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ABSTRACT

Different features describe different views of visual appear-
ance, multi-view based methods can integrate the informa-
tion contained in each view and improve the image clustering
performance. Most of the existing methods assume that the
importance of one type of feature is the same to all the da-
ta. However, the visual appearance of images are different,
so the description abilities of different features vary with dif-
ferent images. To solve this problem, we propose a group-
aware multi-view fusion approach. Images are partitioned
into groups which consist of several images sharing similar
visual appearance. We assign different weights to evaluate
the pairwise similarity between different groups. Then the
clustering results and the fusion weights are learned by an it-
erative optimization procedure. Experimental results indicate
that our approach achieves promising clustering performance
compared with the existing methods.

Index Terms— multi-view learning, group-aware fusion,
image clustering

1. INTRODUCTION

With the development of digital equipments and the Inter-
net technology, it is more convenient for people to share
their multimedia data through the Internet. Unsupervised im-
age categorization can automatically discover categories and
meaningful hierarchical structures from a collection of im-
ages. It facilitates better organization of the Web multimedia
data and diversified online applications, and has drawn con-
siderable attention [1, 2].

However, the uncontrolled appearance variation in real-
world images brought by different light and viewing condi-
tions would make it difficult to derive the true semantic corre-
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lation using single visual descriptor. A practical solution is to
integrate different visual descriptors to generate a more robust
and accurate representation. Multiple kernel learning (MKL)
tries to learn a unified kernel by combining multiple kernels
together to exploit different visual features, and some cluster-
ing methods [3, 4] are proposed based on MKL. Constructing
a graph for each type of feature (view), several graph based
multi-view learning (MVL) methods are proposed. Some of
them [5, 6] obtain the clustering results by enforcing the
cluster structures of each view consensus. Besides, some of
them [7, 8] jointly learn the optimal combination of each s-
ingle view graph and the clustering results. Since the affinity
matrix is not required to be positive semi-definite, the graph
based MVL methods obtain a wider applicability than MKL
and achieve good performance.

It should be noted that these methods basically adopt a
globally uniform similarity measure over the whole data s-
pace. But for the real-world images, the visual distribution
is complicated and different images have different visual ap-
pearance. It is difficult to describe the similarity accurately
by using a globally uniform measure. Instead of the glob-
al fusion methods, some local fusion methods are proposed
in supervised learning [9, 10]. The weights of features are
learned according to the visual appearance of images, which
generates more accurate descriptions for images. However,
the complex distribution of real-world images has not drawn
enough attention in previous multi-view clustering method-
s, which consequently limits their performance in clustering
real-world images.

To address this issue, we propose GOMES, a GrOup-
aware Multi-viEw fuSion approach towards real-world image
clustering. The key point of GOMES is that images are par-
titioned into groups with more compact visual cohesiveness,
and the images within a group share the same fusion weights.
Compared with the global fusion methods, our group-aware
fusion approach provides a more flexible fusion strategy and
more accurately measures the similarity among images. The
framework of GOMES is shown in Fig.1.

First we extract multiple features from images and con-
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Fig. 1. The framework of GOMES.

struct a graph for each feature (view) to represent the multi-
view data. Next, the images are partitioned into groups, and
the fused graph is constructed by the proposed group-aware
fusion strategy: the images belonging to different groups are
assigned with different fusion weights. Finally, the fusion
weights are learned by solving an optimization problem, and
the clustering results are obtained by conducting spectral clus-
tering on the fused graph. An iterative optimization process is
proposed to jointly learn the fusion weights and the clustering
results. In summary, our main contributions are:

• A group-aware fusion approach is proposed for multi-
view clustering. A group can be recognized as the inter-
mediated representation between image categories and
individual images, which contains several images with
similar visual appearance. By introducing group struc-
ture, the weights can vary with the visual appearance
of different images and more accurate similarities be-
tween images can be obtained.

• Two reasonable and effective criterions are designed for
learning the fusion weights. An iterative optimization
algorithm is proposed to jointly learn the spectral clus-
tering results and fusion weights.

2. RELATED WORK

Multiple kernel learning (MKL) and multi-view learning
(MVL) are two related works that can exploit multiple fea-
tures to generate a more effective representation. MKL aim-
s to combine multiple kernels to create an optimal kernel
[4, 11]. Lin et al. [4] generalize the framework of MKL
for dimensionality reduction, which provides convenience of
using multiple types of image features. Centered kernel align-
ment is employed in [11] to unify the two tasks of clustering
and MKL into a coherent optimization problem.

