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Abstract—As a large-scale database of hundreds of thousands
of face images collected from the Internet and digital cameras
becomes available, how to utilize it to train a well-performed face
detector is a quite challenging problem. In this paper, we propose
a method to resample a representative training set from a collected
large-scale database to train a robust human face detector. First, in
a high-dimensional space, we estimate geodesic distances between
pairs of face samples/examples inside the collected face set by iso-
metric feature mapping (Isomap) and then subsample the face set.
After that, we embed the face set to a low-dimensional manifold
space and obtain the low-dimensional embedding. Subsequently,
in the embedding, we interweave the face set based on the weights
computed by locally linear embedding (LLE). Furthermore, we
resample nonfaces by Isomap and LLE likewise. Using the result-
ing face and nonface samples, we train an AdaBoost-based face
detector and run it on a large database to collect false alarms.
We then use the false detections to train a one-class support
vector machine (SVM). Combining the AdaBoost and one-class
SVM-based face detector, we obtain a stronger detector. The
experimental results on the MIT + CMU frontal face test set
demonstrated that the proposed method significantly outperforms
the other state-of-the-art methods.

Index Terms—AdaBoost, face detection, manifold, resampling,
support vector machine (SVM).

I. INTRODUCTION

A. Motivation

OVER the past decades, the problem of human face de-
tection has been thoroughly studied in the computer

vision community for its wide potential applications, such as
video surveillance, human–computer interaction, human face
recognition, face image database management, etc. Given an
image, the goal of face detection is to locate the present
face/faces in the image and return the location and extent of
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each face. Recently, much research effort has been directed
to learning-based techniques, such as [20], [27], [31], [32],
[36]–[39], and [48]. Among them, boosting-based techniques
are the new dominant methods, e.g., [9], [25], [26], [44], and
[46]. Interested readers are referred to a recent survey by
Yang et al. [49].

The previous work in learning-based methods has been
mainly focused on exploiting robust features, such as [12],
[18]–[20], [27], [38], and [44], seeking robust classifiers, such
as neural networks [14], [18], [30], [36], [37], [39], [48],
boosting classifier performance [25], [26], [44], [46], and us-
ing different good algorithms such as support vector machine
(SVM) [23], [31], Bayesian classifier [38], etc. However, little
attention has been paid to the selection of a suitable training set
[45]. In fact, the performance of these learning-based methods
highly depends on the training set. In other words, the existing
learning-based methods suffer from a common problem: how to
collect a limited scale but effective training set? In this research,
we focus on obtaining a suitable training set from a large-scale
database to train a well-performed face detector yet with any
given classifier (e.g., AdaBoost) and feature (e.g., Haar-like
features) as mentioned in [44].

As hundreds of thousands of face images are available with
the rapidly increased number of web pages and digital cameras,
it imposes a new challenge to the research community: how
to train a robust classifier based on the collected large-scale
database? It is this problem that this paper aims to address.
Specifically, we use a manifold to subsample a small subset
from the collected face database and then interweave some big
holes in the manifold embedding. Likewise, we also resample
the nonfaces by the same method. The resampled face and
nonface sets are used to train an AdaBoost-based classifier. To
further decrease the false alarms of the AdaBoost classifier, we
train another one-class SVM classifier based on the false alarms
obtained from the trained AdaBoost classifier by running it
on a large size of images containing no faces. Combining
the AdaBoost and one-class SVM classifier, we demonstrate a
robust face detector.

B. Related Work

In this section, we briefly review the previous work on
the manifold and its applications in face detection/recognition
applications, as well as some resampling methods.

As for the manifold learning techniques, the most prevail-
ing approaches include isometric feature mapping (Isomap)
[41], locally linear embedding (LLE) [34], and Laplacian
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Eigenmap [2]. Recently, some researchers applied manifold
methods to face recognition [1], [12], [15], [30]. Specifically,
Fitzgibbon and Zisserman [15] proposed a joint manifold dis-
tance to match two sets of images. Fang and Qiu [12] proposed
a sample subspace method that projects all the training samples
onto each sample to select the sample with the largest accu-
mulated projection. Osadchy et al. [30] used a convolutional
network to detect faces and estimated their poses. In their
method, to estimate the poses, they mapped face images with
known poses to the corresponding points on the manifold and
nonface images to points far away from the manifold during
the training process. Aranjelovic et al. [1] proposed a flex-
ible, semiparametric model to learn probability densities for
image sets.

As for the resampling techniques, the most widely used
methods are bagging [6], [7] and arcing [16], [17]. The bagging
method generates several training sets from the original training
set and then trains a component classifier from each of those
training sets. In contrast, arcing is to adaptively resample and
combine the classifiers. The sample weights in the resampling
are increased for those most often misclassified. Although we
also select a subset from the original training set as bagging, our
resampling method is based on the manifold in comparison to
the random subsampling of the classical bagging. This means
that we subsample the overdense regions and interweave the
oversparse regions to obtain a representative subset. Different
from arcing, we discard some outliers that might degrade the
performance of arcing [7]. Furthermore, we also generate some
new virtual samples.

