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Abstract

In video based face recognition, great success has been

made by representing videos as linear subspaces, which typ-

ically lie in a special type of non-Euclidean space known as

Grassmann manifold. To leverage the kernel-based meth-

ods developed for Euclidean space, several recent meth-

ods have been proposed to embed the Grassmann mani-

fold into a high dimensional Hilbert space by exploiting

the well established Project Metric, which can approximate

the Riemannian geometry of Grassmann manifold. Never-

theless, they inevitably introduce the drawbacks from tra-

ditional kernel-based methods such as implicit map and

high computational cost to the Grassmann manifold. To

overcome such limitations, we propose a novel method to

learn the Projection Metric directly on Grassmann manifold

rather than in Hilbert space. From the perspective of mani-

fold learning, our method can be regarded as performing a

geometry-aware dimensionality reduction from the original

Grassmann manifold to a lower-dimensional, more discrim-

inative Grassmann manifold where more favorable classifi-

cation can be achieved. Experiments on several real-world

video face datasets demonstrate that the proposed method

yields competitive performance compared with the state-of-

the-art algorithms.

1. Introduction

Nowadays, linear subspaces have proven a powerful rep-

resentation for video based face recognition [43, 41, 10, 30,

27, 12, 11, 16, 7], where each video can be treated as a set of

face images without considering temporal information. As

well recognized, a set of face images of a single person can

be well approximated by a low dimensional linear subspace

[43]. The benefits of using subspaces lie in its much lower

computational cost of comparing large data sets and its well

justified capacity of modeling complex appearance varia-

tions in the set data [12]. However, such advantages come

along with the challenge of representing and handling the

subspaces appropriately, with their unique geometric struc-

ture being concerned.

As is mostly studied in [42, 28, 9, 32, 12, 34, 21, 22],

linear subspaces with the same dimensionality reside on a

special type of Riemannian manifold, i.e. Grassmann man-

ifold, which has a nonlinear structure. As a consequence,

popular techniques developed for Euclidean spaces are not

directly eligible for the Grassmannian data. To tackle this

problem, a number of works [42, 9, 32, 1, 12, 11, 5, 16,

15] studied and explored the Riemannian geometry of the

Grassmann manifold. Among them, quite a few works

[42, 9, 12, 11, 5, 16, 15] exploited the projection mapping to

represent each element (i.e., linear subspace) on the Grass-

mann manifold with its projection operator. The resulting

projection distance, i.e., Projection Metric developed in [9],

is related to the true geodesic distance on the Grassmann

manifold at an infinitesimal scale [15]. By encoding the ge-

ometry of the Grassmann manifold, traditional algorithms

developed in Euclidean space can be extended to new ver-

sions on the nonlinear manifold. For example, Cetingul [5]

et al. proposed a new clustering approach on the Grassmann

manifold, and Harandi et al. [15] presented a Grassmannian

Dictionary Leaning approach.

In this paper, we focus on the problem of conduct-

ing discriminant analysis on the Grassmann manifold for

video based face recognition. Under the projection map-

ping framework, most of recent studies [12, 11, 16, 14, 36]

exploited a series of positive definite kernel functions on

Grassmann manifold to first embed the manifold into a high

dimensional Hilbert space, which actually obeys Euclidean

geometry. Then, the flattened manifold is mapped into a

lower-dimensional Euclidean space (see Fig.1 (a)-(b)-(d)-

(e)). The Grassmann kernels allow us to treat the Grass-

mann manifold as if it were a Euclidean vector space. As a

result, kernel learning algorithms (e.g., kernel discriminant
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Figure 1. Conceptual illustration of the proposed Projection Metric Learning (PML) on the Grassmann Manifold. Traditional Grassmann

discriminant analysis methods take the away (a)-(b)-(d)-(e) to first embed the original Grassmann manifold G(q,D) (b) into high dimen-

sional Hilbert space H (d) and then learn a map from the Hilbert space to a lower-dimensional, optionally more discriminative space R
d

(e). In contrast, the newly proposed approach goes the way (a)-(b)-(c) to learn the metric/mapping from the original Grassmann manifold

G(q,D) (b) to a new more discriminant Grssmann manifold G(q, d) (c).

analysis [2]) in vector spaces can be extended to their coun-

terparts on Grassmann manifold. However, several draw-

backs of traditional kernel learning algorithms are also in-

troduced to the Grassmann manifold, such as the deriva-

tion of kernel function typically involves a complex theo-

retical/technical problem for satisfying Mercer’s theorem to

generate valid Reproducing Kernel Hilbert Space (RKHS).

