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The performance of a learning-based method highly depends on the quality of a training set. However, it
is very challenging to collect an efficient and effective training set for training a good classifier, because of
the high dimensionality of the feature space and the complexity of decision boundaries. In this research,
we study the methodology of automatically obtaining an optimal training set for robust face detection
by resampling the collected training set. We propose a genetic algorithm (GA) and manifold-based
method to resample a given training set for more robust face detection. The motivations behind lie in
two folds: (1) dynamic optimization, diversity, and consistency of the training samples are cultivated
by the evolutionary nature of GA and (2) the desirable non-linearity of the training set is preserved by
using the manifold-based resampling. We demonstrate the effectiveness of the proposed method through
experiments and comparisons to other existing face detectors. The system trained from the training set
by the proposed method has achieved 90.73% accuracy with no false alarm on MIT+CMU frontal face test
set—the best result reported so far to our knowledge. Moreover, as a fully automatic technology, the
proposed method can significantly facilitate the preparation of training sets for obtaining well-performed
object detection systems in different applications.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, the problem of human face detection
has been thoroughly studied in the computer vision community
for its fundamental challenges and interesting applications, such as
video surveillance, human computer interaction, face recognition,
and face data management. The goal of face detection is to determine
whether there are any faces within a given image, and return the lo-
cation and extent of each face in the image if one or more faces are
present [39]. Recently, the emphasis has been laid on applications
of machine learning techniques (e.g., [29,32,38]). Many previous
methods can be found in the survey by Yang et al. [39]. After the
survey, one of the most important progresses is the boosting-based
method proposed by Viola and Jones [36] and its variations (e.g.,
[9,18,19,23,26,30,37,40]). Another progress is the convolutional face
finder proposed by Garcia and Delakis [16].

However, compared with the great deal of efforts on classifier
design when given a static training set, very little attention has been
paid to the optimal use of the training set by resampling, and even
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less work has been done to systematically select training samples for
face detection although collecting a training set is prerequisite for a
learning task. It is often time consuming to collect a well-distributed
training set [20]. In this paper, we present a method of automatically
obtaining an optimal training set by resampling the positive samples.
Unlike the previous methods, our method adds variations on posi-
tive samples by genetic algorithm (GA) extremely (i.e., from 6000 to
100,000) and then remove redundant samples iteratively by mani-
folds until obtaining a dense and balanced training set. The optimized
training set is then used for more robust face detection. We demon-
strate the effectiveness of the proposedmethod through experiments
and comparisons to other existing face detectors. The system trained
from the training set by the proposed method has achieved 90.73%
accuracy with no false alarm on MIT+CMU frontal face test set [29].

The rest of this paper is organized as follows: Section 2 presents
some related work. Section 3 describes how to resample a training
set by GA and manifolds. Section 4 shows experimental results of
the proposed method. Section 5 gives the conclusions.

2. Related work

In this section, we briefly review some related work. We start
with the existing resampling method, and then present the related
work on GA and manifolds.
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Resampling is one of basic issues in statistics. The theoretical
foundations of resampling techniques are presented in [13]. The basic
idea is to generate a subset from existing samples. The most widely
used methods are jackknife (leave one out) [12], bagging [8], and
arcing [14], etc. The jackknife is superior for small datasets. The basic
idea of jackknife is to roundly select one sample for testing and the
other for training a classifier. This procedure is carried out n times for
a set with n samples. Bagging generates several training sets from an
original training set and then trains a component classifier from each
of those training sets [8]. In contrast, arcing is to adaptively resample
and combine so that the sample weights during the resampling are
increased for those ones most often misclassified [14]. Different from
the traditional resampling techniques, the resampling method in our
case not only selects a subset, but also generates new samples.

The resampling methods are also widely used in face detec-
tion and recognition applications. In order to expand the non-face
training examples, Sung and Poggio [32] proposed the bootstrap to
obtain more non-face examples during training. Lu and Jain [25] uti-
lized the resampling techniques to generate several sample subsets
from the original training dataset. Zhou and Jiang [42] showed that
classifiers could benefit from the enhanced training set by adding
virtual views. Kirby and Sirovich [21] used the Karhunen–Loève
procedure to reconstruct human faces, which resulted in an exten-
sion of the data. Moreover, one challenge in face recognition domain
is so called “one sample per person” problem: Only one sample per
class is available to a system [33]. To solve this problem, Torre et al.
[35] presented a method to combine various representations of the
same image so as to exploit their specific merit. Beymer and Pog-
gio [5] proposed a method to generate novel views of a single face
image under different poses.