C. Organization of the Paper

The rest of this paper is organized as follows. In Section II,
we review Isomap and propose the subsampling method. In
Section III, we describe LLE and propose the interweaving
method. Experimental results are presented in Section IV,
followed by the conclusion in Section V.

II. SUBSAMPLING BASED ON ISOMAP

In this section, after a brief review of Isomap, we describe
how to use it to subsample the training set.

The Isomap algorithm is intuitive, well understood, and pro-
duces reasonable mapping results [22], [24], [47]. It captures
the geodesic distances between all pairs of data points. It also
has a theoretical foundation [3], [10], [50], which has been
developed by [5], [21], [33], [35], [40], [42], [43]. Hence, we
use Isomap to learn the geodesic distances between pairs of
samples and then use these distances to subsample the database.

A. Isomap

Given n data points {xi}n−1
i=0 in the high-dimensional input

space X and the Euclidean distances d(xi,xj) between all
pairs of xi and xj , the Isomap algorithm consists of the follow-
ing three steps [41]. First, a neighborhood graph is constructed.
Every two data points (xi and xj) are connected if the distances
d(xi,xj) are less than a given threshold e or if xi is one of the

Fig. 1. Illustration of the subsampling scheme based on the estimated geo-
desic distances.

K nearest neighbors (KNN) of xj . Second, Isomap computes
the shortest path between any two data points. For each pair
of nonneighboring data points on the neighborhood graph,
Isomap finds the shortest path along the graph with the path
bridging from neighbor to neighbor. The length of this path (we
call it “the estimated geodesic distance”) is an approximation
to the true distance between its two end points (we call it
“the true geodesic distance”), as measured on the underlying
manifold. Finally, the classical multidimensional scaling is used
to construct a low-dimensional embedding of the data that best
preserves the manifold’s estimated intrinsic geometry.

B. Subsampling

In this section, we discuss the characteristics of the geodesic
distance and then demonstrate how to use it to subsample the
database.

First, we discuss the special properties of the geodesic dis-
tance in comparison to the Euclidean distance. As shown in
[41], for two arbitrary points on a nonlinear manifold (for
example, in the “Swiss roll” manifold [41]), their Euclidean
distance in the high-dimensional input space may not accurately
reflect their intrinsic similarity. However, the geodesic distance
along the manifold can do it elegantly. In general, the smaller
the geodesic distance between two points, the more intrinsic
similarity they share. Therefore, we subsample the samples
based on the geodesic distances calculated by Isomap.

Subsequently, we show how to subsample the database based
on geodesic distances. As discussed above, during the mani-
fold learning, we can obtain the estimated geodesic distances
between pairs of samples in a high-dimensional space. In the
following stage, these estimated geodesic distances can be used
directly to subsample examples by deleting some of them from
the database. Moreover, the remaining samples can still keep
the data’s intrinsic geometric structure. In this way, we obtain a
small yet representative subset from a large-scale database.

The proposed scheme is shown in Fig. 1. We sort all the
estimated geodesic distances between pairs of samples in an
increasing order. We delete a sample if any estimated geodesic
distance between this sample and the others is smaller than a
given threshold. In our experiment setting, the value of this
threshold was decided based on the number of deleted samples.
Besides deleting the samples, we also remove those estimated
geodesic distances between the deleted samples and the others
in the sorted sequence. For example, as shown in Fig. 1, the
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Fig. 2. Illustration of the interweaving scheme in the low-dimensional mani-
fold embedding.

data points 1 and 2 are deleted during subsampling. Data point 3
survives since the estimated geodesic distances between it and
the other data points are larger than the given threshold. From
Fig. 1(b), one can conclude that the remaining samples can still
maintain the data’s intrinsic geometric structure.

III. INTERVIEWING BASED ON LLE

In this section, after a brief review of LLE, we use it to
interweave the training set.

The reason to interweave the training set is that the subsam-
pled database by Isomap can still be unbalanced. As shown in
Fig. 2, nevertheless, there are some holes in the subsampled
subset. How to collect some samples just located in these holes
is a difficult problem, particularly in a high-dimensional image
space. However, it is much easier to generate some virtual
samples to fill in these holes in the manifold embedding. Specif-
ically, to this end, we use the neighbors and their corresponding
weights to generate some virtual samples. Meanwhile, the
neighbors can be found by the KNN in the low-dimensional
manifold embedding, and the weights can be calculated using
LLE [34].

We use LLE to compute reconstruction weights since the
resulting weights by LLE can best reconstruct samples (i.e.,
with minimal reconstruction errors) from their neighbors in
the low-dimensional embedding. Specifically, different from
Isomap, LLE does not attempt to estimate the true geodesics.
It recovers a globally nonlinear structure from locally linear fits
by the simple assumption that a weighted best fit of each point’s
neighbors is sufficient to describe the local relationship of the
points. Therefore, according to these characteristics of LLE and
the essential nonlinear structure of face or nonface manifold, we
interweave the database based on the weights computed by LLE
in the low-dimensional manifold embedding.