To infer the clustering results for multi-view data, MVL
assumes that the underlying clustering would assign corre-
sponding samples in each view to the same cluster. Some
works [5, 6, 12] learn the underlying clustering structure from
multiple views by regularizing the embedding of each view

towards a common consensus. Besides, some methods [7, 8]
first construct a graph for each view, and then fuse each graph
into a better one. By assigning weights for each graph ac-
cording to their importance, their methods are more immune
to the ineffective views.

Nevertheless, the above methods basically adopt globally
uniform similarity measure for the whole input space. Due
to the complicated distribution of data, the importance of dif-
ferent views for discrimination may vary with different data.
Considering this point, some local fusion methods are pro-
posed in [10, 13, 14] and achieve better performance. GS-
MKL [10] constructs a set of groups, in which the images
share similar visual property. Then fusion weights are learned
for each group to deal with the intra-class diversity and inter-
class correlation for image classification. For unsupervised
tasks, a local fusion based multiple kernel clustering method
is proposed in [14]. Each cluster is learned with a local-
ized kernel for similarity evaluation. However, the sparsity
of the fusion weights can not be controlled explicitly which
limits the fusion ability. In addition, the kernels are learned
to discriminate each cluster from the rest of samples. Differ-
ent from this method, we adopt a pairwise strategy to learn
the fusion weights between any two groups, which can better
obtain the weights according to the distribution properties of
samples.

3. GOMES

The adopted spectral clustering method is reviewed in Section
3.1. Section 3.2 presents the proposed group-aware multi-
view fusion approach which aims to fuse each single view
graph into a fused graph. Section 3.3 introduces how to par-
tition the samples into groups. Finally, the method of fusion
weights learning is provided in Section 3.4.

3.1. Non-negative Spectral Clustering

Although the traditional spectral clustering method is widely
applied, it still has some disadvantages. The spectral solution
has mix signs, which may severely deviate from the true so-
lution. Moreover, it usually needs to resort to other clustering



methods to obtain the clustering labels. To solve these prob-
lems, Ding et al. [15] propose non-negative spectral cluster-
ing (NNSC) which improves the clustering performance and
obtains the clustering label directly. Given the affinity matrix
W ∈ RN×N , D is a diagonal matrix with the diagonal el-
ements are defined as Dii =

∑
j Wij . Then the NNSC is

formulated as follows,

max
F

Tr(FTWF)

s.t. FTDF = I, F ≥ 0
(1)

where Tr(M) is the trace of matrix M, F ∈ RN×Y is the
cluster indicator matrix and Y is the number of clusters. The
cluster label of each sample is obtained by the column number
of the maximum value of each row in F. Problem (1) can be
solved by the following update rule whose correctness and
convergence has been proved rigorously,

Fij ← Fij

√
(WF)ij

(DFFTWF)ij
(2)

3.2. Group-aware Multi-view Fusion

Given N image samples with H views, we construct a graph
for each view and obtain H graphs Gh = (V, Eh), h ∈
{1, 2, ..., H}. V = {v1, ..., vN} is the vertex set and Eh is
the edge set. Each vertex vi in V represents an image, and all
the graphs share the same vertex set V . Wh ∈ RN×N de-
notes the affinity matrix of Gh, and its entries are wh

ij , which
represents the similarity between images i and j in view h.

Our objective is to fuse all the single view graphs
{Gh}Hh=1 into a fused graph Gt = (V, Et). Gt shares the
same vertex set V with the single view graphs {Gh}Hh=1.
We only need to determine the affinity matrix Wt and the
following group-aware fusion approach is proposed. The
images are first partitioned into S non-overlapping groups:
Z = {Z1, Z2, ..., ZS} where Zi is a set of images that be-
long to the i-th group. We introduce weight ahij ∈ [0, 1]
to represent the importance of view h when describing the
similarity between the images belonging to group Zi and Zj .
These weights can be denoted by H matrices Ah = {ahij , 1 ≤
i, j ≤ S}, h ∈ {1, 2, ..., H} and we have ahij = ahji, ∀i, j ∈
{1, 2, ...S}, h ∈ {1, 2, ...,H}. Then the similarity between
two vertices p ∈ Zi and q ∈ Zj on Gt is calculated by
wt

pq =
∑H

h=1 a
h
ijw

h
pq .

We assume that the images belong to C classes. After
Gt is constructed, we conduct NNSC on Gt to partition the
images into C clusters and the class label of each image is
learned. Thus we obtain the clustering results of images.