Furthermore, the transformed data in Hilbert space are usu-

ally implicitly known1 and only a measure of similarity be-

tween them is available through the derived kernel function.

Last but not least, the computational burden of constructing

the involved kernel matrix is considerably high scaling with

the size of data samples.

To overcome the limitations of existing Grassmann dis-

criminant analysis methods, by endowing the well-studied

Projection Metric with Grassmann manifold, we attempt to

learn a Mahalanobis-like matrix on the Grassmann mani-

fold without resorting to kernel Hilbert space embedding.

In contrast to the kernelization scheme, our approach direct-

ly works on the original manifold and exploits its geometry

to learn a representation that still benefits from useful prop-

erties of the Grassmann manifold. Furthermore, the learned

Mahalanobis-like matrix can be decomposed into the trans-

formation for dimensionality reduction, which maps the

original Grassmann manifold to a lower-dimensional, more

discriminative Grassmann manifold (see Fig.1 (a)-(b)-(c)).

While in the literature a couple of subspace-based dimen-

sionality reduction techniques [10, 30, 27] have also been

1Although one can employ Nystrom approximation to obtain a vec-

torised representation of kernel data, this is only an approximation of ex-

plicit map.

proposed, they attempt to pursue a transformation using the

canonical correlation based distance, which is not a struc-

tured metric [12]. Accordingly, these techniques fail to

explore the data structure of Grassmann manifold spanned

by the linear subspaces. Different from them, by explor-

ing the Grassmannian geometry, our method directly learns

the Projection Metric which is eligible to induce a posi-

tive definite kernel. Consequently, it is qualified to serve

as a pre-processing step for other kernel-based methods on

Grassmann manifold by feeding them more discriminative

manifold-valued data and thus further improve them.

2. Related work

In this section, we review in more details on several di-

mensionality reduction techniques for linear subspaces, ex-

isting kernel-based Grassmann discriminant analysis meth-

ods, and two manifold-to-manifold map learning works in

previous literature.

In early years, there are several dimensionality reduc-

tion methods for linear subspaces such as Constrained Mu-

tual Subspace Method (CMSM) [10, 30] and Discriminant

Canonical Correlations (DCC) [27]. The CMSM approach

exploits a constrained subspace where the subspace pairs

from different classes have small canonical correlations.

However, this method is very susceptible to the dimension-

ality of the constrained subspace. The DCC algorithm at-

tempts to maximize the canonical correlations of within-

class subspace pairs and minimizes the canonical correla-

tions of between-class subspace pairs by transforming the

original linear subspaces to low-dimensional ones. How-

ever, as noted in [12], when all subspaces are sharply con-
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centrated on one point, the max correlation distance used

in CMSM and DCC will be close to zero for most data.

Furthermore, the max correlation distance is not a metric

and may not be used together with more sophisticated algo-

rithms. Lastly, these techniques fail to explore the specif-

ic data structure of linear subspaces, which typically reside

on Grassmann manifold, and may thus learn an undesirable

transformation for them.

More recently, there are several approaches [12, 11, 16,

14, 36] to treat linear subspaces on Grassmann manifold

and learn kernel-based discriminant functions on this spe-

cific manifold. For example, by deriving Grassmann kernels

based on Projection Metric, Grassmann Discriminant Anal-

ysis (GDA) [12] first embeds the Grassmann manifold into

high dimensional Hilbert space and then learns a map to a

lower-dimensional, more discriminative space under Fish-

er LDA criteria. Grassmannian Graph-embedding Discrim-

inant Analysis (GGDA) [16] further improves GDA un-

der a more general graph embedding discriminative learn-

ing framework. Although these methods can be employed

for supervised classification, they are limited to the Mercer

kernels which yields implicit projection, and thus restricted

to use only kernel-based classifiers. Moreover, the compu-

tational complexity of these kernel-based methods increases

with the number of training sample.

In this paper, by exploiting Riemannian geometry of

the Grassmann manifold with Projection Metric, we alter-

natively learn a Mahalanobis-like (i.e., symmetric positive

semidefinite (PSD)) matrix on the PSD manifold without

relying on Hilbert space embedding. In the literature, we

find two relevant works [31, 35] also optimize a param-

eterized matrix on a certain type of manifold. However,

their ideas are totally different from ours, that is, they at-

tempt to optimize a transformation matrix on Stiefel mani-

fold for dimension reduction with data vectors as elements

lying in Euclidean space. In contrast, our work learns a

Mahalanobis-like matrix on PSD manifold for the prob-

lem of projection metric learning with linear subspaces as

elements residing on Grassmann manifold. Additionally,

the learned Mahalanobis-like matrix can be also regarded

as a dimension reduction transformation from the original

Grassmann manifold to a lower-dimensional, more discrim-

inative Grassmann manifold. To our knowledge, there are

only two similar works [24, 13] seeking to learn the map-

ping from manifold to manifold. However, the work [24]

learns the mapping from high-dimensional spheres to sub-

manifolds of decreasing dimensionality while the other one

[13] seeks an embedding of high-dimensional SPD mani-

fold into a low-dimensional SPD manifold.