A. LLE

LLE is a method that maps high-dimensional inputs to a low-
dimensional and neighbor-preserving embedding [34]. Its pro-
cedure is briefly described as follows: 1) assign neighbors (for
example, by KNN) to each data point xi(i = 0, 1, . . . , n − 1),
where n is the number of data points; 2) compute the weights
ωij(j = 0, 1, . . . ,K − 1) that best linearly reconstruct xi from
its neighbors; and 3) compute vectors yi best reconstructed by
ωij in the low-dimensional embedding.

B. Interweaving

In this section, after discussing the properties of LLE, we
show how to find the oversparse regions in the manifold em-
bedding and generate virtual samples.

LLE is an unsupervised learning algorithm. It computes low-
dimensional and neighborhood-preserving embeddings of high-
dimensional inputs. Unlike the clustering methods for local
dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality and avoids
the local minima in its optimizations. Through exploiting the
local symmetries of linear reconstructions, LLE is able to
learn the global structure of nonlinear manifolds, e.g., a face
manifold.

In addition, the weights by LLE share the advantages that
1) they can be computed easily by methods in linear algebra;
2) they can best linearly reconstruct vectors (i.e., with the
minimal reconstruction errors) from its neighbors in the low-
dimensional embedding; and 3) they are symmetric: for any
particular data point, the weights are invariant to rotations,
rescalings, and translations of the data point and its neigh-
bors. Note that, in our experiments, we compute the weights
in the low-dimensional embedding and reconstruct the high-
dimensional vectors. The process is reversed as in LLE.

After computing the weights by LLE, the procedure of
generating virtual samples to interweave the oversparse regions
in low-dimensional embedding consists of two steps: the first
is to find the sparse regions in the embedding, and the second
is to reconstruct the virtual samples by their neighbors and the
corresponding weights.

First of all, we need to find the sparse regions in the man-
ifold embedding. For example, as shown in Fig. 2, due to the
unbalance of the database, there are still some “holes,” such
as the position of circles O1 and O2, in the low-dimensional
embedding after subsampling. How to search these “holes” in
the embedding? In our case, first, we calculate the median dm

of all of the Euclidean distances between pairs of points yi(i =
0, 1, . . . , n − 1) and its K neighbors yj(j = 0, 1, . . . ,K − 1).
The value dm is used as the radius of “searching ring” as
shown in Fig. 2. Second, moving the searching ring by a
given experiential step-length in the embedding, we find several
holes (herein, when the searching ring runs over the em-
bedding, a hole is hit if no data point is located within it).
The centers of these holes, such as points 1 and 2, are the
places where we generate virtual samples. Note that we run
the searching ring along the embedding in its 2-D project for
convenient computation. We have repeated this operation in
higher dimension projections (e.g., 3-D, 4-D, etc.) and find that
the performance difference among the resulting classifiers is
marginal.

Having found the holes in the embedding, the next step is
to generate some virtual examples to fill in these holes. In our
case, after learning the embedding, we fill in these holes with
some virtual examples. The process to generate a virtual sample
is as follows.

1) Find the K neighbors {yp1,yp2, . . . ,ypK} of a virtual
example yVE

p (p = 0, . . . ,m − 1) in the low-dimensional
embedding, where a virtual example corresponds to the
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TABLE I
ORIGINAL SAMPLES VERSUS VIRTUAL SAMPLES

TABLE II
VIRTUAL SAMPLES AND THEIR CORRESPONDING NEIGHBORS

center of a found hole; the superscript “VE” denotes
virtual example, and m is the number of virtual examples.

2) Compute the weights ωpj(j = 0, 1, . . . ,K − 1) by LLE
for the best linear reconstruction of yVE

p .
3) Reconstruct the virtual example xVE

p by ωpj and its K
neighbors in the high-dimensional input space as follows:
xVE

p =
∑K

j=1 ωpjxpj , where {xp1,xp2, . . . ,xpK} are
the K neighbors of the virtual example xVE

p , and xVE
p

is the data point in the high-dimensional input space
corresponding to yVE

p , likewise, {xp1,xp2, . . . ,xpK}
corresponding to {yp1,yp2, . . . ,ypK}.

Some virtual face samples are shown in Table I, and some
virtual samples and their neighbors are shown in Table II. From
Table I, one can conclude that these virtual samples look very
much like real faces. From Table II, one can conclude that a
virtual sample preserves the appearance information of the face
classes that generate the sample. For example, a virtual sample
generated by a group of Caucasian faces looks like a Caucasian
face, while a virtual sample generated by a group of African-
Americans looks like an African-American. A female face will
generate a virtual female face.

However, as shown in Table II, some weights are negative,
which might result in minus pixel values. To avoid this case,
we normalize the pixel values of the virtual samples to [0, 255]
again.

IV. EXPERIMENTS

In this section, we carried out two groups of experiments
to verify the proposed method. One group was performed to
compare the classifiers trained by the original training set and

resampled ones. The other used the resampled training set to
train a face detector and then test it on the MIT + CMU frontal
face test set.

