
Formation period matters: Towards socially consistent
group detection via dense subgraph seeking

Yanhao Zhang?, Lei Qin†, Shengping Zhang?, Hongxun Yao?, Qingming Huang?†

?Harbin Institute of Technology, Harbin, 150001, China
†Inst. of Comput. Tech., Chinese Academy of Sciences, Beijing, 100190, China
{yhzhang,h.yao,s.zhang}@hit.edu.cn {lqin,qmhuang}@jdl.ac.cn

ABSTRACT
Group detection becomes an important task in crowd be-
havior surveillance. However, most existing methods ig-
nore the formation persistency characteristics, which pre-
dict unreliable interactions when the crowd is realistic and
complex. To address this issue, we propose a novel graph-
based method to declare that the formation period really
matters for detecting social groups in crowd. First, we de-
velop a socially motivated representation by modeling the
formation period probability in a Bayesian manner, which
results in social and temporal consistency for group member
interactions. A graph is then established using individuals
as nodes and formation periods as edge weights to reflect
pedestrian relationships. In this way, seeking of socially
consistent groups is converted into an optimization prob-
lem which seeks dense subgraphs with maximum formation
likelihood within the graph structure. We employ graph
shift optimization to detect groups by finding all the dense
subgraphs due to its robust performance. In the experimen-
tal results on public datasets, our proposed method clearly
outperforms other related state-of-the-art methods.

Categories and Subject Descriptors
H.3.1 [Information Systems Applications]: Content Anal-
ysis and Indexing methods

General Terms
Algorithms, Social factors, Experimentation.

Keywords
Social group, Formation period, Dense subgraph seeking

1. INTRODUCTION
Crowd activity analysis plays a significant role in video

surveillance fields with diverse applications including public
safety management and activity understanding for predict-
ing crimes. Understanding complex interactions in crowded
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scenes just by treating each pedestrian individually is unre-
alistic, due to the inherent social characteristics of human
behavior. Typically, interactions involve in small subsets of
a crowd, at neither an individual level nor in a holistic level.
Many existing works on detecting groups tend to find people
getting together based on the persistence of their proximi-
ty and direction of motion [8, 3, 7, 10, 2, 1, 12, 11], which
are measurable from the extracted trajectories. Pellegrini et
al. [8] jointly predict trajectories and estimate group mem-
berships by employing a Conditional Random Field (CRF),
which is modeled as latent variables over a short time win-
dow. Yamaguchi et al. [10] formulate the problem of pre-
dicting groups as minimization of an energy function which
encodes physical condition, personal motivation and pair-
wise interactions features. Ge et al. [3] present an agglomer-
ative approach to associate trajectories, which hierarchically
merges clusters by evaluating an inter-group closeness mea-
sure. Chang et al. [1] propose a soft segmentation process to
partition the crowd by constructing a weighted graph, where
the edges represent the probability of individuals belonging
to the same group.

However, existing works are lack of sociological motivation
in the choice of features. Furthermore, they tend to under-
stand the groups without considering the social consistency
of formation behavior. To give an intuitive interpretation,
social formation among small gathering of people sharing a
common goal would indicate interaction behavior at group
level. It is preserved by a dynamic process of trajectories,
which can be inferred more from the group formation and
the temporal evolution among their relationships. To ad-
dress these issues, we underline formation characteristics in-
spired by social studies to declare that formation period re-
ally matters for detecting the social groups. We summarize
our contributions as:

1) We present a socially consistent group detection method
by exploiting the temporal formation representation for the
social interactions. To our best knowledge, this is the first
effort towards improving social consistency by formation pe-
riod modeling.

2) Considering social cues of the groups, our proposed for-
mation period is capable of capturing group structures and
compositions of social interactions, which makes it robust
and greatly invariant to represent the group behaviors.

3) We propose to construct a graph between the individu-
als by using formation period probability. We seek the dense
subgraphs as the desired social groups within the graph
structure that reflects socially consistent formation period
in the crowd.



2. SOCIAL GROUP ANALYSIS
In this section, we analyze the social features by explor-

ing the social formation priors in Bayesian formulation. We
present a formation period representation which is compe-
tent for social group detection, especially when the distance
and angle cues show inadequate capabilities for indicating
social interactions.