Evolutionary computation is a general stochastic search method-
ology, which inspired from evolution mechanisms discovered by
Charles Darwin [17]. Recently, it has been used for various optimiza-
tion problems in different areas, such as data mining, image process-
ing, pattern recognition, and signal processing. Atkinson-Abutridy
et al. [1] propose a novel approach for knowledge discovery from
texts. Au et al. [2] develop the method of data mining by evolu-
tionary learning, which introduces classification rules to predict the
likelihood of each classification. Bhattacharyya et al. [6] present a
domain-related structuring of the representation and incorporation
of semantic restrictions for genetic programming (GP)-based search
of trading decision models. Brameier and Banzhaf [7] introduce a
new form of linear GP and show that GP achieves comparable per-
formance in classification and generalization. Cano et al. [10] com-
pare four evolutionary and some nonevolutionary instance selection
algorithms. The experimental results suggest that the evolutionary
instance selection algorithms outperform the nonevolutionary ones.

face
nonface

face
nonface

Fig. 1. Why do we optimize the training set? (a) A random collected face and non-face sets (projected on a 2D plane using manifold) and (b) the optimized face set by the
proposed method (projected on a 2D plane using manifold).

Zhou et al. [41] employ gene expression programming to learn clas-
sification rules. Liu and Tang [24] use the evolutionary search for
faces from line drawings to tackle the face identification problem by
a variable-length GA.

GAs are a branch of the evolutionary computation [17]. They start
from an initial population, often represented as bit strings, which
evolves over successive generations. Those individuals who repre-
sent better solutions to approach the target win more chances to
“reproduce” than those individuals which are relatively far from the
target. They are mated with other solutions by crossing parts of a
solution string with another. The reproduced strings are also mu-
tated. Over time, they reproduce by crossing high fitness solutions at
random points to weed out poor fitness solutions. These operations
randomly sample a huge state space very efficiently.

A manifold provides a low dimensional description for data in
high dimensional space. It enables us to visualize data, perform
classification and cluster efficiently. Some prevailing approaches
are isometric feature mapping (Isomap) [34], local linear embed-
ding (LLE) [28], and Laplacian Eigenmap [4]. Meanwhile, Isomap
is one of the representative techniques [34]. It is intuitive, well
understood, and can produce reasonable mapping results. In this
algorithm, firstly, distances between neighboring data points are
calculated and neighborhood graph is constructed. Secondly, for
each pair of non-neighboring data points, Isomap finds the short-
est path through neighborhood graph, subject to the constraint
that the path must hop from neighbor to neighbor. The length of
this path (so called “the estimated geodesic distance”) is an ap-
proximation to the true distance between its end points (so called
“geodesic distance”), as measured within the underlying manifold.
Finally, the classical multidimensional scaling is used to construct
low-dimensional embedding.

3. Expanding a training set

Different from the bootstrap method in [32], which approaches
the boundary between faces and non-faces by only expanding non-
face set during training stage, we try to optimize a training set by
expanding a face set. Comparing with the unlimited non-faces, the
idea of using expanded faces combined with bootstrap for non-faces
seems more reasonable. Moreover, it can significantly improve the
performance of a trained detector and speed up the procedure of the
preparation of training set [11].

Fig. 1 shows a comparison between a collected training set and
the optimized training set by the proposedmethod. One can find that
many face and non-face clusters are heavily interlaced. A human face
is a 3D object which imposes many variations on face images. Many
other objects may look like faces. It is impossible for a training set
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to cover all these variations without careful selections. In addition,
many samples are collected from web sites, videos or digital cam-
eras without knowing the distribution of faces in the image space in
advance (an example shown in Fig. 1(a)). Some locations in the fea-
ture space might be much denser while others much sparser, which
results in the bias of a trained detector. What we want to do is to fill
in the face example space firstly by GA and then resample it by man-
ifolds to obtain a dense and balanced training set (i.e., it can better
characterize the target distribution of faces) as shown in Fig. 1(b).