3. Preliminaries

Before presenting our approach, let’s begin with a brief

summary of the basic Riemannian geometry of Grassmann

manifold, which provides the grounding for the proposed

algorithm. Details on Grassmann manifold and related top-

ics can be found in [42, 28, 9, 32, 1, 18, 15].

A Grassmann manifold G(q,D) is the set of q-

dimensional linear subspaces of the RD and it is a q(D− q)
dimensional compact Riemannian manifold. An elemen-

t of G(q,D) is a linear subspace span(Y ), which is spanned

by its orthonormal basis matrix Y of size D × q such that

Y TY = Iq , where Iq is the identity matrix of size q × q.

Under the projection mapping Φ(Y ) = Y Y T frame-

work, an alternative strategy proposed in [9] is to represent

the elements on the Grassmann manifold with projection

matrices Y Y T . As noted in the work [18], the projection

embedding is a diffeomorphism from a Grassmann mani-

fold onto idempotent symmetric matrices of rank q, i.e., it

is a one-to-one, continuous, differentiable mapping with a

continuous, differentiable inverse. As a result, there exists

one such unique projection matrix corresponding to each

point on the Grassmann manifold.

Since the projection operator Φ(Y ) is a D×D symmet-

ric matrix, a natural choice of inner product is 〈Y1,Y2〉Φ =
tr(Φ(Y1)

TΦ(Y2)). The inner product is invariant to the

specific realization of a subspace, and induces a distance:

dp(Y1Y
T
1
,Y2Y

T
2
) = 2−1/2‖Y1Y

T
1
− Y2Y

T
2
‖F . (1)

where ‖·‖F denotes the matrix Frobenius norm. Since such

distance satisfies the axioms of a metric, it is also called Pro-

jection Metric [12]. As proved in [15], the Projection Metric

is able to approximate the true Grassmannian geodesic dis-

tance up to a scale of
√
2, and thus has become one of the

most popular metrics on the Grassmann manifold.

4. Projection Metric Learning

In this section, we first formulate the problem of our

proposed Projection Metric Learning (PML) on Grassmann

manifold for video based face recognition. Then we de-

scribe the optimization of our problem.

4.1. Formulation

Assume m video sequences of face frames are given as

{X1,X2, . . . ,Xm}, where Xi ∈ R
D×ni describes a data

matrix of the i-th video containing ni frames, each frame

being expressed as a D-dimensional feature vector. In these

data, each video belongs to one of face classes denoted by

Ci. The i-th video Xi is represented by a q-dimensional

linear subspace spanned by an orthonormal basis matrix

Yi ∈ R
D×q , s.t. XiX

T
i ≃ YiΛiY

T
i , where Λi, Yi corre-

spond to the matrices of the q largest eigenvalues and eigen-

vectors respectively.

Given a linear subspace span(Yi) on Grassmann mani-

fold (as discussed before, we interchangeably denote YiY
T
i
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as the elements on the manifold), we seek to learn a generic

mapping f : G(q,D)→ G(q, d) that is defined as

f(YiY
T
i ) = W TYiY

T
i W = (W TYi)(W

TYi)
T . (2)

where W ∈ R
D×d (d ≤ D), is a transformation matrix

of column full rank. With this mapping, the original Grass-

mann manifold G(q,D) can be transformed into a lower-

dimensional Grassmann manifold G(q, d). However, except

the case W is an orthogonal matrix, W TYi is not general-

ly an orthonormal basis matrix. Note that only the linear

subspaces spanned by orthonormal basis matrix can form a

valid Grassmann manifold. To tackle this problem, we tem-

porarily use the orthonormal components of W TYi defined

by W TY
′

i to represent an orthonormal basis matrix of the

transformed projection matrices. As for the approach to get

the W TY
′

i , we will give more details in the next subsec-

tion. Now, we first study the Projection Metric on the new

Grassmann manifold and the proposed objection function in

the following.

Learned Projection Metric. The Projection Metric of any

pair of transformed projection operators W TY
′

i Y
′T
i W ,

W TY
′

j Y
′T
j W is defined by:

d2p(W
TY

′

i Y
′T
i W ,W TY

′

j Y
′T
j W )

= 2−1/2‖W TY
′

i Y
′T
i W −W TY

′

j Y
′T
j W ‖2F

= 2−1/2tr(PAijA
T
ijP ).