2.1 Formation probability modeling
Given a frame t ∈ {1, · · · , T} from a crowd sequence,

each tracked subject i ∈ {1, · · · , N} corresponds to one lo-
cal trajectory Hi ∈ H of a person. Hi consists of T tuples
ht
i = {sti, vti , αt

i}t=1...T , where si and vi denote the position
and velocity vectors of the subject i with the estimated ori-
entation αi at time t. Let F denote the set of formation
within the interacting individuals, G be the set of all possi-
ble social groups along the interacting time T , where each
element g ∈ G is a binary vector indicating the group re-
lationship among the subjects i and j. Our goal is to find
an optimal group clusters G∗ from G which best fits a given
interaction time and formation set T and F . To this end,
we model the probability of the group indicator G based on
F and T by considering both the spatial formation of in-
teraction and the temporal overlap of period in a Bayesian
manner as

p(G|F , T ) ∝ ps(F|G)︸ ︷︷ ︸
Formation

pt(F|G, T )︸ ︷︷ ︸
Period

p(G|F)︸ ︷︷ ︸
Prior

(1)

where ps(F|G) measures the spatial consistency between
the assignment of group G and the given formation set F .
pt(F|G, T ) measures the “period” properties of G, which in-
dicates the temporally pairwise interactions. Traditionally,
this item can be presented as pt(T |G), giving the likelihood
that the happening of social group is based on the time of
getting together. Now, the interacting time T is not treated
equally and is instead valued by the social formation set F .
Therefore, the new likelihood pt(F|G, T ) can be interpreted
as the probability of social formation along the interacting
time T . The last term p(G|F) is the prior probability of
the formation for the groups that we regard equally for all
candidates. When we maximize the probability of Eqn. 1,
obviously, we expect to obtain the social groups which have
the spatially consistent formation with the social formation
encoded in the formation set F and simultaneously satisfy
the pairwise interacting period.

2.2 Socially consistent feature
Formally, social aggregation theories [4] project the pedes-

trian trajectories onto the space which provides us useful
group concepts of sustaining mutual activities. The non-
linearity of the social interaction is correlated with a quan-
tization of their mutual distance into personal, social and
public space as F-formation. It is considered as a specif-
ic instance of a focused encounter as all the participants
co-operate to sustain a continued period of information ex-
change. The idea behind this is that spatial and orientation-
al behaviors are created by people who sustain the shared
interaction space between them. To this aim, we define the
proximity based probability φprox

ij (hi, hj |g) and orientation

based probability ψori
ij (hi, hj |g) to give the detailed seman-

tics of the formation. An illustration of formation period
is shown in Fig. 1. The spatial formation can be measured
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Figure 1: Formation period considers the formation
of interaction in terms of both proximity and orien-
tation on the temporal correlation.

by computing the position and angle with respect to local
trajectories set H, which is similar as the trajectories and
grouping associating process [8] as a log likelihood,

log(ps(F|G)) =
∑

φprox
ij (hi, hj |g) +

∑
ψori

ij (hi, hj |g) (2)

The proximity probability is defined as∑
φprox
ij (hi, hj |g) =

∑
log[pmov(si|sjαj , gij = 1)

+pstop(d(si, sj)|gij = 1)]−
∑

log(p(d(si, sj)|gij = 0) (3)

where d(si, sj) is the Euclidean distance between two posi-
tions. Corresponding to moving and stopping people in the
same group, two modes of probabilities pmov and pstop are
estimated by building a normalized histogram of the angles
and speeds in the training set [8]. From the statistics, it is
easy to distinguish two modes. For pedestrians in different
groups, position is enough to tell apart the interaction in
the public space. In terms of orientation probability, it is
defined as∑

ψori
ij (hi,hj |g)=

∑
p(αi,αj |gij =1)−

∑
p(αi,αj |gij =0) (4)

where the probabilities are based on whether the pedestrians
have the same orientational range or not. The focused orien-
tation can help to identify the shared space between all the
formation members. This is relevant that pedestrian should
be oriented towards an F-formation [2]. As before, all the
estimated terms are computed with a smoothed histogram
approach overall a temporal window.

Under the objective of obtaining the interaction period, we
measure the temporal overlap of the trajectories between the
person i and j within a temporal interaction T . We denote
the distance measurement of the social formation for each
pair hi and hj directly as the likelihood

log(pt(F|G, T )) =
∑
t

pt(F|g, T ) ∝
∑
t

δt(i, j) (5)

where δt(i, j) = 1 indicates hi,j are in the same group if
‖sti − stj‖ ≤ rs and ‖vti − vtj‖ ≤ rv, otherwise δt(i, j) = 0.
This period probability pt(F|G, T ) is the occurrences be-
tween person i and j within T that the spatial and velocity
differences are below the thresholds rs and rv. This strategy
makes grouping people walking close to each other with sim-
ilar velocities capable of interacting for a long period of time,



which leads to temporal consistency to get stable groups over
time and meanwhile guarantees its social formation.