An overview of the proposed method is shown in Fig. 2. Initially,
all of collected images are aligned coarsely, preprocessed, and di-
vided into three sets: training, validating, and testing. The training
set is then employed as an initial population to perform the GA op-
erations. All the intermediate solutions of the current generation are
evaluated by a classifier called Sparse Network of Winnows (SNoW)
[38] which is trained by the last generation and non-face samples.
Fitter solutions survive while weaker ones perish. All the survival
solutions are then resampled using manifolds. The remained solu-
tions, together with the initial population, are composed of the next
population which is utilized to retrain the SNoW classifier again for
the evaluation of the next intermediate solutions. Once the termi-
nation criterion is satisfied, the iterative GA operations are stopped
and the last population is of the ultimate solutions.

A key issue of the proposed method genetic algorithm and
manifold (GAM) is how to generating an effective sufficient dataset
from a relatively small initial population. In general, it is easy to ex-
pand a dataset by interpolating if it is a small one but spans the face
space well as shown in Fig. 3(a). However, it is usually difficult to

Fig. 2. A flow chart of the proposed method.

Fig. 3. An illustration of the collected initial population: (a) a small dataset but spanning the face space well, where the symbol “×” denotes a sample and (b) an illustration
of some commonly collected datasets—S1, S2, and an unbalanced one S3, where the core set is composed of samples with the intrinsic variations, such as the shape and
albedo of faces.

collect such a delicate dataset. In practice, some commonly collected
sets are shown in Fig. 3(b), such as S1, S2, or S3. The detailed analysis
for these commonly collected sets is as follows:

Let F be the entire face space. For each f ∈ F, f depends on sev-
eral factors. Let H be an imaging function. Formally, f = H(x0, x1, . . . ,
xp−1, xp, . . . , xp+q−1), where the first p variables denote the intrinsic
variations of face, such as the facial shape and albedo, etc.; and the
last q variables mean the extrinsic variations, such as the lighting
conditions and pose variations, etc. Based on its definition, F can be
divided into two separated datasets: a core face set C and its sup-
plementary set E, i.e., F = C ∪ E. Here, the core set C is composed of
samples with the intrinsic variations and normalized extrinsic condi-
tions (i.e., uniform lighting, frontal pose, and well-focused); the set
E is composed of face samples with non-normalized extrinsic vari-
ations. Formally, E = Lighting(C) ∪ Pose(C) ∪ Blurring(C) ∪ . . . , where
Lighting(C) denotes the set of samples generated by relighting the
samples in C, and so for Pose(C) and Blurring(C).

Based on the analysis above, what we expect to do is to approach
F by interpolating and extrapolating from a collected dataset. In this
paper, the interpolation is achieved by crossover operator, and the
extrapolation is achieved by mutation operators such as relighting
and blurring (For the detailed description, please refer to Section
3.3.). Given a collect set S (e.g., S1, S2 or S3), it can be decomposed into
two parts: S = Ssub_1 ∪ Ssub_2, where Ssub_1 = S ∩ C and Ssub_2 = S ∩ E.
Let ti be the cardinality of Ssub_i (i = 1, 2). Usually, the larger t1 is, the
better the optimized training set can approach the entire face set F.
In summary, an effective and sufficient dataset can be approached
from a relatively small set that do not necessarily (sparsely) span the
entire face space. Of course, the degree of approximation depends
on t1, i.e., the size of the intersection of the core set and the collected
dataset. There is no constraint for t2 (i.e., the size of the intersection of
the non-core set and the collected dataset), although the optimized
training set would benefit from the increase of t2.

Fig. 4 illustrates that the proposed method can evidently generate
new samples and valid face samples from existing ones. Although
some of these samples might be very close to the existing ones, they
can be deleted by the following resampling procedure. Furthermore,
we expect the generated samples are valid in the sense of human
perception. However, it is intractable in practice for human beings
to check thousands of generated face samples during the GA evolu-
tion. Alternatively, an evolutionary classifier, i.e., SNoW, is employed
to complete the task. To simulate human perception, the classifier
should be balanced between conservation and generalization. In our
case, the generalizability of SNoW is well controlled by the last pop-
ulation, since the newly added population is limited compared to
the size of the existing generation.

As mentioned above, by generating some new and valid samples
using GA and resampling the resulting generations by manifolds, we
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Fig. 4. An illustration of a dataset expansion by interpolating and extrapolating from
a collected dataset. Here, we illustrate some examples generated by extrapolation
(/mutation) through relighting as the “�” symbols, and the generation of yi by
interpolating (/crossover) xi and xj .

optimize the collected training set as shown in Figs. 1 and 4. In this
section, after discussing the face variations and preprocessing, we
describe the details of the proposed method.