3.3. Grouping Strategy

To partition images into groups so that the images in the
same group share similar visual appearance without any prior

knowledge, clustering methods are feasible. Although many
clustering methods can be used here, which one is the most
optimal is not the focus of this paper. We adopt NNSC for its
convenience and effectiveness. By conducting NNSC on Gt,
each obtained image cluster is treated as a group. Because we
have no prior knowledge about the number of groups S, it is
empirically identified. As a group is a subset of an image cat-
egory, the number of groups should not be less than the num-
ber of classes C. However, if the group number is set to the
maximum value N (the number of total images), the compu-
tation cost is too expensive and clustering performance could
also be affected by this over-segmentation of image groups.
So the appropriate value should be between the two bounds,
i.e., C < S < N .

Since Gt is updated according to the fusion weights dur-
ing learning, some of the groups are unreliable and we adjust
the groups in each iteration. We first determine the group la-
bel of each group, i.e., the class label of that group by a vote
from the class labels of the images within it. Then the image
whose class label is different from its group label, is assigned
to the other group, which belongs to the same class and con-
tains its nearest element.

3.4. Weights Learning

We want to assign the fusion weights to each view accord-
ing to their importance during multi-view fusion. The views
generating more accurate descriptions for two groups should
be assigned with higher weights. So how to evaluate the ac-
curacy of descriptions generated by each view is the critical
problem. We propose two criterions for evaluation: the con-
sensus criterion and the discrimination criterion.

The consensus criterion is based on the assumption that a
sample in different views would be assigned to the same clus-
ter with high probability. This criterion is commonly adopted
in multi-view global fusion methods [7, 8]. However, how
to use this criterion to identify the reliable views between any
two groups needs to be designed. Here, we consider that the
view which generates clustering results closer to the results
obtained by the fused graph, is more reliable. The follow-
ing cost function is proposed to measure the disagreement
between the clustering results generated by Gt and {Gh}Hh=1:

Con(h, i, j) =

∥∥Ft
iF

t
j
T − Fh

i F
h
j
T∥∥2∑H

h=1

∥∥Ft
iF

t
j
T − Fh

i F
h
j
T∥∥2 (3)

where ∥ · ∥ is the frobenius norm. Ft ∈ RN×C and Fh ∈
RN×C are the cluster indicator matrices which are obtained
by conducting NNSC on the fused graph Gt and the h-th view
graph Gh respectively. Ft

i (Fh
i ) is the cluster indicator matrix

of images belonging to group Zi, which is composed of the
related rows of Ft (Fh). The numerator of equation (3) is the
difference of the clustering results between data within group
Zi and Zj measured by Gt and Gh, and the denominator is



used for normalization so that its range is [0, 1]. The view
h with smaller value of Con is more important and would
obtain higher weights.

The discrimination criterion is to select the appropriate
views that would separate the samples belonging to differen-
t categories and aggregate samples in the same category. For
groups belonging to different categories, we are more inclined
to select the views which generate lower similarities. While
for groups belonging to the same class, we select the views
yielding higher similarities. One can design several cost func-
tions to achieve this criterion and we do not focus on it here.
We adopt a direct and convenient method to define the cost
function. First we calculate the similarity between two groups
Zi and Zj measured by each view:

Sim(h, i, j) =
∑
p∈Zi

∑
q∈Zj

wh
pq, h = 1, 2, ..., H (4)

We use B(Zi) to denote the class label of Zi. Then the most
discriminative view d ∈ {1, 2, ..., H} is selected according to
the relationship between the class label of two groups:

d =

 argmax
h

Sim(h, i, j) if B(Zi) = B(Zj)

argmin
h

Sim(h, i, j) otherwise
(5)

Then the cost function Dis(h, i, j) for the two groups Zi and
Zj is constructed as follows:

Dis(h, i, j) =

{
0 if h = d
1 otherwise

(6)

where we can see that it is more inclined to select the view
which provides the similarity that is more consistent with the
relationship between the class label of two groups.

Finally, we integrate the above two criterions to learn
weights ahij and the optimization problem is formulized as:

min

S∑
i=1

S∑
j=i

H∑
h=1

(ahij)
r
[
βCon(h, i, j) + (1− β)Dis(h, i, j)

]
s.t.

H∑
h=1

ahij = 1, 1 ≤ i ≤ j ≤ S

ahij ≥ 0, 1 ≤ i ≤ j ≤ S, h = 1, ...,H
(7)

where the parameter β ∈ [0, 1] provides a tradeoff between
the two criterions. r ∈ [1,∞) is the parameter to control the
sparseness of the solution. When r = 1, a completely sparse
solution emerges, and only one view is selected. While a more
smooth solution can be obtained as the value of r become
larger (r > 1). Problem (7) could be solved by lagrangian
multiplier method. The details of GOMES learning procedure
are provided in Algorithm 1.

