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ABSTRACT

In multi-label classification, labels often have correlations

with each other. Exploiting label correlations can improve

the performances of classifiers. Current multi-label classifi-

cation methods mainly consider the global label correlations.

However, the label correlations may be different over differ-

ent data groups. In this paper, we propose a simple and ef-

ficient framework for multi-label classification, called Group

sensitive Classifier Chains. We assume that similar examples

not only share the same label correlations, but also tend to

have similar labels. We augment the original feature space

with label space and cluster them into groups, then learn the

label dependency graph in each group respectively and build

the classifier chains on each group specific label dependen-

cy graph. The group specific classifier chains which are built

on the nearest group of the test example are used for predic-

tion. Comparison results with the state-of-the-art approaches

manifest competitive performances of our method.

Index Terms— Multi-Label Classification, Group Sensi-

tive, Classifier Chain, Local Label Correlation

1. INTRODUCTION

In many real applications, one object can be assigned with

multiple labels simultaneously. For example, in image an-

notation, an image can be annotated “sea water” and “sea

bird”(see Fig.1(a)). Multi-label classification deals with ob-

jects having multiple class labels simultaneously and each

object is represented by only one single instance. Multi-

label classification has attracted significant attentions from re-

searchers and has been applied to a variety of domains, such

as text classification [1, 2, 3], image annotation [4, 5, 6], video

annotation [7, 8], bioinformatics [9, 10], social network [11]

and music emotions categorization [12, 13, 14].
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(a) sea bird and sea water (b) sailing boat and sea water

Fig. 1. Two nature scene image examples

In multi-label classification, labels often have correlations

with each other. It has been shown that exploiting label cor-

relations between labels can improve the performances of the

classifiers [15, 16, 17, 18]. For example, if one image is an-

notated with label “sailing boat”, it has a high probability to

assign label “sea water” to this image (see Fig.1(b)). Current

multi-label classification algorithms mainly exploit label cor-

relations globally, by assuming that the label correlations are

shared by all the examples. In many applications, however,

different examples may share different label correlations.

In Fig.1, “sailing boat” and “sea bird” all have strong cor-

relations with label “sea water”. But these strong correlations

may be different on different groups of images. The corre-

lation between “sea bird” and “sea water” will be stronger

than the correlation between “sailing boat” and “sea water” in

those images which are similar to Fig.1(a), and vice versa.

If there are more images like Fig.1(a) than Fig.1(b) in the

training data sets, correlation between “sea bird” and “sea wa-

ter” will be the strong global correlation. In this case, “sea

bird” will be annotated to those images like Fig.1(b). Even

more, “sea bird” may be assigned with “sailing boat” instead,

but both results are incorrect. This impact could be alle-

viated if we exploit the label correlations which are shared

by different groups of similar examples respectively. Ignor-

ing this phenomenon will degrade the performances of multi-

label classification models.

To the best of our knowledge, the only work trying to

model label correlation locally is ML-LOC [19]. To encode

the local influence of label correlations, ML-LOC construct-

s a LOC (LOcal Correlation) code for each instance and use



this code as additional features for the instance. However, it is

difficult to explain the direct connections between LOC codes

and the local label dependency structures.

Considering the problems above, we try to exploit the la-

bel correlations locally and propose a simple and efficien-

t framework Group sensitive Classifier Chains (GCC) for

multi-label classification. We assume that similar examples

not only share the same label correlations, but also tend to

have similar labels. In the training stage, GCC first augments

the original feature space with label space and clusters them

into groups. Then, GCC learns the label dependency graph in

different groups respectively (GCC exploits label correlations
locally, and the label dependency graph can well illustrate the
dependency structures between labels) and builds the classi-

fier chains based on each learned group specific label depen-

dency graph. In the test stage, GCC finds the nearest group

(the test example is similar to the examples in this group and

share the the label correlations with them) for one test exam-

ple, and the group specific classifier chains are used to predict.