A. Experiments on the MIT Face Database

In this group of experiments, we verified the effectiveness
of the proposed method and compared the performances of the
trained classifiers by the originally collected training set and
that by several resampled ones. Specifically, the training sets
were composed of the following five cases: 1) the originally
collected training set; 2) the subsampled ones by Isomap at
different ratios; 3) the subsampled ones by random; 4) the
training sets subsampled by Isomap and then interweaved by
LLE; and 5) the training sets subsampled by Isomap and then
interweaved by PCA.

The data set was from the Massachusetts Institute
of Technology (MIT) Center for Biological & Computa-
tional Learning (CBCL) webpage (http://cbcl.mit.edu/software-
datasets/FaceData2.html), which consists of a training set of
6977 samples and a test set of 24 045 samples. Meanwhile,
the training set is composed of 2429 faces and 4548 nonfaces.
We call it the original training set. The test set is composed of
472 faces and 23 573 nonfaces. All of these samples are in
grayscale mode and have been normalized to 19 × 19.
1) Face Example Subsampling: In this section, we compare

the trained classifiers based on the following training sets: the
original training set, the training sets with the face examples
subsampled by Isomap at different ratios, and the training sets
with the face examples subsampled by random.

To subsample face examples in the original training set, we
first learned the manifold of these faces. Specifically, we let
K = 6 to experientially learn the manifold of 2429 faces in the
original training set. By the Isomap, we obtained estimated geo-
desic distances between pairs in the high-dimensional space.
Afterwards, these distances were used directly to subsample the
faces by deleting some samples. Note that all of these samples
were performed by histogram equalization before manifold
learning. This is because, to train a classifier, all samples are
needed to perform histogram equalization. That is, it normalizes
the histogram of face samples and makes faces more compact in
the image space. Therefore, it is widely used in face detection.

Having learned the globally nonlinear structure of faces by
Isomap, we then subsampled the face samples. In order to
verify the effects of different subsampling ratios on the trained
classifiers, we subsampled the faces by 90%, 80%, 70%, . . .,
and 10% as discussed in Section II-B. We call the subsampled
sets as ISO90, ISO80, ISO70, etc. Meanwhile, ISO90 means
we preserve 90% of the samples, and the same meaning applies
for ISO80, ISO70, etc. Note that ISO70 is a subset of ISO80,
ISO80 is a subset of ISO90, and so on.

The nine subsampled face sets (ISO90 and the others) to-
gether with the nonface set were used to train nine classifiers
based on the AdaBoost (for the details about how to train a
classifier based on AdaBoost, please refer to [44]). Likewise,
all faces in the original training set were also used to train
an AdaBoost-based classifier with the same nonfaces. The ten
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Fig. 3. ROC curves among the trained classifiers on the MIT test set.
(a) Comparison of the trained classifiers based on the face sets subsampled
by Isomap and the original set. (b) Comparison of the equal error rates of
the trained classifiers based on the different subsampling ratios by Isomap.
(c) Comparison between the trained classifiers based on the face sets subsam-
pled by Isomap and by random.

resulting classifiers (one by all faces and nine by subsampled
faces) were then tested on the test set. Three receiver operating
characteristic (ROC) curves for the three classifiers trained on
ISO90, ISO80, and ISO70 are shown in Fig. 3(a). The equal
error rates (i.e., the intersection of false rejection rate and false
acceptance rate) of the ten classifiers are shown in Fig. 3(b).

From Fig. 3(a) and (b), one can conclude that five of their de-
tectors (i.e., based on ISO90, ISO80, . . ., and ISO50) achieved
a comparable performance in comparison to the detector based
on all faces. It demonstrates that it is reasonable to subsample
the training set by Isomap. Furthermore, the detector trained
by ISO90 is the best one, and it improved distinctly the per-
formance of the trained detector compared with the detector
by all faces. We believe that the evenly distributed samples
and no outliers (we discard 30 outliers by Isomap) contributed
to the good results. We will discuss these reasons in detail in
Section IV-B1.

Herein, a key issue is to determine threshold values for
subsampling. In general, it depends on the size of the training
set and the target distribution. First, test errors usually decrease
in a typical monotonic power-law function with the increase
of the training set size [11]. That is, if the size of the training
set is smaller, we only prune a smaller ratio and preserve more
samples. Indeed, removing the outliers by Isomap for a small
training set obviously improves the system performance. On the
contrary, if the size of the training set becomes larger, we prune
a larger ratio of the samples. Second, if the target distribution
is very simple (e.g., a Gaussian distribution) and/or the target
class is easy to be classified from the other class (e.g., to classify
handwritings 1 from 8), one can subsample the training set by
a larger ratio and vice versa.

For example, for a small training set (2429 faces in this
section), we preserve 90% of the faces when subsampling. In
contrast, for a large training set (1 500 000 in Section IV-B),
we preserve only 14 000 face samples (less than 0.1%) since
14 000 faces are enough to train a well-performed classifier as
demonstrated by experiments.