3.1. Variations of face images

A face image is a 2D projection of a 3D head or a 2D face im-
age under a certain lighting condition. A lot of factors can make a
face image look differently from the others. All these factors are di-
vided into two categories: intrinsic factors, such as the shape of basic
components; and extrinsic factors, such as lighting, head pose, lens
distortion and camera location. In our method, we simulate the in-
trinsic factors by crossover operator of GA and the extrinsic factors
by mutation operator. Note that we focus on near-frontal faces, i.e.,
in-plane rotation, in this paper.

3.2. Preprocessing face samples

To begin GA operations, we need to construct an initial popula-
tion, a validation set and test set to keep watching on the evolution
of resulting generation for training a classifier. The original database
in our case consists of 6000 faces which are collected from Internet,
and covers wide variations in poses, facial expressions, and light-
ing conditions. The basic method to make a face detector robust to
affine transform is to enlarge a face set by rotating, translating, and
scaling [29].

By applying the preprocessing mentioned above, we obtain
30,000 face samples. The database is then randomly divided into
three subsets: a training set (which consists of 15,000 images), a
validating set (5000 images), and a testing set (10,000 images).
However, the “training set” is optimized by the proposed method.
We call this “training set” as “the original training set” in order to
distinguish it from the optimized one by GA.

3.3. Expanding a training set by GA

It is often time consuming to collect a well-distributed training
set. To this problem, we attempt to optimize the collected training
set. Specifically, we expand the collected training set using GA, then
cut the redundant samples in the expanded training set by manifolds

and fill in the over sparse region with the aid of manifold embedding.
In this section, we describe details of GA procedure. In Section 3.4,
we will present a manifold-based method to reshape the distribution
of generated solutions.

3.3.1. GA procedure for face generation
The main procedure of GA includes: encoding of a pattern, select-

ing of an initial population, operating of crossover and mutation, and
evaluating of fitness. We explain them in detail in our application:

(1) Pattern encoding. As discussed in [38], given an image I
with the size w×h, for a pixel (x, y), assume that its intensity
is I(x, y) (0� I(x, y)�255). To embed both its location and inten-
sity into an encoded string, we have l(i) = l(y × w + x) = 256(y ×
w + x) + I(x, y). Thus, an individual A is represented as a string
(l0)(l1)(l2) · · · (li) · · · (lw×h−1)(fj), where (li) (0� i�w × h − 1) denotes
a gene of an individual, and fj is the fitness value of this individual.
Note that both width w and height h are 20 in our experiments.

(2) Initial population. In most cases, the initial population is ran-
domly generated [17]. In this proposed method, however, we create
a population in which each individual is generated by encoding a
normalized face sample. It is actually the encoded original training
set as discussed in Section 3.2.

(3) Crossover and Mutation. Crossover and mutation are basic op-
erations in GA. Here, we use the “roulette selection” to choose indi-
viduals for these operations. The roulette selection is based on the
fitness value of each individual image—the higher an individual's fit-
ness is, the more chances it has.

In our scheme, we consider “1-point” crossover in order to ma-
nipulate conveniently the fitness of solutions. Furthermore, every
two parents crossover at fixed locus by the probability Pc, i.e., we
break down each parent into four smaller pieces without overlap-
ping: forehead, eye, nose, mouth, as demonstrated in Fig. 5(a), and
the process of crossover are shown in Fig. 5(b). This might be ex-
plained by an intuition why someone says an individual, for exam-
ple, as having another person's eyes [21]. For the details about how
to partition sample set for GA, please refer to Section 3.3.2.

Mutation, in our case, is accomplished by sharpening, blurring
or relighting with the probability Pm. The procedure of sharpening
or blurring is that, first of all, a sub-image, about a quarter to half
of its parent, is obtained from its parent. It is then sharpened or
blurred randomly. Sequentially, we recombine the transformed sub-
image and the original part to reproduce its child. To avoid the trace
brought about by the recombination, the intermediate solutions are
smoothed as shown in Fig. 5(c).