2. RELATED WORK

In the past decades, many well-established methods have been

proposed to solve multi-label classification problems in var-

ious domains. These methods can be divided into two cat-

egories [20, 21]: Problem transformation methods and al-

gorithm adaption methods. Problem transformation meth-

ods transform multi-label classification problem into one or

more single-label classification problems. Algorithm adap-

tion methods modify traditional single-label learning algo-

rithms for multi-label classification directly.

Binary Relevance (BR) [4] is a representative algorith-

m of problem transformation methods. BR decomposes the

multi-label classification problem into L independent binary

(one-vs-rest) classification problems, where each binary clas-

sification problem corresponds to one label in the label space.

BR is simple and straightforward, but it does not consider la-

bel correlations. In multi-label learning, however, labels often

have correlations with each other.

Classifier Chains (CC) [15] is a novel chaining method

that can model label correlations. CC model transforms

the multi-label classification problem into a chain of bina-

ry classification problems. It involves L binary classifier-

s, and each binary classifier is trained one by one. Clas-

sifier hπ(i) is trained by using yπ(1), yπ(2), ..., yπ(i−1) as

augmented features with the original feature space. Here

yπ(1), yπ(2), ..., yπ(L) is one possible order of L labels, while

the label ordering have significant impact on the performance.

ML-LOC [19] exploits label correlations locally. It as-

sumes that the instances can be separated into different groups

and each group shares a subset of label correlations. To en-

code the local influence of label correlations, it constructs a

LOC (LOcal Correlation) code for each instance and use this

code as additional features for the instance. The classifier is

y2 y3

y1

(a) one-to-two

y1 y2

y3

(b) two-to-one

Fig. 2. Two simple situations of global label dependency

trained with original features and LOC codes. For test ex-

amples, LOC codes are unknown and regression models are

trained to predict their LOC codes. However, it is difficult

to understand the direct connections between LOC codes and

the local label dependency structures.

3. GCC FRAMEWORK

In this section, details of the proposed framework GCC will

be presented. First, we give an analysis of local and global

label correlations. Then, we present the total framework of

GCC and introduce a simple method to model the label de-

pendency for each group of the data set by a DAG structure.

3.1. Preliminaries

In multi-label learning, let X ∈ R
d be the input space with

d-dimensional and Y = {y1, y2, ..., yL} be the finite set of

L possible labels. D = {(xi, Yi)}Ni=1
is the training data set

with N examples. The i-th object is denoted by a vector with

d attribute values xi = [xi1, xi2, ..., xid], xi ∈ X , and Yi =
[yi1, yi2, ..., yiL] is the possible label sets of xi. Each element

yij = 1 if the label yj is associated with xi, otherwise yij =
0. k is the number of groups of one data set.

3.2. Local and Global label correlation

Let’s take a further step to understand the differences between

local and global label correlations. Suppose there are three la-

bels, Fig.2 shows two simple situations of label dependency

structures which are composed of two global label dependen-

cy correlations.

In Fig.2(a), it shows the global label dependency of these

three labels. Label y2 and y3 are dependent on y1. It can be

learned that label y2 and y3 are conditional independent given

y1, thus the prediction of Pr(y2|y1, x) and Pr(y3|y1, x) will

be the same both under global or local situation. However,

suppose one test object only belongs to label y1 and y2, but

label y3 will also be predicted with a high probability. In

this situation, the multi-label classification model may assign

irrelevant labels to an unseen object. But this impact can be

alleviated if we decompose it into two local label dependency

structures.

In Fig.2(b), label y3 is dependent on y1 and y2 globally. In

this situation, incorrect prediction of label y1 or y2 will affect



the decision of label y3. This problem may be worse if the

label dependency is “one-to-many” or “many-to-one”.

One may note that the global label correlations may work

better than local label correlations sometimes, e.g., if the ex-

ample belongs to these three labels simultaneously. When the

groups are clustered inappropriately, local correlations may

not works. We will show it in experiments (see Sec. 4).

3.3. GCC framework

To exploit label correlations locally, we first cluster the da-

ta set into different groups, and learn the label correlations

for each group respectively. Then, we build the multi-label

classifier chains classification models on the data set by the

learned local label correlations of each group. GCC frame-

work is mainly composed of the following four steps.