Algorithm 1: The GOMES learning procedure

Input: {Wh}Hh=1, β, r, S, C, iter
Output: Ft, {Ah}Hh=1

1 Initialize:
2 Initialize {ahij}Hh=1 = 1

H , ∀1 ≤ i, j ≤ S and Gt;
3 Initialize groups Z;
4 Initialize {Fh}Hh=1 and Ft;
5 Iterative update variables:
6 for i = 1 to iter do
7 Given Ft, {Fh}Hh=1 and Z, update {Ah}Hh=1 and

Gt;
8 Given Gt, update Ft;
9 Given Ft, update Z;

4. EXPERIMENTS

4.1. Baseline methods

To evaluate the performance of the proposed multi-view clus-
tering method, we compare it with several baselines:

• Single view spectral clustering (SC(#)): conduc-
t spectral clustering [16] on single view graph.

• Equally combining affinity matrices spectral clus-
tering (EASC): equally fuses each single view graph
adn conduct spectral clustering on this fused graph.

• Multi-modal spectral clustering (MMSC): a multi-
view spectral clustering method [6]. We report its per-
formance as listed in [7, 12].

• Affinity aggregation spectral clustering (AASC): a
spectral clustering method which simultaneously learns
the fusion weights and the clustering results [7].

• Multi-feature spectral clustering with minimax op-
timization (MSCMO): a multi-view clustering method
based on minimax optimization [12].

4.2. Datasets and experimental settings

We compare our method with the baseline methods to eval-
uate the clustering performance. To be fair, we select sever-
al datasets that are adopted in MMSC, AASC and MSCMO
as our datasets: Caltech-101 [17], Microsoft Research Cam-
bridge Volume 1 (MSRC) [18] and Oxford Flowers [19].
For Caltech-101, we follow MMSC and AASC to choose the
same 7 and 20 classes as two datasets (Caltech-7 and Caltech-
20). For MSRC, the same 7 classes are obtained in the same
way as MMSC and AASC. We extract the same 5 types of
features for Caltech-101 and MSRC datasets as MMSC and
AASC: LBP [20], GIST [21], CENTRIST [22], Dog-SIFT
[23] and HOG [24]. Let {SC(1),...,SC(5)} denote spectral



Table 1. Selected parameters on each dataset.
Caltech-7 Caltech-20 MSRC Oxford Flowers

r 1.5 2 2 2.5
β 0.55 0.5 0.45 0.35
S 77 120 35 136

clustering with each type of feature respectively. Oxford
Flowers dataset is composed of 17 flower classes, with 80
images for each class. As MSCMO, color, shape, and texture
features are adopted for describing each image. Let SC(1),
SC(2) and SC(3) denote spectral clustering with each type of
feature respectively. As adopted in AASC, we evaluate the
clustering performance using three measures: adjusted mutu-
al information (AMI), normalized mutual information (NMI)
and adjusted Rand index (ARI). For Caltech-101, MSRC and
Oxford Flowers, we follow the same way to construct affinity
graphs for each view as AASC and MSCMO respectively.

For Caltech-7, Caltech-20 and MSRC, the performance
of MMSC and AASC are reported using the results listed in
[7]. We realize MSCMO and report its performance. For
Oxford flowers, the performance of MMSC and MSCMO are
reported as they are listed in [12]. We implement AASC and
report its performance using the code which is provided by
the authors.

There are several parameters that need to be determined in
GOMES. A simple method is searching on the whole parame-
ter space, but this is very time consuming. Instead, we first set
r = 2 to keep certain smoothness of weights and set β = 0.5
to treat each criterion equally important. Then searching the
number of groups S from {2×C, 3×C, ..., 15×C}, where C
is the number of image classes. After that, we fix S and obtain
β and r by a grid-search strategy from {0, 0.1, 0.2, ..., 1} and
{1, 1.5, 2, 2.5, ..., 10, 20, 30, ..., 50} respectively. The select-
ed parameters in our experiments for each dataset are listed
in Table 1. In our experiments, the convergence of GOMES
basically occurs less in 10 iterations (the clustering results
are not changed), so iter is set to 10. Since the the cluster-
ing methods contain some random initialization settings, the
experiments are repeated ten times and the averaged perfor-
mance is reported.