To simulate the lighting variations, during mutation operations,
we use two kinds of strategies: one is the point light source model
described in [22]. Specifically, we mutate a sample by changing its
brightness plane, which is define as: I(x, y) = �x+�y. For example, for
� = 1 and � = 0, the face is illuminated from 45◦ from the left. The
other is the same as described in [3,27], which is used to simulate
more complex diffuse light fields by a configuration of nine point
light source directions. In summary, we mutate the selected samples
by a harmonic images model. We first estimate the illuminations of
the input samples and then re-render them to new lighting condi-
tions. Some generated examples are shown in Section 4.1.

Following Srinivas and Patnaik's idea [31], the probabilities Pc and
Pm are modified adaptively in the proposed method. The GA with the
probabilities Pc and Pm adaptively modified is called as the adaptive
GA (AGA), and the traditional GA is called as the standard GA (SGA).
The modulated Pc and Pm for AGA are computed as

Pc =
{
k1(fmax − fc)/(fmax − f̄ ), fc � f̄
k3, fc < f̄

, (1)

Pm =
{
k2(fmax − fm)/(fmax − f̄ ), fm� f̄
k4, fm < f̄

, (2)
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Fig. 5. Crossover and mutation: (a) convert each parent into a sequence of observation vectors for crossover, (b) crossover, and (c) mutation.

where fmax is the maximum fitness value of the current popula-
tion and f̄ is its average fitness; fc is the bigger one of the two
parents' fitness value for crossover; fm is the fitness of mutated par-
ent; k1 = k3 = 1, k2 = k4 = 0.5. AGA reduces Pc and Pm of those indi-
viduals whose fitness value are bigger than the average of the current
population. This makes the AGA converge faster than SGA. More-
over, the probabilities Pc and Pm of those individuals whose fitness
value are smaller than the average are increased to avoid the local
solutions of SGA.

Using adaptive probabilities Pc and Pm in AGA seems contradic-
tory to the idea of “roulette selection” and inconsistent with the idea
of SGA. However, our goal is to expand the training set and increase
its diversities, and the stop criterion in our case lays more emphasis
on the performance of a detector trained from the entire popula-
tion other than the fitness of individuals as in SGA. Therefore, us-
ing the “roulette selection” and the adaptive probabilities Pc and Pm
is a tradeoff between expanding the training set and increasing its
diversities.

Specifically, we use the “roulette selection” to select parents ac-
cording to the fitness of the individuals. However, whether the se-
lected individuals are employed to crossover or mutate depends on
the probability Pc or Pm. Therefore, we can balance the reproduc-
tion of the individuals with the high and low fitness. The individuals
with high fitness are selected with the higher probabilities and are
provided relatively fewer choices to reproduce. In contrast, the in-
dividuals with low fitness are selected with the lower probabilities
and are provided relatively more choices to reproduce. In turn, the
average fitness of the resulting population by AGA is much smaller
than that of the case by SGA [31]. It means that the resulting popu-
lation by AGA contains more diversities than that of the case by SGA.
Therefore, in most cases, AGA outperforms SGA significantly, espe-
cially for those problems that are highly multimodal. Indeed, faces
can be modeled well by multimodal [32].

(4) Fitness Evaluation. A classifier is used as fitness function to
measure the solutions. In the proposed method, the SNoW classifier
is selected. The details of training SNoW and how to evaluate the
solutions are discussed in Section 3.3.3.

3.3.2. Sample partition for GA
A few constraints are imposed on the input of GA operations in

order to avoid some unexpected intermediate solutions. For instance,
the parents for crossover should be under the similar poses. There-
fore, as shown in Fig. 6, we divide the initial population evenly into

Fig. 6. An illustration of the GA operation process. An initial population is divided
evenly into six subsets. Those individuals within the same subset crossover and
some parents of the current generation mutate.

six subsets: the first is those within [−15◦, −10◦) and denoted by
�1; the second is those within [−10◦, −15◦) and denoted by �2; . . . ;
and the last is those within [10◦, 15◦] and denoted by �6. Note that
the degree here is of in-plane rotation. All of these six subsets are
then used as the initial population of GA operations.

As shown in Fig. 6, these selected individuals are put into mat-
ing pools, and those individuals within the same subset crossover
with the probability Pc (it is computed as Eq. (1)). For example, two
individuals, xi and xj, selected from �6, are put into Pool6. After
crossover operations, their offspring is put back into �6 again. These
operations are applied to all of the other subsets. Some parents of
the current generation (not their children in our method) are mu-
tated by the probability Pm (it is computed as Eq. (2)). For example,
xk, selected from �1, is mutated and its child is put back into �1.