Cluster the data into groups: The training data is de-

composed into k groups ({gi}ki=1
) by a user defined clustering

method mc. In our experiments, we simply choose kmeans as

the clustering method, and the similarity is calculated by Eu-

clidean distance. We assume that similar examples not only

share the same label correlations, but also tend to have simi-

lar labels, so the label space is augmented as features with the

original feature space in the clustering stage of GCC.

Learn the label dependency graph: In this paper, we

try to model the label dependency of each group by a DAG

structure. The dependency probabilities between labels are

simply modeled by the co-occurrence of each pair of labels.

The dependency probability of label yj on yl is calculated by

Eq.(1), it indicates when yl happened, the probability of yj to

be happened.

Pr(yj |yl) = �yj
T �yl

‖�yl‖1
(1)

where �yl = [yg
1l, y

g
2l, ..., y

g
ngl

]T , y
g
il ∈ {0, 1} is the l-th value

in Yi of xi in the g-th group, ng is the number of examples in

the g-th group.

There will be two possible links between each pair of la-

bels, and we just retain the link with larger dependency prob-

ability and remove another one. Then, we can build k di-

rected label dependency graph on each group of the data set.

These graphs may have cycles, however, we need to remove

the link with minimum dependency probability in each cycle.

After these two pre-processing stages, k DAG label depen-

dency graphs ({Gi}ki=1
) can be obtained.

Build the multi-label classifier chains: In this stage,

we build k multi-label classifier chains classification models

(Hi(x)
k
i=1

) based on each learned label dependency graph Gi

and the training data D.

Hi(x) = {hi1(x), hi2(x), ..., hiL(x)} (2)

where each binary classifier hil is defined as:

hil(x) = Pr(yl|Pa(yl, Gi), x) (3)

Algorithm 1 GCC Framework

Input:
D : the multi-label training data set, D = {(xi, Yi)}Ni=1

;

k : the number of groups;

mc : the method of clustering;

mg : the method to construct label dependency graph;

mh : the method of base classifier;

xt : a test example;

Output:
Ŷt : the set of predicted labels for xt;

1: {gi}ki=1
= Cluster(D, k,mc);

2: for i = 1 to k do
3: Gi = LearnDependencyGraph(D, gi,mg);
4: Hi = BuildClassifier(D, Gi,mh) ;

5: end for
6: find the nearest group gn of xt;

7: return Ŷt = Hn(xt);

where Pa(yl, Gi) represents the set of parents labels of label

yl in graph Gi. Each binary classifier hil is trained by using

the parent labels of yl in graph Gi as augmented features with

the original feature space.

One may note that the dependency structure of some la-

bels may be the same in these k DAG graphs, which means the

binary classifiers for these labels need to be trained only once.

However, the classifiers for group specific label dependency

structures need to be trained more times (at most k times)

Predict: Since we assume that similar examples share the

same label correlations, we find the nearest group gn of the

test example xt by calculating Euclidean distance. We as-

sume that xt share the same label correlations with the exam-

ples in group gn. Classifier chains Hn is built by the label

dependency graph Gn which is learned on group gn. Hn is

used for predict of xt, and we expect that Hn can predict xt

better than other classifier chains which are learned on other

group specific label correlations.

One should note that the testing order of these L bina-

ry classifiers in Hn should according to one topological sort

order of graph Gn. Because when predicting yl, it’s parent

labels are augmented with xt as features, so the parent labels

of yl should be predicted first. While in the training stage,

the ground truth labels are given, the training procedures of

these L binary classifier chains can be parallelized. All the

procedures of GCC are summarised in Algorithm 1.

4. EXPERIMENTS

4.1. Evaluation Metrics

To evaluate the performance of different algorithms for multi-

label classification, we use four common evaluation metrics

in [11, 15, 20, 21, 22] to verify the performance. Given a test

data set T = {(xi, Yi)}mi=1
, where Yi ∈ {0, 1}L is the ground



Table 1. Compared methods

Method Type of Correlation Publication

BSVM none [4]

CC global correlation [15]

BCC global correlation [16]

ML-LOC local correlation [19]

GCC local correlation this paper

truth labels of the i-th example, and Ŷi is the predicted labels.