(3)

where Aij = Y
′

i Y
′T
i − Y

′

j Y
′T
j and P = WW T . Since

W is required to be a matrix with column full rank, P is a

rank-d symmetric positive semidefinite (PSD) matrix of size

D ×D, which has a similar form as Mahalanobis matrix.

Discriminant Function. The discriminant function is de-

signed to minimize the projection distances of any within-

class subspace pairs while to maximize the projection dis-

tances of between-class subspace pairs. The matrix P is

thus achieved by the objective function J(P ) as:

P ∗ = argmin
P

J(P ) = argmin
P

(Jw(P )− αJb(P )). (4)

where α reflects the trade-off between the within-class com-

pactness term Jw(P ) and between-class dispersion term

Jb(P ), which are measured by average within-class scat-

ter and average between-class scatter respectively as:

Jw(P ) =
1

Nw

m∑

i=1

∑

j:Ci=Cj

2−1/2tr(PAijA
T
ijP ). (5)

Jb(P ) =
1

Nb

m∑

i=1

∑

j:Ci 6=Cj

2−1/2tr(PAijA
T
ijP ). (6)

where Nw is the number of pairs of samples from the same

class, Nb is the number of pairs of samples from different

classes, Aij = Y
′

i Y
′T
i − Y

′

j Y
′T
j and P is the PSD matrix

that needs to be learned.

4.2. Optimization

The optimization problem Eq.4 includes the variable P

as well as Y
′

. Since Y
′

is not explicitly expressed by P , it

is hard to find a closed form solution for P . We propose an

iterative solution for one of the two variables at a time by

fixing the other and repeating for a certain number of itera-

tions. To make the columns of W TY be orthonormal, one

of the proposed iterative optimizations involves normaliza-

tion of Y . Since P is a rank-d PSD matrix of size D ×D

as discussed before, we exploit the nonlinear Riemannian

Conjugate Gradient (RCG) method [9, 1] on the manifold

of PSD matrices to seek the optimal P when fixing Y
′

.

Normalization of Y . For all i, the matrix Yi need to be

normalized to Y
′

i for a fixed P = WW T so that the

columns of W TYi are orthonormal. Specifically, we per-

form QR-decomposition of W TYi s.t. W TYi = QiRi,

where Qi ∈ R
D×q is the orthonormal matrix composed

by the first q columns and Ri ∈ R
q×q is the invertible

upper-triangular matrix. Since Ri is invertible and Qi is

orthonormal, we can make W TY
′

i become an orthonormal

basis matrix by normalizing Yi as:

Qi = W T (YiR
−1

i ) → Y
′

i = YiR
−1

i . (7)

Computation of P . The optimal PSD matrix P is comput-

ed for a given Yi by applying the nonlinear RCG algorithm

on the manifold of rank-d PSD matrices of size D × D.

With P being on the outside of the trace in Eq.5 and Eq.6,

the discriminative function J(P ) in Eq.4 is transformed as:

P ∗ = argmin
P

tr(PSwP )− αtr(PSwP ). (8)

where Sw and Sb are defined as:

Sw =
1

Nw

m∑

i=1

∑

j:Ci=Cj

2−1/2tr(AijA
T
ij). (9)

Sb =
1

Nb

m∑

i=1

∑

j:Ci 6=Cj

2−1/2tr(AijA
T
ij). (10)

As the Conjugate Gradient (CG) algorithm developed in

Euclidean space, the RCG algorithm on the Riemannian

manifold also runs in an iterative procedure (see Algorithm

2). An outline for the iterative part of this algorithm goes

as follows: at the k-th iteration, find Pk by searching the

minimum of J along the geodesic γ in the direction Hk−1

from Pk−1 = γ(k − 1), compute the Riemannian gradient

∇P J(Pk) at this point, choose the new search direction to

be a combination of the old search direction and the new

gradient, i.e., Hk ← −∇P J(Pk) + ητ(Hk−1,Pk−1,Pk),
and iterate until convergence. In the procedure, the Rieman-

nian gradient ∇P J(Pk) can be approximated from its cor-

responding Euclidean gradient DP J(Pk) by ∇P J(Pk) =
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Algorithm 1 Projection Metric Learning (PML)

Input: All linear subspaces span(Yi) ∈ G(q,D)
1. W ← ID×d,P ← ID.