After each generation is reproduced, only partial intermediate
solutions are remained. The remained solutions are no more than
�p of current population (in our experiments, �p = 30%). That is, for
those intermediate solutions whose fitness is larger than a survived
threshold, if their number is beyond �p of current population, we
keep only �p of them. Or we keep all of those solutions whose fitness
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Fig. 7. An illustration of the architecture of SNoW.

value is larger than the threshold �f (in our experiments, �f = 0.55).
Herein, the fitness is a normalized value attached as demonstrated in
Section 3.3.3. In this scheme, after every 10 generations, the popula-
tion will contain 15, 000×1.310 ≈ 206, 787 individuals. This amount
is much larger than that of the original one. In order to keep its size
in control, we cut down its size and keep a reasonable amount of
solutions (85,000 solutions in our case). How to perform this op-
eration is discussed in Section 3.4. After the resampling, we have
100,000 individuals, which including the 15,000 ones of the initial
population and their 85,000 children.

Herein, an issue is to determine the survived thresholds. In this
research, they are determined experientially. On one hand, for the
parameter �p, it is a tradeoff between the size of the resulting gener-
ations and their diversities. Specifically, if �p is too small, it is difficult
to maintain the diversities of solutions since most of the samples
are deleted. In contrast, if �p is too large, the population expands too
quickly. On the other hand, as for the parameter �f, it is also a tradeoff
between the diversities and reasonability of solutions. Specifically,
if �f is too small, the diversities of samples become abundant while
some unreasonable solutions are included. In contrast, if �f is too
large, the diversity becomes less, which decreases the performance
of a trained classifier.

We use SNoW to evaluate a new generation. Specifically, we use
the current detector SNoW to measure the fitness of intermediate
solutions, and the qualified intermediate solutions (together with
the initial population) and a negative set are used as a new training
set to train a newer classifier SNoW. Note that the newly trained
classifier is utilized to evaluate the intermediate solutions of the
next generation and is also tested on the validation set as discussed
in Section 3.2. Moreover, we keep comparing these results of each
generation. The GA operation is terminated when the difference of
verified results between two neighbor generations is less than a pre-
set threshold.

3.3.3. Solution evaluation based on SNoW
The SNoW is a sparse network of linear functions that utilizes

the Winnow update rules. It is particularly suitable to learn tasks
in domains where the number of features used for decisions is very
large, butmay be unknown a priori [38]. In ourmethod, we use SNoW
instead of AdaBoost because the training of SNoW ismuch faster than
that of AdaBoost. In addition, Yang et al. trained a well-performed
face detector using SNoW [38]. In this part, we describe the SNoW
classifier, the feature, and the usage to evaluate the offspring during
the GA operation.

(1) SNoW classifier. A SNoW classifier is illustrated in Fig. 7. This
learning architecture is characterized by its sparsely connected units,
the allocation of features and links in a data driven way, the decision
mechanism and the utilization of an efficient update rule.

An input sample is divided into N overlapped 2×2-blocks. For
each block, we concatenate its coordinate and spatially pixel inten-
sities as a feature zr (r = 0,1, . . . ,N−1). Subsequently, each feature zr
is quantized as a new feature xi (i = 0, 1, . . . ,D−1). Herein, xi is an
m1+m2 bits binary string, where the first m1 (D�2m1 ) bits denote
for its location and the next m2 bits for its pattern modes. SNoW is
a sparse network of linear units over a common pre-defined feature
space (e.g., xi, i = 0,1, . . . ,D−1). A node ui , j (j = 0,1, . . . , d−1, d�2m2 ),
in the input layer is addressed by the input xi, where d is the num-
ber of the possible pattern modes. A node up , q (p = 0, 1, . . . ,D−1,
q = 0,1, . . . ,d−1) is called active if a feature xp is an input and its
pattern mode is equal to q. Note that, for an input sample, only D
nodes in the input layer of a subnetwork are active. In turn, up , q
activates the weight wt

p,q (t = 0, 1). The output of subnetwork t is

f = ∑D−1
p=0w

t
p,qxp = ∑D−1

p=0w
t
p,q since we use the binary feature. Herein,

wt
p,q is the weight on the edge connecting the pth feature of the sub-

network t. For the classification case, g = 1 if and only if f >�t , else
g = 0, where �t is the threshold.