• Hamming loss [11] evaluates how many times an example-

label pair is misclassified, i.e., a label not belonging to the

example is predicted or a label belonging to the example is

not predicted.

Hamming loss =
1

m

m∑

i=1

1

L

L∑

l=1

�Yil �= Ŷil� (4)

The smaller the value of Hamming loss, the better perfor-

mance of the classifier.

• Accuracy [15] evaluates Jaccard similarity between the

ground truth labels and the predicted labels.

Accuracy =
1

m

m∑

i=1

|Yi ∧ Ŷi|
|Yi ∨ Ŷi|

(5)

• Exact-Match [15] evaluates how many times the ground

truth labels and the predicted labels are exactly matched.

Exact-Match =
1

m

m∑

i=1

�Yi = Ŷi� (6)

• Macro F1[11] is the integrated version of precision and re-

call for each label.

Macro F1 =
1

L

L∑

i=1

2piri
pi + ri

(7)

where pi and ri are the precision and recall for the i-th label.

For the later four metrics, the larger the value, the better the

performance of the classifier.

4.2. Compared methods

We compare the GCC with four state-of-the art well estab-

lished multi-label learning algorithms: BSVM [4], CC [15],

BCC [16] and ML-LOC [19]. For fair comparison, Libsvm

(with linear kernel and default parameters) [23] is employed

as the base classifier for all the compared algorithms. Pa-

rameters for each compared algorithm are suggested by the

corresponding publication. For GCC, the number of group-

s for each data set is set to be 5. All compared algorithms

are summarized in Table 1, “Type of Correlation” indicates

whether the corresponding method considered the label cor-

relation and which type of correlation they try to exploit.

Table 2. Description of data sets

Data sets Instance Features Labels Domain

flags 194 19 7 image

image 2000 294 5 image

scene 2407 294 6 image

pascal07 9963 512 20 image

mediamill 43907 120 101 video

emotions 593 72 6 music
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Fig. 3. Results of GCC under different number of groups

4.3. Experiment results and analysis

We experiment on six data sets, the detailed characteristics

of these data sets are summarized in Table 2. Most of these

data sets can be downloaded from mulan1 and lamda2. Pas-

cal07 [24] with 512-dimensional gist features is download

from LEAR 3.

Five-fold cross-validation is performed on each experi-

mental data set. Tables 3 to 6 report the detailed results in

terms of different evaluation metrics, and the best result in

each row is marked in bold.

We can see that these algorithms (CC, BCC, ML-LOC

and GCC) which consider label correlations obtain better per-

formance than BSVM which trains each binary classifier in-

dependently. It indicates that exploiting label correlation can

improve the performance of classifier. We can also see that

these algorithms (ML-LOC and GCC) which exploit label

correlation locally can obtain better performance than those

algorithms (CC and BCC) which exploit label correlation

globally in terms of each evaluation criterion in most cases.

These results demonstrate that exploiting the group specific

label correlations and building the multi-label classifiers on it

can work better. We note that GCC performs better than ML-

1http://mulan.sourceforge.net/datasets.html
2http://lamda.nju.edu.cn/Data.ashx#data
3http://lear.inrialpes.fr/index.php



Table 3. Experiment result (mean±std) of each algorithm in terms of Hamming Loss

Dataset BSVM CC BCC ML-LOC GCC

emotions 0.202±0.019 0.214±0.022 0.203±0.022 0.200±0.024 0.181±0.007
flags 0.279±0.044 0.287±0.049 0.277±0.030 0.262±0.039 0.260±0.037
image 0.175±0.006 0.188±0.006 0.169±0.011 0.152±0.010 0.169±0.003