However, random subsampling does not work as well as
the Isomap subsampling. We randomly subsample faces from
the original training set for 1000 times and obtain 1000 sub-
sets. Each subset has the same number of samples as ISO90.
Likewise, all of these randomly subsampled subsets together
with nonfaces in the original training set were used to train the
AdaBoost-based classifiers. The resulting classifiers were also
tested on the test set. Some ROC curves are shown in Fig. 3(c).
In this figure, we plot the ROC curves of the detectors based on
all faces, ISO90, and two randomly subsampled subsets (i.e.,
best and worst cases) together with the average performance
for random. Herein, the curve “90% samples by random-avg”
denotes the average performance of these 1000 subsets subsam-
pled randomly; the curves “90% samples by random-min” and
“90% samples by random-max” represent the worst and best
results of these 1000 random-subsampling cases.

From these ROC curves in Fig. 3(c), one can conclude that
the detector based on ISO90 is still the best, and the results
based on random subsampling are very unstable. We also
conclude that the evenly distributed examples and no outliers
contribute to the results. We will discuss these reasons in details
in Section IV-B1.
2) Face Example Interweaving: In this section, we study the

effects of virtual samples on the trained classifiers.
First, we discuss the effects of different numbers of vir-

tual samples by LLE. Specifically, after the subsampling by
Isomap, we interweaved the manifold embedding as discussed
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Fig. 4. ROC curves on the virtual samples by LLE. (a) Adding different
numbers of virtual examples. (b) Changing radius of a searching ring.

in Section III-B. As shown in Fig. 4(a), we added the different
numbers of virtual examples in the set ISO90 (i.e., 100 or 500
examples, respectively). One can conclude that adding a few
examples is valuable for training a detector. When the number
is up to 500, it is not as good as 100 examples. Moreover, we
test a detector based on ISO90 with 300 virtual examples. We
find that the performance of the detector by adding 300 virtual
examples in ISO90 is better than that of adding 500, but inferior
to that of adding 100 examples.

Second, we gained an insight into the effects of the sparse
or dense degree of virtual samples on the resulting classifiers.
As shown in Fig. 4(b), we changed the radius of the searching
ring. The first 100 virtual examples were generated by moving
the searching ring with the radius equal to dm. The second 100
virtual examples were generated by the ring radius 1.1 × dm

and the third 100 virtual examples by 1.2 × dm. One can
conclude that, when the radius is equal to dm, the added 100
examples are the most valuable for training a detector. We also
find that, when the radius is equal to 0.9 × dm or 0.8 × dm,
the performance improvement is not as valuable as that by the
radius equal to dm.

These two groups of experiments indicate that the training
set should distribute reasonably instead of being overdense or
oversparse. For example, when the radius of the searching ring
becomes larger than dm, the local embedding patches (where
the virtual examples are located) become sparser. In contrast,

Fig. 5. ROC curves on different interweaving methods.

when the radius becomes smaller than dm, the local embedding
patches become denser.

Herein, the key issue is to determine how many virtual
samples should be generated. In general, it depends on two
factors. One is the size of the collected data set, and the other is
the distribution of the data set. Specifically, on one side, if the
size of the collected data set is larger, we usually generate more
virtual samples and vice versa. On the other side, if the data
set distributes relatively sparsely, we generate more samples in
comparison to the case that the data set distributes densely. In
our experiment, the number of the virtual samples is determined
experimentally. An experiential formula is m = λn, where m is
the number of the virtual samples, λ is a constant within [0.02,
0.1], and n is the size of the data set.

3) LLE and PCA: In this section, we compare two different
interweaving methods—LLE and principal components analy-
sis (PCA).

PCA is a useful statistical technique. It has been successfully
applied in many fields, such as face recognition and image
compression. Moreover, it is a common technique for finding
patterns in data of high dimension. In [45], we reconstructed
virtual examples by performing PCA locally among the recon-
structed examples and their neighbors.

As shown in Fig. 5, we added 100 virtual examples in
the set ISO90 based on different methods. The resulting face
sets (ISO90 + LLE100, ISO90 + PCA100) together with the
nonface set were used to train two AdaBoost-based classifiers.
Likewise, the two trained classifiers were tested on the MIT
test set. One can conclude that the classifier performance based
on ISO90 + LLE100 is better than that of ISO90 + PCA100.
We believe that there are two reasons. First, it is due to the
essential nonlinear structure of faces, on which LLE can work
but PCA cannot. Second, the weights computed by LLE share
some advantages (please refer to Section III) in comparison
to PCA.

B. Experiments on the Real Applications

In this group of experiments, first, we resampled the collected
large-scale face database. Second, we resampled the collected
large-scale nonface database. Third, we modeled the false
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alarms by one-class SVM. Finally, we compared the resulting
detector with the state-of-the-art detectors.

The original face set consisted of 100 000 samples. They
were collected from the Internet, video, and digital cameras
and covered wide variations in pose, facial expression, and
also in different lighting conditions. To make the detection
method robust to affine transformation, the images were often
rotated, translated, and scaled [19]. After these preprocessing,
we obtained 1 500 000 face examples, and we called it whole
set. Subsequently, we subsampled the whole set. The first group
was subsampled by Isomap. It included 14 000 face examples,
and we called it ISO14000. The second group was randomly
subsampled from the whole set for ten times. Each randomly
subsampled subset was also composed of 14 000 face examples.