The sparse connection of SNoW ensures that each xi only activates
one node ui ,j. Thus, for a given sample, only a few nodes are active
(e.g.,D nodes for a sample in our case). Different samples are encoded
by different xi (i = 0,1, . . . ,D−1), which leads to the different links
between the input features and the nodes. The update rule for the
weights is a variant of Littlestone's Winnow update rule, which is
on-line and mistake-driven [38].

In our application, only two subnetworks are used, one for a face
pattern and the other for a non-face pattern (i.e., subnetwork 0 for
non-face and subnetwork 1 for face). A given sample is processed
autonomously by each target subnetwork; that is, a sample labeled
as a face is used as a positive sample for the face target and as a
negative sample for the non-face target, and vice versa.

(2) Features for SNoW. The feature of SNoW can be varied with
a task. In our application, to train the classifier, we use a feature
pattern as described in [15] to characterize the samples as illustrated
in Fig. 8. The feature of each possible 2×2-block is quantized into one
scalar value. The location of each 2×2-block is coarsely encoded as
6bits, so m1 = 6; the intensity of each pixel is quantized as 3 bits,
so m2 = 12. Hence, we obtain an 18-bit feature string.

By this means, we totally have 218 = 262,144 possible binary
features, which enlarge the feature space further and make the
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Fig. 8. A quantization method of grey features, where (x, y) is the coordinate of the
2×2-block; Ij (j = 1, 2, 3, 4) are 4 pixels in this block; the subscript “3” in [x]3, [y]3
and [Ij]3 denotes that each component is encoded by 3-bit resolution in the feature
representation.

two-class problem (face and non-face) more linear separable while
compared with the feature space in [38] (102,400 possible binary
features).

(3) Training and evaluation. The training process of an evaluation
function (or classifier) SNoW is as follows. For each generation, we
use the initial population plus the solutions of the latest generation as
positive samples. For the negative samples, we start with 15,000 non-
face examples from 12,156 images of landscapes, trees, buildings,
etc. Although it is extremely difficult to collect a typical set of non-
face examples, the bootstrapping [32] is used to include more non-
face examples during training. All positive and negative samples are
encoded and used as an input to SNoW as shown in Fig. 7. For the
detailed training procedure please refer to [38].

Subsequently, we use the trained classifiers of SNoW to evaluate
the intermediate solutions. Each resulting classifier is used to evalu-
ate the successive generation. For each solution, as shown in Fig. 7,
we encode it and input to the subnetwork 1 of SNoW (i.e., the sub-
network for face). The output (i.e., f ) of subnetwork 1 is normalized
and assigned to be the fitness value for the input solution.

Note that (1) for each generation, we use subnetwork 1 to eval-
uate the solutions and both subnetwork 1 and 0 to test on the
validation set and test set; (2) As to the initial population, let the
fitness value fj = 1 for each individual; and (3) the second genera-
tion is evaluated by the classifier SNoW trained only by the initial
population and negative examples.

3.4. Resampling by manifolds

We use a manifold-based method to resample the resulting gen-
erations after the reproduction by GA as discussed in Section 3.3.2 to
prevent it from expanding excessively and guarantee its reasonable
distribution. In this research, we use Isomap since it can discover
the globally optimal manifold embedding of the input data. Further-
more, it is an isometric mapping, which preserves the distance in
the low-dimensional manifold embedding well [34].

After discovering the manifold embedding of a set, we can easily
find out the over-dense and over-sparse regions. For the over-dense
regions, we subsample the samples based on the geodesic distances
between samples. Here, we use the geodesic distance due to the fact
that, to reflect intrinsic similarities of two arbitrary points (samples)
on a nonlinear manifold, the geodesic distance is more reasonable
than the Euclidean distance in the high dimensional input space
(for example, on the “Swiss roll” manifold as shown in Fig. 9(a), the

geodesic distance illustrated by the solid curve
︷ ︷
AB is more reasonable

than the Euclidean distance illustrated by dashed line AB) [34]. We
believe that the smaller the geodesic distance between two points
(samples) is, themore intrinsic similarities they have. In other words,

as shown in Fig. 9(b), when the distances are smaller than a given
threshold, one point (samples) can be deleted.