scene 0.109±0.006 0.102±0.007 0.109±0.004 0.073±0.004 0.078±0.004

pascal07 0.066±0.001 0.082±0.004 0.066±0.001 0.063±0.001 0.069±0.002

mediamill 0.031±0.000 0.031±0.001 0.031±0.004 0.032±0.001 0.031±0.001

Table 4. Experiment result (mean±std) of each algorithm in terms of Accuracy

Dataset BSVM CC BCC ML-LOC GCC

emotions 0.552±0.033 0.547±0.041 0.547±0.038 0.495±0.075 0.588±0.008
flags 0.548±0.056 0.564±0.073 0.576±0.039 0.581±0.062 0.607±0.052
image 0.436±0.025 0.566±0.015 0.509±0.018 0.526±0.032 0.607±0.006
scene 0.618±0.017 0.705±0.023 0.633±0.024 0.694±0.011 0.730±0.005
pascal07 0.189±0.008 0.293±0.009 0.193±0.006 0.197±0.009 0.278±0.008

mediamill 0.412±0.003 0.417±0.011 0.402±0.010 0.419±0.009 0.425±0.001

Table 5. Experiment result (mean±std) of each algorithm in terms of Exact Match

Dataset BSVM CC BCC ML-LOC GCC

emotions 0.282±0.043 0.309±0.053 0.301±0.063 0.279±0.069 0.363±0.023
flags 0.145±0.055 0.176±0.075 0.174±0.062 0.179±0.100 0.263±0.074
image 0.359±0.034 0.478±0.019 0.417±0.020 0.443±0.029 0.511±0.016
scene 0.523±0.022 0.654±0.027 0.560±0.025 0.665±0.014 0.678±0.008
pascal07 0.121±0.009 0.210±0.012 0.124±0.008 0.118±0.004 0.190±0.007

mediamill 0.087±0.001 0.106±0.013 0.105±0.014 0.105±0.002 0.116±0.010

Table 6. Experiment result (mean±std) of each algorithm in terms of Macro-F1

Dataset BSVM CC BCC ML-LOC GCC

emotions 0.661±0.024 0.647±0.034 0.649±0.031 0.612±0.061 0.656±0.029

flags 0.642±0.052 0.634±0.069 0.561±0.045 0.588±0.053 0.639±0.032

image 0.547±0.013 0.583±0.015 0.596±0.030 0.623±0.023 0.636±0.006
scene 0.703±0.017 0.725±0.019 0.697±0.017 0.774±0.012 0.781±0.008
pascal07 0.111±0.008 0.170±0.013 0.113±0.006 0.095±0.004 0.180±0.004
mediamill 0.107±0.003 0.104±0.006 0.084±0.002 0.064±0.002 0.108±0.003

LOC, but it is worse than CC in terms of Accuracy and Exact

Match on pascal07. If the number of groups is set inappropri-

ately, global label dependency structure will be decomposed

into several unwilling local structures. We can tune the pa-

rameter k to achieve a better performance.

4.4. The number of groups

The number of groups k is an important parameter of our GC-

C framework. To evaluate the influence of parameter k, we

perform experiment on flags and emotions with different val-

ue of k ∈ {1, 2, ..., 9, 10, 15, 20, 25, 30}. For simplicity,

we only train and test GCC on the training and testing parts

of these two data sets. Experiment results are shown in Fig.

3. We can see that as the number of groups k becomes larger,

the performance of GCC first increases then decreases. This is

because a large k will make the label correlations too locally.

We can obtain a good performance at a relative large k, but

the computation will be more expensive with the increasing

of k. It is a tradeoff between computation and performance.

Specially, GCC learns a global label dependency graph when

k=1, but the results of it are almost worse than those results

when k > 1.



5. CONCLUSIONS

In this paper, we propose a simple framework Group sensi-

tive Classifier Chains for multi-label classification by exploit-

ing label correlation locally. Most of current approaches can

be applied to our GCC. We analyzed the differences between

global and local label correlations. The empirical experimen-

tal results have show that GCC can work better than these

methods which do not consider label correlation or exploit la-

bel correlation globally. We also show the influence of the

number of groups. In the future, we’d like to apply more ad-

vanced clustering and label dependency DAG structure learn-

ing methods to GCC.
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