2. Do iterate the following:

3. Normalize Yi by using Eq.7 for all i.

4. Compute Sw and Sb by using Eq.9 and Eq.10.

5. Optimize P in Eq.8 by using Algorithm 2.

6. Update W by computing the matrix square root of P .

7. End

Output: The PSD matrix P

Algorithm 2 Riemannian Conjugate Gradient (RCG)

Input: The initial PSD matrix P0

1. H0 ← 0,P ← P0.

2. Repeat

3. Hk ← −∇P J(Pk) + ητ(Hk−1,Pk−1,Pk).
4. Line search along the geodesic γ with the direction Hk

from Pk−1 = γ(k − 1) to find Pk = argminP J(P ).
5. Hk−1 ←Hk, Pk−1 ← Pk.

8. Until convergence

Output: The PSD matrix P

DP J(Pk)−PkP
T
k DP J(Pk), and τ(Hk−1,Pk−1,Pk) de-

notes the parallel transport of tangent vector Hk−1 from

Pk−1 to Pk. For a more detailed treatment, we refer the

reader to [9, 1]. As for now, we just need to compute the

Euclidean gradient DP J(Pk) of Eq.8 as:

DP J(Pk) = 2(Sw − αSb)Pk. (11)

The main procedure for our Projection Metric Learning

(PML) is given in Algorithm1. Once the optimal PSD ma-

trix P is found, a comparison of any two linear subspaces

is achieved by using Eq.3. Although providing a theoreti-

cal proof of convergence of this optimization algorithm is

hard, we find it can generally make the objective function

Eq.8 converge to a stable and desirable solution after a few

iterations, which will be shown in our experiments.

5. Experiments

In this section, we present extensive experiments to

evaluate our proposed PML method on two video based

face recognition tasks: video based face identification and

video based face verification. We used YouTube Celebrities

(YTC) [26] for video based face identification, YouTube

Face (YTF) [40] and Point-and-Shoot Face Recognition

Challenge (PaSC) [3] for video based face verification task.

We will first briefly overview these datasets used in the ex-

periments, followed by a description and discussion of the

experiments.

In all experiments, each video was treated as an image

set with the data matrix Xi = [x1,x2, . . . ,xni
], where

xj ∈ R
D is the vectorised descriptor of the j-th frame.

Through the singular value decomposition (SVD) of Xi, the

image set can be modeled as a linear subspace. Specifically,

we use the leading q left singular-vectors as the orthonormal

basis matrix Yi to represent a q-dimensional linear subspace

for Xi, which be treated as a point on the Grassmann mani-

fold G(q,D). In the following experiments, the setting of q

is determined by cross-validation.

To study the effectiveness of the proposed PML method,

we compare four unsupervised subspace-based methods

including Projection Metric (PM) [9], Mutual Subspace

Method (MSM) [43], Affine Hull based Image Set Distance

(AHISD) [6] and Convex Hull based Image Set Distance

(CHISD) [6]. In addition, we also test several state-of-the-

art supervised subspace-based learning methods including

Constrained Mutual Subspace Method (CMSM) [10], Set-

to-set distance metric learning (SSDML) [45], Discrimina-

tive Canonical Correlations (DCC) [27], Grassmann Dis-

criminant Analysis (GDA) [12] and Grassmannian Graph-

Embedding Discriminant Analysis (GGDA) [16]. For fair

comparison, the key parameters of each method are empir-

ically tuned according to the recommendations in the orig-

inal works. For MSM/AHISD, the first canonical correla-

tion or leading component is exploited when comparing two

subspaces. For CMSM/DCC, the dimensionality of the re-

sulting discriminant subspace is tuned from 1 to 10. For

SSDML, its key parameters are tuned and empirically set

as: λ1 = 0.001, λ2 = 0.5, the numbers of positive and

negative pairs per sample are 10 and 20 respectively. For

GDA/GGDA, the final dimensionality is set c − 1 (c is the

number of face classes in training). In GGDA, the other pa-

rameter β is tuned at the range of {1e2, 1e3, 1e4, 1e5, 1e6}.
For our PML, the parameter α is set to 0.2.

5.1. Video based Face Identification

The YouTube Celebrities (YTC) [26] is a quite challeng-

ing and widely used video face dataset. It has 1,910 video

clips of 47 subjects collected from YouTube. Most clips

contain hundreds of frames, which are often low resolu-

tion and highly compressed with noise and low quality (see

Fig.2). Each face in YTC is resized to a 20 × 20 image as

[38, 29] and pre-processed by the histogram equalization to

eliminate lighting effects. Then we extract gray feature for

each face image. Following the prior works [37, 38, 29], we

conduct ten-fold cross validation experiments, i.e., 10 ran-

domly selected gallery/probe combinations. In each fold,

one person has 3 randomly chosen videos for the gallery

and 6 for probes. In this experiment, each video is repre-

sented by a linear subspace of order 10. Finally, the average

recognition rates of different methods are reported.
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Figure 2. Examples of YouTube Celebrities (YTC) dataset.