The nonface database consisted of 311 085 images
containing no faces. They are from the Corel database (www.
corel.com), LabelMe database (http://www.csail.mit.edu/~
brussell/research/LabelMe/intro.html) and other websites.
First, from this nonface database, we randomly picked out
11 085 images to train the AdaBoost-based classifier with only
faces resampling; second, we used 100 000 images for the
nonfaces resampling during the training of the AdaBoost-based
classifier. Third, we used the remaining 200 000 images to
collect false alarms and then modeled the obtained false
detections by one-class SVM.

The test set in this section was MIT + CMU frontal face
test set, which consists of 130 images showing 507 upright
faces [36].
1) Face Resampling: In this section, we only resampled

faces to verify its effects on the large-scale face database. The
nonface examples were from 11 085 images.

In order to subsample the face set, we need to learn its
manifold. However, it is hard to learn the manifold from
1 500 000 examples by Isomap because it needs to calculate
the eigenvalues and eigenvectors of a 1 500 000 × 1 500 000
matrix. To avoid this problem, as shown in Fig. 6, we divided
the whole set into 500 subsets, and each subset has 3000
examples. We got 1000 examples by Isomap from each subset
and then incorporated every three subsampled sets into one new
subset. With the same procedure, we obtained a final subset
by Isomap with totally 14 000 examples after incorporating all
subsampled examples into one set.

To avoid destroying the intrinsic structure of the data mani-
fold when the whole set is divided into 500 subsets, we divided
samples with similar variations into the same subset. That is,
the examples with the similar pose fall into the same/neighbor
subsets and the same for the variations of facial expression
or lighting condition. Likewise, this criterion is applied to
incorporate the subsampled subsets.

Besides the subsampling by Isomap, we also randomly sub-
sampled ten subsets from the whole set. Each subset consisted
of 14 000 examples as well.

For the nonface examples, they were initially represented by
14 000 nonface samples. Each layer in the AdaBoost cascade
was then trained by using a bootstrap approach [39]. In this
way, we increased the number of negative examples. The
bootstrap was carried out several times on a set of 11 085
images.

Fig. 6. Subsampling procedure by Isomap to obtain 14 000 examples from
1 500 000 ones.

The subsampled face sets by Isomap and by random were
both used to train the AdaBoost-based classifiers. Note that
we have trained 11 detectors, one using the face set subsam-
pled by Isomap and ten by random. The trained detectors
were evaluated on MIT + CMU frontal face test set. The
results on this set are compared in Fig. 7(a). Herein, the curve
“ISO14000” denotes the results of the detector trained on
ISO14000, the curve “Rand14000-avg” denotes the average
performance of these ten subsets subsampled randomly, and
the curves “Rand14000-min” and “Rand14000-max” represent
the worst and best results of these ten random-subsampling
cases.

From these ROC curves in Fig. 7(a), one can conclude that
the detector based on ISO14000 is much better than that of
Rand14000-avg, particularly for the case of Rand14000-min.
Moreover, the detector on ISO14000 achieves the comparable
performance to Rand14000-max. We believe that there are
some possible reasons. First, the examples subsampled by
Isomap distribute evenly in the example space and have no
examples congregating compared with the whole set. There-
fore, subsampling by Isomap adjusts the positions of the weak
classifiers and offset/deflect them to more reasonable direction
during the detector training based on AdaBoost. Herein, a weak
classifier means that a classifier is not needed to be the best
classification function to classify the training data well, i.e.,
for any given problem the best perception may only correctly
classify the training data 51% of the time. For more, please refer
to [6], [7], [16], [17], and [44]. Second, the outliers in the whole
set have been discarded during the manifold learning [41]
(we discard 1638 outliers by Isomap.). This is because the
boundary between faces and nonfaces becomes clear by dis-
carding the outliers. In turn, it alleviates the overfitting brought
forth by the outliers and improves the generalization ability of
the trained classifier.

Similarly, from the ROC curves in Fig. 7(a), one can observe
that the results based on the random subsampling are very
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Fig. 7. ROC curves for the trained detectors. (a) Results of the training sets
by Isomap and by random. (b) Results of the training sets by adding virtual
samples.

unstable. The performance difference between Rand14000-max
and Rand14000-min is almost 6%, particularly for the low false
alarms. It may be that different random subsamples result in
different distributions and different outliers of the subsampled
subsets, which, in turn, leads to the instability of the trained
detectors. That is also the reason why we obtain the different re-
sults, even when using the same number of examples, the same
classifier (AdaBoost or SVM based), the same parameters for
the selected classifier, and the same test set, but different train-
ing samples by the random subsampling from the face space.

One might note the difference between the results by Isomap
and by random in Figs. 3(c) and 7(a). Specifically, the dif-
ference between the Isomap and random in Fig. 3(c) is more
obvious than that in Fig. 7(a). We believe that the outliers
degrade the performance of the trained classifiers on a small
size of training set more than that of a larger size one. It is
consistent with the conclusion from [7].

