resized to 20 × 20 on YTC, 32 × 40 on COX, 24 ×
40 on YTF and 64 × 80 on PaSC as previous works. In

order to eliminate lighting effects, histogram equalization

was implemented for the gray features of faces in the four

datasets above. Note that for PaSC, we further extracted the

dense SIFT feature [25] from the pre-processed faces.

6.2. Comparison results and analysis

We compared our performance to several groups of state-

of-the-art methods for face recognition with image sets:

(1) Linear/affine subspace based methods:

MSM [38], DCC [23], AHISD [6], CHISD [6], SANP

[18], GDA [14] and GEDA [16].

(2) Nonlinear manifold based methods:

MMD [36] and MDA [33].

(3) Statistical model based methods:

SGM [31], MDM [2] and CDL [34].

Except SGM and MDM, the source codes of above

methods are provided by the original authors. Since the

codes of SGM and MDM have not been publicly avail-

able, we implemented them using the same GMM esti-

mation code in our approach to generate Gaussian mod-

el(s). For fair comparison, the important parameters of

each method were empirically tuned according to the rec-

ommendations in the original references. For all meth-

ods, we first used PCA to reduce the data dimension by

preserving 95% of data energy on YTC, COX and YTF,

and 80% of data energy on PaSC. In MMD and MDA, we

used the default parameters as the standard implementation

in [36, 33]. For MSM, AHISD, CHISD and SANP, we

searched the PCA energy when learning the linear subspace

through {80%, 85%, 90%, 95%}, and reported the best re-

sult for each method. For both GDA and GEDA, the di-

mension of Grassmannian manifold was searched to find

the best result. In CDL, we used KDA for discriminative

learning and the same setting as [34] on YTC, COX and

PaSC. Note that on YTF we used a kernel version of SILD

P
P
P
P
P

Method

Dataset
YTC

COX

COX-11 COX-12 COX-23 COX-21 COX-31 COX-32

MSM [38] 61.14 45.53 21.47 10.96 39.83 19.36 9.50

AHISD [6] 63.69 57.54 37.99 18.57 47.91 34.91 18.79

CHISD [6] 66.46 56.87 30.10 14.80 44.37 26.44 13.68

DCC [23] 66.81 62.51 66.11 50.59 56.12 63.84 45.21

GDA [14] 65.91 72.26 80.70 74.36 71.44 81.99 77.57

GEDA [16] 66.83 76.73 83.80 76.59 72.56 82.84 79.99

MMD [36] 65.30 38.29 30.34 15.24 34.86 22.21 11.44

MDA [33] 66.98 65.82 63.01 36.17 55.46 43.23 29.70

SGM [31] 52.00 26.74 14.32 12.39 26.03 19.21 10.50

MDM [2] 62.12 30.70 24.98 14.30 28.90 31.72 19.30

CDL [34] 69.70 78.37 85.25 79.74 75.59 85.83 81.87

DARG-KLD 72.21 71.93 80.11 73.65 70.87 81.03 76.99

DARG-BD 72.49 77.55 85.02 79.11 76.01 85.13 82.12

DARG-HD 68.33 74.98 82.34 75.11 70.96 81.34 78.08

DARG-LGD 68.72 76.74 84.99 78.02 72.93 83.88 81.54

DARG-MD+LED 77.09 83.71 90.13 85.08 81.96 89.99 88.35

Table 1: Identification rates (%) on YTC and COX. Here,

“ COX-ij ” represents the experiment using the i-th set of

videos as gallery and the j-th set of videos as probe.

Method
MSM

[38]

AHISD

[6]

CHISD

[6]

SANP

[18]

MMD

[36]

CDL

[34]

DARG-

MD+LED

Result 62.54 66.50 66.24 63.74 64.96 69.74 73.01

Table 2: Comparisons on YTF. The performance is evaluat-

ed by the area under ROC curve (AUC) in this table.

❳
❳
❳

❳
❳
❳❳

Setting

Method DCC

[23]

GDA

[14]

GEDA

[16]

MDA

[33]

CDL

[34]

DARG-

MD+LED

Control 4.44 13.45 10.84 5.75 13.87 18.73

Handheld 4.10 10.80 8.52 2.88 12.40 18.32

Table 3: Comparisons on PaSC. Note that the verification

rates (%) at a false accept rate (FAR) of 0.01 on PaSC is

reported in this table. Here, “ Control ” denotes the exper-

iment using the control videos as target and query, while

“ Handheld ” implies that the handheld videos are used as

target and query.