Method YTC

MSM [43] 60.25 ± 3.05

PM [9] 62.17 ± 3.65

AHISD [6] 63.70 ± 2.89

CHISD [6] 66.62 ± 2.79

CMSM [10] 63.81 ± 3.70

SSDML [45] 68.85 ± 2.32

DCC [27] 65.48 ± 3.51

GDA [12] 65.02 ± 2.91

GGDA [16] 66.37 ± 3.52

PML 66.69 ± 3.54

PML-GDA 68.08 ± 3.78

PML-GGDA 70.32 ± 3.69

Table 1. Video based face identification results on YTC dataset.

Here, the results are mean rank-1 face recognition rates with

standard deviation.

We report the performances of the state-of-the-art meth-

ods on this dataset in Tab.1. The results show that our

proposed method PML outperforms the baseline methods

by learning the Projection Metric on the Grassmann man-

ifold. The performances of our method is comparable to

the state-of-the-art methods. Since the learned PSD matrix

in our method can be decomposed into the transformation-

s to yield a low-dimensional manifold, this manifold can

be fed into the methods GDA and GGDA which explore

the same Riemannain metric (i.e., Projection Metric). As

shown in Tab.1, both the PML-GDA and the PML-GGDA

improve the original methods (i.e., GDA and GGDA) and

outperform the other competing methods.

On this dataset, there are several state-of-the-art methods

[39, 37, 38, 29, 17, 20] with other kinds of set modeling or

other kinds of classifiers. Among them, we implement PLS-

based Covariance Discriminant Learning (CDL) and Lo-

calized Multi-Kernel Metric Learning (LMKML) methods.

Their performances are 70.21% and 70.30% respectively,

Figure 3. Examples of YouTube Face (YTF) dataset.

Figure 4. Examples of Point-and-Shoot Challenge (PaSC) dataset.

which demonstrate our PML-GGDA method can achieve

the state-of-the-art.

5.2. Video based Face Verification

For video face verification task, we conduct experiments

on two challenging large-scale datasets: YouTube Face

(YTF) [40] and Point-and-Shoot Face Recognition Chal-

lenge (PaSC) [3]. The YTF [40] contains 3,425 videos of

1,595 different persons collected from the YouTube web-

site. In this database, there exist large variations in pose,

illumination, and expression in each video sequence. The

PaSC [3] includes 2,802 videos of 265 people carrying out

simple actions. Every action was filmed by two cameras:

a high quality, 1920×1080 pixel, camera on a tripod and

one of five alternative handheld video cameras. The tripod-

based data serves as a control. The handheld cameras have

resolutions ranging from 640×480 up to 1280×720. As

shown in Fig.3 and Fig.4, there are some examples of YTF

and PaSC datasets.

On YTF, we follow the standard evaluation protocol

[40] to perform standard, ten-fold, cross validation, pair-

matching tests. Specifically, we use the officially provided

5,000 video pairs, which are equally divided into 10 folds.

Each fold contains 250 intra-personal pairs and 250 inter-

personal pairs. On PaSC, there are two video face ver-

ification experiments: control-to-control and handheld-to-

handheld experiments. In both of the two experiments, the
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Method YTF

MSM [43] 65.20 ± 1.97

PM [9] 65.12 ± 2.00

AHISD [6] 64.80 ± 1.54

CHISD [6] 66.30 ± 1.21

CMSM [10] 66.46 ± 1.54

SSDML [45] 65.38 ± 1.86

DCC [27] 68.28 ± 2.21

GDA [12] 67.00 ± 1.62

GGDA [16] 66.56 ± 2.07

PML 67.30 ± 1.76

PML-GDA 70.88 ± 1.69

PML-GGDA 70.04 ± 2.19

Table 2. Video based face verification results on YTF dataset.

Here, the results represent the mean accuracies with standard de-

viations.

target and query sigsets contains the same set of videos. The

task was to verify a claimed identity in the query video by

comparing with the associated target video. Since the same

1,401 videos served as both the target and query sets,‘same

video’ comparisons were excluded.