4.3. Experimental results and analysis

The experimental results are shown in Table 2. Since the
implementation details are different, the performance of s-
ingle view spectral clustering method SC(#) are not exact-
ly the same with the ones listed in AASC [7] and MSCMO
[12]. But the results of equal weight combination EASC are
very close which guarantees the fairness of the comparison to
some extent. All of the multi-view clustering methods EASC,
MMSC, AASC, MSCMO and GOMES obtain better results
than the single view method SC(#), which indicates the pow-
er of multi-view clustering. The complementary information
contained in multi-view data can be used to generate a more

Motorbike:

Garfield:

Snoopy:

Airplane:

Cow:

Car:

Fig. 2. Some clustering results from Caltech-7 and MSRC.
We pick some images from the same cluster and put them in
one row. The images belonging to the same group are put in
the red box.

accurate and robust description than any single view, which
helps improving the clustering performance.

By minimizing the difference between the clustering re-
sults of each view, MMSC obtains better results than EASC.
Nevertheless, EASC and MMSC treat each view equally im-
portant and their fusion abilities are limited. Considering dif-
ferent importance of different views, AASC provides a more
effective fusion strategy and achieves better performance than
MMSC. By minimizing the pairwise disagreement between
any two views, MSCMO learns a consensus embedding from
multiple views. However, it can not handle well the impacts
of the views with poorer performance on the learned embed-
ding. Although MSCMO achieves better performance than
MMSC and AASC on Caltech-7 and Oxford flowers, it does
not perform well on Caltech-20 and MSRC.

GOMES achieves the best performance on each dataset
compared with all the baseline methods. The proposed group-
aware fusion approach provides a more flexible strategy to
learn the fusion weights than the other methods. GOMES can
capture the different visual properties of images and learn ap-
propriate weights for different groups of images, which gen-
erates a more discriminative description and achieves better
clustering performance.

Fig.2 illustrates some clustering results of GOMES on
Caltech-7 and MSRC. We put the images which belong to
the same cluster into the same row. The images within the
same group are put in a red box. We can see that images in
the same group always share similar visual properties: some
share similar background (Garfield and Snoopy), some share
similar viewpoints (Airplane and Car) and some share simi-
lar sub-categories (Motorbike and Cow). Although one im-
age category always consists of several images with different
visual appearance, GOMES can cope with the complicated
visual distribution and reveal the images sharing similar vi-
sual appearances just as we expected. The appropriate fusion
weights are learned according to the visual appearance and
a more accurate description can be generated compared with
baseline methods.



Table 2. Performance comparison on different datasets.

Method
Caltech-101 (7 classes) Caltech-101 (20 classes) MSRC Oxford Flowers

AMI NMI ARI AMI NMI ARI AMI NMI ARI AMI NMI ARI
SC(1) 0.4583 0.4781 0.4020 0.4241 0.4743 0.2861 0.4466 0.4976 0.3546 0.3403 0.3658 0.1753
SC(2) 0.5601 0.5813 0.4448 0.5335 0.5651 0.3644 0.4888 0.5673 0.3478 0.3782 0.4121 0.1976
SC(3) 0.5112 0.5296 0.4416 0.5105 0.5427 0.3276 0.4909 0.5847 0.3078 0.1438 0.2049 0.0538
SC(4) 0.5397 0.5693 0.4372 0.4655 0.5048 0.2881 0.4554 0.5008 0.3529 – – –
SC(5) 0.4629 0.4869 0.3540 0.5101 0.5529 0.3529 0.5033 0.5404 0.4040 – – –
EASC 0.6355 0.6544 0.5551 0.5880 0.6220 0.4421 0.7332 0.7540 0.6585 0.3896 0.4145 0.2170
MMSC N/A 0.6792 N/A N/A 0.6329 N/A N/A 0.7745 N/A N/A 0.4270 N/A
AASC 0.6747 0.6853 0.6692 0.6202 0.6458 0.5110 0.7588 0.7806 0.7244 0.4031 0.4291 0.2363

MSCMO 0.6825 0.6922 0.6428 0.5965 0.6331 0.4164 0.6890 0.7166 0.6116 N/A 0.4840 N/A
GOMES 0.7365 0.7456 0.6896 0.6852 0.7044 0.5713 0.8694 0.8770 0.8578 0.4870 0.5069 0.3351

5. CONCLUSION

In this paper, we propose GOMES, which learns multi-view
fusion weights in a more appropriate fashion for real-world
images. The consensus and discrimination criterions are de-
signed to evaluate the importance of different views, and an it-
erative optimization algorithm is proposed to learn the cluster-
ing results and fusion weights simultaneously. Experiments
on several real-world image datasets indicate that GOMES
improves the clustering performance compared with baseline
methods, which verifies the effectiveness of GOMES.
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