[21] rather than KDA in CDL and our approach because we

cannot get the exact label , but only know whether an image

pair belong to the same subject on YTF. In our method, for

kernel based on MD and LED, we fixed the fusing coeffi-

cient γ1 as 1, and γ2 was searched in the range of [0.5,1,2].

For face identification task, Tab. 1 shows the average

recognition accuracy over multiple-fold trials on YTC and

COX. For our proposed framework, we tested the perfor-

mance of kernels induced from different distances between

Gaussians, which is denoted by “DARG-” in the table.

2054



For face verification task, Tab. 2 shows the area under

ROC curve (AUC) on YTF. The comparisons on PaSC are

shown in Tab. 3 and performance is evaluated by the verifi-

cation rate (%) at a false accept rate (FAR) of 0.01.

From these tables, it is shown that our proposed approach

achieves superior performances in most tests.

(1) As shown in Tab. 1, among the non-discriminant

methods, compared with the single modeling methods

MSM, AHISD, CHISD, SGM, most of the multi-model

methods such as MMD, MDM achieve better performance

on both datasets. This supports our motivation to apply mul-

tiple Gaussian components to model each image set.

(2) In the discriminant methods, kernel-based method-

s GDA, GEDA and CDL including our proposed method

yield better results than DCC and MDA. This is because D-

CC and MDA learn the discriminant metrics in Euclidean

space, whereas most of them classify the sets in non-

Euclidean spaces. In contrast, these kernel-based methods

extract the subspace-based statistics in Riemannian space

and match them in the same space, which is more favorable

for the set classification task.

(3) Compared with GDA, GEDA and CDL, our method

achieves the best performance. This is because that they

only utilize the relatively weak information of set variations

while our method attempt to model the data distribution and

jointly fuse both mean and covariance information.

(4) Among four databases, all methods have relatively

poor performances on PaSC, due to the low-quality and

large motion blur of face region images on PaSC. Besides,

we did not exploit external data to expand the training set,

which also makes recognition more difficult on PaSC.

(5) As shown in Tab. 1, the kernel based on MD and

LED works best among the derived kernels for Gaussians.

The reason can be attributed to the fusing scheme of two

statistics (i.e. mean and covariance) in the kernel combina-

tion level. This scheme is less dependent on Gaussian hy-

pothesis and thus alleviates the measurement error in case

of distribution deviating from Gaussian in real-world data.

6.3. Comparison of computation time

In Tab. 4, we compared time costs of our method and

some closely related methods on YTC using an Intel i7-

3770, 3.40 GHz PC. For our method, we take DARG-

MD+LED as an example and the average number of Gaus-

sian components is about 7. Clearly, our testing speed

is comparable to those of the state-of-the-art methods.

Though our training time is relatively long, it is not a big

problem as the training stage can be conducted offline.

6.4. Comparison of different Gaussian component
numbers

Fig. 3 shows how the identification rate changes for our

proposed DARG method with kernel based on MD and LED

❳
❳
❳
❳
❳

❳❳
Process

Method AHISD

[6]

DCC

[23]

GDA

[14]

MDA

[33]

CDL

[34]

DARG-

MD+LED

Training N/A 44.85 3.86 11.34 4.15 114.70

Testing 0.28 0.32 0.42 0.31 0.32 0.80

Table 4: Computation time (seconds) of different methods

on YTC for training and testing (classification of one image

set).
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Figure 3: Comparison of different average Gaussian com-

ponent numbers using “ DARG-MD+LED ” on YTC for

face identification task.

when using different average numbers of Gaussian com-

ponents on YTC. Note that the number of Gaussian com-

ponents is different for each image set. Hence, the aver-

age number of Gaussian components is not necessarily in-

teger value. The results show favorably stability within a

proper range of Gaussian numbers. We get the best result

with an average of about 7 Gaussian components in GM-

M, which balances the accuracy of image set modeling and

local Gaussian statistics estimating.

7. Conclusion

This paper contributes a discriminant analysis on the

Riemannian manifold of Gaussian distributions for face

recognition with image sets. Our method differs from tradi-

tion methods in learning for Gaussian distributions on man-

ifold rather than vectors in Euclidean space. We utilize G-

MM to represent each image set by a number of Gaussian

components with prior probabilities. Then, a series of sim-

ple but valid probabilistic kernels were derived from var-

ious distances between Gaussians. Through these kernel-

s, a weighted Kernel Discriminant Analysis technique was

devised to maximize the margin between Gaussians from

different classes. The experiments have demonstrated the

superiority of our proposed approach over state-of-the-art

methods. For future work, we are studying more proba-

bilistic kernels for Gaussians and more conventional learn-

ing methods will be extended to Riemannian manifold of

Gaussian distributions.
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