In our experiments, we directly crop the face images

according to the provided data and then resize them into

24 × 40 pixels for YTF as [8] and 256 × 256 pixels for

PaSC. On YTF dataset, we extract the raw intensity fea-

ture of resized video frames. On PaSC dataset, we had also

conducted experiments using gray features, but found the

highest performance is extremely low (around 10%). There-

fore, we employ the Caffe [23] to extract the state-of-the-

art Deep Convolutional Neural Network (DCNN) feature of

the video frames. The DCNN model is pretrained on CFW

[44], and then fine-tuned on the data from the training sets

of PaSC and COX [19] datasets. In the experiments on YTF

and PaSC, each video sequence is modeled as a linear sub-

space of order 10.

Tab.2 lists the mean accuracies and standard deviations

on YTF, and Fig.5 shows the ROC for the video based face

verification on YTF. Tab.3 tabulates the verification rates

of different methods on PaSC when the false accept rate is

0.01. On YTF dataset, since DCC [27], GDA [12] and GG-

DA [16] are not specifically designed for pair-wise based

face verification, we modify their original LDA-like part

as its pairwise version (like the two works [33, 25]) by

constructing the within-class scatter matrix from intra-class

pairs and the between-class scatter matrix from inter-class

pairs. The results in Tab.2 and Tab.3 show that our PML

Method PaSC-control PaSC-handheld

MSM [43] 35.80 34.56

PM [9] 35.65 33.60

AHISD [6] 21.96 14.29

CHISD [6] 26.12 20.97

CMSM [10] 36.67 36.22

SSDML [45] 29.19 22.89

DCC [27] 38.87 37.53

GDA [12] 41.88 43.25

GGDA [16] 43.35 43.09

PML 37.25 37.23

PML-GDA 42.93 43.64

PML-GGDA 43.63 43.95

Table 3. Video based face verification results when false accept

rate is 0.01 on PaSC dataset. Here, the PaSC-control/handheld

indicates the experiments with control/handheld videos.
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Figure 5. ROC curve for video based face verification on YTF

dataset.

has achieved comparable performances as the state-of-the-

art methods. After feeding the new transformed Grassmann

manifold learned by PML, GDA and GGDA consistently

gain improvement for video based face verification on the

two datasets. Note that on PaSC, we extract the state-of-

the-art DCNN feature and find most of the comparative set-

based methods significantly outperform (our method has a

significant gain of around 18% above) the state-of-the-art

methods that were evaluated in [4], where the best perfor-

mance is 26% in the handheld experiment.
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Figure 6. Convergence characteristics of the optimization

algorithm of the proposed method: (a) depicts the values of our

objective function varying with different number of iterations on 4

folds of YTF. (b) shows the convergence to a close maximum with

4 different random initialization on one of 10 folds of YTF.
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Figure 7. Mean accuracies of the proposed method with different

dimensionalities of the target manifold: (a) The curve with squares

is for YTC while the one with circles is for YTF. (b) The curve

with stars is for PaSC-Control while the one with diamonds is for

PaSC-handheld.

Methods CMSM SSDML DCC GDA GGDA PML

Train 22.25 30.03 23.15 974.14 1306.13 33.71

Test 9.25 23.15 8.87 278.71 420.17 9.44

Table 4. Average computation time (seconds) of different methods

on the YTF dataset for training and testing (verification for one

pair of comparing videos).

5.3. Discussion

Although we do not offer a proof of convergence or

uniqueness of the proposed optimization algorithm, its con-

vergence to a global maximum is confirmed experimental-

ly. Fig.6 (a) shows some examples of the learning itera-

tion. The examples are for the learning using 4 folds on the

YTF dataset. The value of objective function J for all cas-

es converges to a stable value after a few iterations starting

with the initial value P = I . On one of the four folds (see

Fig.6 (a)), the values of cost function from 1 to 10 iterations

and the value at 100 iteration are: 7.69, 8.47, 8.57, 8.58,

8.59, 8.59, 8.58, 8.58, 8.59, 8.58 and 8.58, which shows

our method can converge to a stable value with more iter-

ations. In addition, we also test our method after only 1

iteration, and the results are 64.27% (YTC); 66.34% (YT-

F); 35.47%, 35.98% (PaSC), which shows the initial solu-

tion has not reached the best performance. Furthermore, as

shown in Fig.6 (b), we observe that the proposed optimiza-

tion algorithm converges to very close values irrespective of

the initial value of P .

As our PML method can be considered as a dimension-

ality reduction technique on Grassmann manifold, we al-

so care about the impact of the setting of the dimension-

ality (i.e., d in this paper) of the target Grassmann mani-

fold. Therefore, we compare the results of our methods with

different d on YTC, YTF and PaSC. As shown in Fig.7, we

find that the impact of d on our method tends to be mild

when it is large enough. The accuracies with the last setting

of d on each dataset are all the best and are used as the final

results respectively reported in Tab.1, Tab.2, Tab.3.