After subsampling the faces by Isomap, we obtained the
training set ISO14000 as mentioned above. Subsequently, we
added some virtual examples (800 and 1200, respectively).
As shown in Fig. 7(b), both of the two detectors trained by
ISO14000 together with the added virtual examples outperform
the detector only by ISO14000. That is, the added virtual exam-

Fig. 8. Results of nonface resampling by manifold modeled by a one-
class SVM.

ples improve the detector’s performance further. We believe that
the generated samples make the distributions of the resulting
face set approach to the target distribution much better.
2) Nonface Resampling: In face detection, the nonfaces

space is unbounded, and they can play an important role.
Therefore, the system performance sometimes highly depends
on the choice of nonfaces. In this section, in order to reduce the
false alarms of the trained face detector, we also resample the
nonfaces by the proposed method.

Besides resampling faces, we also used the proposed method
to resample nonfaces. That is, we used Isomap to subsample
the collected nonfaces and then applied LLE to interweave
them. However, different from faces resampling, we resampled
nonfaces during the training process of the AdaBoost-based
face detector. Specifically, for each layer in training a cascade of
classifiers, we resampled the nonfaces that were bootstrapped
from the images containing no faces. In our experiments, we
collected 100 000 misclassified nonfaces by the former layer,
and then, we subsampled them to obtain one subset consisting
of 14 000 examples. Afterwards, we interweaved the subset and
also generated about 1200 virtual nonfaces for each layer.

The performance comparison with/without nonfaces resam-
pling is shown in Fig. 8. It can be observed that the nonfaces
resampling by manifold can improve the system performance
nearly by 3%–4%, particularly for the low false alarms by
6%–8%. From this observation, we believe that the well-
distributed nonfaces contribute to these improvements. Fur-
thermore, resampling on a larger data set containing no faces
obtains more representative nonfaces to train a face detec-
tor, which helps to clarify the boundary between faces and
nonfaces.
3) One-Class SVM for False Alarms: In this section, we use

one-class SVM to model false alarms to reduce them further in
face detection.

First, we collected false alarms. To this end, we ran the
trained detector in Section IV-B2 on the collected nonface
database (200 000 images containing no faces). The obtained
false alarms (denoted as Sfa) were then modeled by one-class
ν-SVM using radial basis function (RBF) as the kernel
function [8].
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We first used only the set Sfa to learn a one-class SVM-based
classifier. Subsequently, we ran this classifier on the face set
(ISO14000 + 1200) to collect some false negatives (denoted as
Sfn). Afterward, we combined Sfa and Sfn to train a final one-
class SVM-based detector. In our case, we obtained 10 592 false
alarms and 3681 false negatives; the parameter ν, i.e., fraction
of errors, is equal to 0.01, and the parameter σ, i.e., width of the
RBF kernel, is equal to 1200.

The final face detector consisted of two subclassifiers—one
was the AdaBoost-based classifier and the other was the
one-class SVM-based classifier. Note that only those subwin-
dows that pass the AdaBoost-based classifier were then used
as inputs of the one-class SVM-based classifier. By this means,
the false alarms can be reduced sharply. As shown in Fig. 8, we
achieved the detection rate of 93.5% without false alarms. As
far as we know, it is the best result with no false alarm on the
MIT + CMU frontal face test set. The detection rates were also
improved significantly by 3%–6%, particularly for the low false
detections.

Similar to the work on face pattern modeling proposed by
Jin et al. [23], during the preparation of training set, our target
object is also the face samples. However, different from their
work, we subsample faces and generate some new virtual faces.
Furthermore, during the classifier training, we also resam-
ple nonfaces to help clarify the boundary between faces and
nonfaces.

Although Jin et al. have also bootstrapped their detector
on the faces, the performance of our system is superior to
theirs—they have tested on a subset, including 38 images
showing 164 faces, of MIT + CMU test set. They achieved
90.24% detection rate with 24 false alarms. We believe that, as
shown in [28] and [29], such one-class approaches are typically
applied in novelty detection. In these type of applications, it is
often the case that negative data (e.g., only a few measurements
of a power plant that is out of the “normal” range) are very
rare. Therefore, the absence of negative information leads to
the case that one should not expect so good results as the neg-
ative information is available. Furthermore, in face detection,
although nonfaces are hard to be modeled, we can collect many
nonfaces easily. Thus, if one trains a face detector both by faces
and nonfaces, he/she always obtains a classifier with a better
performance.
4) Comparison With Others: In this section, we compare

our method to the state-of-the-art methods.
As shown in Fig. 9, we address the performance comparison

between our system and some existing face detection algo-
rithms on MIT + CMU test set, such as Féraud et al. [14],
Garcia and Delakis [18], Li and Zhang [25], Rowley et al. [36],
Schneiderman and Kanade [38], and Viola and Jones [44].