3. FORMATION PERIOD SUBGRAPHS
In this section, we formulate the formation probability

modeled in Sec. 2.1 into the graph shift framework, where
the problem of maximizing the probability of Eqn. 1 over the
possible groups G is converted to the form of maximizing the
density of subgraphs problem. We extend the idea of finding
dense subgraph in the social formation period domain to
detect local social groups.

3.1 Consistency Graph Construction
A dense subgraph is a strongly connected subset of vertex-

es in a weighted undirected complete graph. The undirected
graph is constructed by using the individuals as the graph
nodes and the formation period probabilities as the edge
weights. In this way, the valid formation period that is so-
cially consistent would form a dense subgraph and could be
robustly detected by the method of graph shift. Given all
the trajectories extracted from the individuals, H(h1, ..., hn)
with the individual number n, we conduct formation period
correlation in the product space Q = |H| × |H| and obtain
n× n pairs. In order to obtain a continuous and more gen-
eral measure, we substitute the original quantization with
an exponential function and the proximal similarity of any
trajectory pair hi and hj is computed as follows,

f1(hi, hj) =
1

T

∑
t

δt(i, j)× eps(F|G) (6)

Thus, a T -frame video sequence can be represented by a
trajectory graph with 3-tuple G = (V,E,w), in which V is
a set of vertices, E ⊆ V × V is a set of edges, w is the edge
weights assigning to E. We next try to specify the detailed
description based on the basic graphs. The adjacency matrix
representation A(i, j) for the graph G is as follows:

A(i, j) =

{
0 i = j

f1(hi, hj) i 6= j
(7)

We can calculate the formation period similarity by Eqn. 7.
The function of the similarity value can be denoted as Eqn. 6
which encodes the evaluation of temporal consistence and
social formation correlation.

3.2 Detection by dense subgraph seeking
Obviously, the graph G is symmetric and nonnegative.

Suppose a social group has r trajectory-pairs. It corre-
sponds to a dense subgraph D of G with r vertices, which
is a weighted counterpart of maximal clique. If we rep-
resent a subgraph by a vector x, x ∈ ∆n, where ∆n =
{x ∈ Rn : x ≥ 0 & |x|1 = 1}. xi, the ith component of x, de-
notes the probability of this subgraph containing the vertex
i. The modes of a graph G are approximately local maxi-
mizers of the graph density g(x) = xTAx. We can derive
that g(x) =

∑
i xi(Ax)i. Given a vector x, the correspond-

ing subgraph is G(x). If x∗ is a local maximizer of g(x),
the G(x∗) is a dense subgraph which represents the social
group. Therefore we need to calculate all local maximizers
of this standard quadratic optimization function:{

maximize g(x) = xTAx

subject to x ∈ ∆n (8)

Table 1: Datasets descriptions.
Dataset Length Individuals Groups Density Type

eth 8m 40s 386 81 low few interactions
hotel 7m 23s 287 55 low complex interactions

stu003 3m 40s 417 112 high more complex behaviours

It can be solved by the replicator dynamics with neighbor-
hood expansion in graph shift optimization [6],

xi(t+ 1) = xi(t)
(Ax(t))i
x(t)TAx(t)

, i = 1, . . . , n (9)

where xi(t) is a mode of subgraph obtained at the ith it-
eration. Note that the vertexes (which correspond to the
candidate formation period of individuals) contained in the
dense subgraph x∗ are the most likely to be the valid social
groups, and the value of the non-zero bin x∗ now indicates
the probability that a candidate formation period belongs
to the socially consistent group. We conclude the merits of
detecting the groups in the crowd via the consistency graph
model as follows: 1) Formation periods naturally capture
the social inspired knowledge, which robustly reject most
of the invalid trajectory interactions, hence are effective in
leveraging the influence of formation periods. Meanwhile,
the formation period probability enables us to measure the
group formation in a more robust and accurate way than
traditional similarity of trajectories. 2) The group detec-
tion is converted to dense subgraph seeking, which is rea-
sonable because the dense subgraph is a strongly connected
subset of vertexes in a graph. According to the definition
of the weights on graph edges, the correspondence between
the clusters from the same similar connection has the most
graph density than that from different connections or nois-
es. 3) Our approach could handle the complex group for-
mation situation during a temporal overlap. When a group
is forming social interaction, there exist dense subgraphs
corresponding to these candidate formation periods. The
problem of finding dense subgraphs is easy to be solved by
the graph shift algorithm. So we can obtain high robustness
and accuracy of validly social formation group.

4. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of our method, we con-

duct group detection experiments on three public datasets
including the eth and hotel sequences from the BIWI Walk-
ing Pedestrians dataset [7] as well as the stu003 sequence
from Crowds-By-Examples (CBE) dataset [5].

Datasets. BIWI dataset records two low crowded scenes
outside a university and a bus station, while the CBE dataset
records a high density crowd outside a university. Table 1
shows the detailed information of these datasets. All se-
quences come with a group annotation and the trajectory
annotations are completed by marking the position of each
individual every a few frames. These sequences are par-
ticularly challenging ranging from low to high density and
various level interactions with complex condition due to low
image resolution, perspective changes and cast shadows. We
split the eth and hotel sequences as training set (about 2000
frames) to train the statistics features and parameters for
formation period and the rest frames for testing set.

Evaluation Protocol and Analysis. To evaluate the
performance of the socially consistent formation period, we
compare our method with the state-of-the-art methods. We
provide two evaluation approaches to justify the performance
of the compared methods:
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Figure 2: DET curves for eth (a) and hotel (b)
datasets compared with others.

(1) DET curves for pairwise links. We compare with the
interaction time based approaches [8, 3] on the relatively
sparse and simple BIWI eth and hotel dataset. All three
methods produce similarly good results as groups are isolat-
ed and easy to tell as shown in Fig. 2. In each approach,
the detected groups are compared with the ground truth.
The DET curves are generated by varying the parameters
of length of interaction to report false positive (when the
pair is assigned to the same group which is not in the same
group in the ground truth) and false negative (when the
method fails to predict the pair as the same group). This
clearly demonstrates the effectiveness of exploiting socially
consistent interaction in the task of pairwise group relation
prediction. Note that the distance and velocity based mea-
sure (Pellegrini et al. [8]) is not strong enough to distinguish
group relations and produces many false links. Ge et al. [3]
performs as well as ours except false positives increase when
using longer trajectories. Our proposed formation period
achieves the best in this less complex scene. This can be at-
tributed to the fact that we not only measure proximity but
also consider the orientational formation of the pedestrians.

(2) The precision and recall of the social group detection.
The stu003 sequence is much more crowded and complex,
which can be used to test the robustness for complex so-
cial interaction. To gain intuition into robustness and ef-
fectiveness of our method, we compare our results with the
state-of-the-art methods [8, 3, 10, 9]. We run every model
on the dataset for evaluating the impact on performances in
terms of precision, recall and F-measure as shown in Table 2.
Notice that the social interaction based approaches [10, 9]
bridge the gaps between the social interaction and the pair-
wise link in finding groups, among which our method gets a
significant improvement than others. This is due to socio-
logical aspect from formation period, which is able to better
generalize to describe social interaction and group relation-
s. In addition, the subgraph seeking process enables us to
measure the formation period probability in a more robust
and accurate way.

Parameter tuning and Complexity. The experiments
are conducted by varying the respective formation period
threshold rs and rv, which indicate the difference between
the position and velocity. These thresholds justified by the
precision and recall comparison for stu003 are shown in
Fig. 3, where rs and rv are ranging from (1,3) and (0.1,0.9),
respectively. Low values bring noisy formation time which
leads to large false negative detection. In general, when the
value of rs is higher than 2.5, or the rv is smaller than 0.5,
the performance will be affected. From the parameter analy-
sis, we choose rs = 2 and rv = 0.5 as reasonable compromise
between precision and responsiveness. Our formation period
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Figure 3: Precision and Recall for stu003 by varying
formation period threshold rs and rv.

Table 2: Social group detection on stu003 dataset.
stu003 dataset Precision Recall F-measure

Ours 91.4% 83.4% 87.2%
S.Pellegrini et al. [8] 46.0% 82.0% 58.9%

K.Yamaguchi et al. [10] 80.5% 77.0% 80.8%
W.Ge et al. [3] 51.8% 81.7% 63.4%

J.Sochman et al. [9] 85.4% 61.4% 71.3%

can not only obtain outstanding performances when used as
the feature representation but also show to be more robust
and turned out to be fast with the computational complexity
being O(n×m) and O(n) for computing A(i, j).

5. CONCLUSION
In this paper, we have presented a socially consistent group

detection method that represents formation period of group
members in terms of social consistency. The formation and
temporal information are integrated and encoded into the
established graph in a Bayesian manner. Based on a graph
relationship constructed with formation period probability
features, the seeking of socially consistent group is casted
as a dense subgraph seeking problem over the graph struc-
ture. Experimental results on three public datasets have
confirmed the effectiveness and robustness of the proposed
method. For future work, we will explore more promising
descriptors for crowds in terms of social consistency.
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