Lastly, we also compare the running time of several com-

peting methods on the YTF dataset. Tab. 4 lists their train-

ing time and testing time on a 3.40GHz PC. As can be seen

from this table, our proposed method and CMSM, SSDML,

DCC are much faster than GDA and GGDA, which both

need to calculate the kernel matrices and thus are time ex-

pensive. We also provide the running time of PML-GDA

(Train: 932.04, Test: 195.10) and PML-GGDA (Train:

1076.33, Test: 226.58), which shows our proposed method

can speed up the original methods.

6. Conclusion

We have introduced a novel discriminant analysis algo-

rithm on the Grassmann manifold to tackle the problem of

video based face recognition. Specifically, we exploited a

Fisher LDA-like framework to learn the Projection Met-

ric by mapping data from the original Grassmann manifold

to a new more discriminant one. Our new approach can

not only serve as a metric learning method but also a di-

mensionality reduction technique for the Grassmann mani-

fold. Our experimental evaluation has demonstrated that the

new technique and its coupling with other methods lead to

state-of-the-art recognition accuracies on several challeng-

ing datasets for video based face identification/verification.

We believe our work is among the first attempts towards

showing the importance of preserving the Riemannian

structure of the Grassmann manifold when performing met-

ric learning or dimensionality reduction. In the future, we

plan to study how to improve this framework with other

metrics such as Binet-Cauchy metric on Grassmann man-

ifold. It may be difficult for exploiting Binet-Cauchy metric

in our proposed framework because the dimensionality of

its embedding space grows exponentially. Nevertheless, it

would be very interesting to further explore this field.

147



Acknowledgements

This work is partially supported by 973 Program under

contract No. 2015CB351802, Natural Science Foundation

of China under contracts Nos. 61222211, 61379083, and

61390511.

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization al-

gorithms on matrix manifolds. Princeton University Press,

2008.

[2] G. Baudat and F. Anouar. Generalized discriminant analysis

using a kernel approach. Neural computation, 12(10):2385–

2404, 2000.

[3] J. R. Beveridge, P. J. Phillips, D. S. Bolme, B. A. Draper,

G. H. Given, Y. M. Lui, M. N. Teli, H. Zhang, W. T. Scruggs,

K. W. Bowyer, et al. The challenge of face recognition from

digital point-and-shoot cameras. In BTAS, 2013.

[4] J. R. Beveridge, H. Zhang, P. J. Flynn, Y. Lee, V. E. Liong,

J. Lu, M. d. A. Angeloni, T. d. F. Pereira, et al. The IJCB

2014 PaSC video face and person recognition competition.

In IJCB, 2014.

[5] H. E. Cetingul and R. Vidal. Intrinsic mean shift for cluster-

ing on stiefel and grassmann manifolds. In CVPR, 2009.

[6] H. Cevikalp and B. Triggs. Face recognition based on image

sets. In CVPR, 2010.

[7] S. Chen, C. Sanderson, M. T. Harandi, and B. Lovell. Im-

proved image set classification via joint sparse approximated

nearest subspaces. In CVPR, 2013.

[8] Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen. Fusing robust

face region descriptors via multiple metric learning for face

recognition in the wild. In CVPR, 2013.

[9] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of

algorithms with orthogonality constraints. SIAM journal on

Matrix Analysis and Applications, 20(2):303–353, 1998.

[10] K. Fukui and O. Yamaguchi. Face recognition using multi-

viewpoint patterns for robot vision. In Robotics Research,

pages 192–201. Springer, 2005.

[11] J. Hamm and D. D. Lee. Extended grassmann kernels for

subspace-based learning. In NIPS, 2008.

[12] J. Hamm and D. D. Lee. Grassmann discriminant analysis: a

unifying view on subspace-based learning. In ICML, 2008.

[13] M. T. Harandi, M. Salzmann, and R. Hartley. From manifold

to manifold: Geometry-aware dimensionality reduction for

spd matrices. In ECCV. 2014.

[14] M. T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, and

H. Li. Expanding the family of grassmannian kernels: An

embedding perspective. In ECCV. 2014.

[15] M. T. Harandi, C. Sanderson, C. Shen, and B. Lovell. Dic-

tionary learning and sparse coding on grassmann manifolds:

An extrinsic solution. In ICCV, 2013.

[16] M. T. Harandi, C. Sanderson, S. Shirazi, and B. C. Lovel-

l. Graph embedding discriminant analysis on grassmannian

manifolds for improved image set matching. In CVPR, 2011.

[17] M. Hayat, M. Bennamoun, and S. An. Reverse training:

An efficient approach for image set classification. In ECCV,

2014.
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