From the ROC curves in Fig. 9, one can observe that our
method compares favorably with the others, particularly for
the low false alarms. When the false alarms are about ten, our
system outperforms that of Viola and Jones (without voting)
[44], who also trained an AdaBoost-based face detector, by
nearly 20%.

Some face detectors based on the manifold are also devel-
oped, such as Osadchy et al. [30] and Fang and Qiu [12]. In
Tables III and IV, we list the detection rates for various numbers

Fig. 9. ROC curves comparison of our method and others tested on the MIT +
CMU frontal face test set.

TABLE III
COMPARISON WITH OSADCHY–MILLER–LECUN [30]

TABLE IV
COMPARISON WITH FANG–QIU [12]

of false alarms for our system, as well as for [30] and [12]. It can
be observed that our method outperforms others, particularly
that our system has very low numbers of false alarms. It shows
that our approach separates face and nonface space in a robust
and balanced way.

However, different criteria (e.g., training time, number of
training samples involved, cropping training set with different
subjective criteria, execution time, and the number of scanned
windows during detection, etc.) can be used to favor one over
another, which will make it difficult to evaluate the performance
of different methods even though they use the same benchmark
data sets [49]. Some results of our detector are shown in
Fig. 10.

We conclude that resampling on both faces and nonfaces by
the proposed method improves significantly the performance of
the finally trained classifier. In detail, first, for face resampling,
subsampling by Isomap improves the system performance by
about 3%, and interweaving by LLE furthers by about 2%;
second, for nonface resampling, subsampling and interweaving
gain nearly 5%; third, modeling false alarms by one-class
SVM-based classifier increase the resulting system by about
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Fig. 10. Some results of our trained detector.

3%. Particularly for the low false alarms, we have increased
the detection rate totally by nearly 20%.

C. Discussion

In this section, we discuss the influence of sample distrib-
utions and outliers on the trained classifiers. As mentioned in
Sections IV-A and B, the experimental results indicate that the
evenly distributed examples and no outliers contribute to the
improvement on the performance of the trained detectors. How
can these two factors work?

The first factor is that different subsampling methods result in
different sample distributions. The samples subsampled based
on manifold distribute evenly in the sample space without
congregation in comparison to the whole set and randomly sub-
sampled subsets. For example, as shown in Fig. 11, subpanel (a)
denotes a weak classifier lo between the boundary of face and
nonface sets collected originally, subpanel (b) denotes a weak
classifier lr between the boundary of face and nonface subsets
randomly subsampled from the whole sets, and subpanel (c)
denotes a weak classifier lm between the boundary of face and
nonface subsets subsampled based on the manifold. Because
of the random subsampling, face samples in the cluster near
the nonface set could be neglected innocently since one does
not know the distribution of the face samples in the data
space. Therefore, the weak classifier lr might be far away from
lo. However, subsampling based on the manifold can avoid
this kind of nescience, as shown in Fig. 11(c). It is because
subsampling based on the manifold can still maintain the data’s
intrinsic geometric structure.

The second factor is that the outliers in the whole set can
deteriorate its performance. However, these outliers are dis-
carded during the manifold learning. In turn, the subsampled
training set by manifold improves the performance of the
trained classifier. For example, as shown in Fig. 12, subpanel (a)
denotes two weak classifier l1 and l2 between the boundary
of face and nonface sets collected originally and subpanel (b)
denotes a weak classifier l between the boundary of face and
nonface subsets after discarding the outliers. On account of the
outliers in the originally collected face set, we have to use two
weak classifiers to partition the faces and nonfaces to guarantee
the detection rates and false alarms of the trained detector.
However, after discarding the outliers during the manifold

Fig. 11. Illustration of the influences of different subsampling methods on
weak classifiers during detector training based on AdaBoost.

learning, the boundary becomes much clearer. A weak classifier
l can carry out the classification as well. In turn, it can improve
the generalization ability of the trained face detector.

V. CONCLUSION

In this paper, we have presented a novel manifold-based
method to obtain a relatively small but effective training
set from a collected large-scale face/nonface database. We
subsample the database based on the estimated geodesic dis-
tances between pairs of samples by Isomap. Afterward, we
interweave the training set based on the weights computed
by LLE in the low-dimensional manifold embedding. Sub-
sequently, we train an AdaBoost-based face detector by the
resampled training set and then run the detector on a large
database to collect false alarms. These false alarms are then
modeled by a one-class SVM-based classifier. A final face
detector is composed of the AdaBoost and one-class SVM-
based classifiers. Compared with the detectors trained by the
random-subsampling sample sets, the detector trained by the
proposed method is more stable and achieves better perfor-
mance compared with the other popular methods. Moreover,
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Fig. 12. Illustration of influences of outliers on weak classifiers during
detector training based on AdaBoost.

the experimental results show that, in order to improve the
performance of a face detector, how to collect a suitable training
set is as much important as how to design a suitable classifier.
Although the proposed method is used to resample faces and
nonfaces in this paper, it can be applied to resample other
database (e.g., cars [38], handwritings [4], image patches [13],
and so on). How to use the proposed method to resample other
database is our future work.
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