For the over-sparse regions of the resulting face embeddings com-
puted by Isomap, we generate some virtual samples to fill in these
regions. The virtual samples are reconstructed using the neighbors
and the corresponding weights. The neighbors can be found by K-
nearest neighbors (KNN) in the low-dimensional manifold embed-
ding, and the weights are the reciprocals of the geodesic distances
between the virtual samples and their neighbors.

3.4.1. Subsampling on over-dense regions
We calculate the estimated geodesic distances in the high-

dimensional space between pairs of samples using Isomap as in
[34]. These distances are then used to subsample the generated
populations. By this means, we can obtain a smaller representative
subset from a huge amount of data. The algorithm of subsampling
based on the Isomap is as follows:

Algorithm 1. Subsample based on the Isomap.

Input: Sample set S = {x0, x1, . . . , xn−1} (herein, n is the number
of data points), the estimated geodesic distance set G =
gij, (i, j = 0, . . . ,n − 1) between pairs of data points, and the
number of samples, T, to be deleted;

Output: The subsampled set S .
Step 1: Sort all of the estimated geodesic distances in G in ascending

order;
Step 2: Determine the value of the threshold Thr for deleting

examples according to T;
Step 3: For t = 0, . . . . . . ,T−1:

If one of the estimated geodesic distances gij between an
example xi and its adjacent point xj (i, j = 0,1, . . . ,n−1) is
smaller than a given threshold �:
Count the number of the estimated geodesic distances
in the sorted sequence, where the counted distances are
relative to xi or xj and less than the given threshold �;
Delete the data point xi from S if the counted number
of xi is larger than that of xj;
Remove those estimated geodesic distances between the
deleted data point and others from G;

End if;
End For;

Step 4: Get the subsampled set S′.

Here, the parameter T is determined as: T = n−m; where n is the
size of the current population and m is the number of the remained
samples. For example, in our case, m is 80,000, and subtracting m
( = 80,000) from the given population size, we get the value of the
parameter T. In addition, the parameter � is determined experien-
tially, i.e., � = max(gij) × (T/n), where max(gij) is the maximum of
all the geodesics in G. Note that in our implementation, the samples
to be deleted are only marked, which does not affect the G matrix
in the following iterations. Eventually, all the marked samples are
deleted simultaneously after all the samples are visited.

For example, as shown in Fig. 9(b), the data points 1 and 2 are
deleted during subsampling. As to the data point 3, it is reserved
since the geodesic distances between point 3 and its neighborhoods
are larger than the given threshold. From the right part of Fig. 9(b),
the remained samples still basically maintain the data's intrinsic
geometric structure.

3.4.2. Interweaving on over-sparse regions
As shown in Fig. 9(c), after the subsampling, there are still some

over-sparse regions (i.e., holes) due to the unbalance of the database
(generated populations), such as the location of circle O1 and O2, in



J. Chen et al. / Pattern Recognition 42 (2009) 2828 -- 2840 2835

Fig. 9. An illustration of resampling a set by manifolds: (a) a “Swiss roll” manifold, where the dashed line AB denotes the Euclidean distance between point A and B in the

high dimensional input space; and the solid curve
︷ ︷
AB shows the geodesic distance along the low-dimensional manifold, (b) subsampling based on the estimated geodesic

distances, and (c) the illustration of interweaving among the manifold embedding.
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Fig. 10. An illustration of reconstruction of a virtual sample: (a) a virtual example
yVE
p and its K neighbors {yp,0 , yp,1 , . . . , yp,K−1} in a low-dimensional embedding and

(b) reconstruction of vector xVE
p by wpj and its K neighbors {xp,0 , xp,1 , . . . , xp,K−1} in a

high-dimensional data space.

the low-dimensional manifold embedding. To search these “holes”
in the embedding, we first calculate the median dm of all of the
Euclidean distances between pairs of points yi (i = 0,1, . . . ,n−1) and
its K neighbors yj (j = 0, . . . ,K − 1). The median dm is then used as
a radius of the “searching ring” as shown in Fig. 9(c). Subsequently,
moving the searching ring by a given experiential step size along the
embedding, we can find some holes inside the manifold embedding.
The centers of these holes, such as points 1 and 2, are the places
where we generate virtual samples.

In our implementation, we search the holes in 2D for convenient
computation. That is, we run the searching ring along the embedding
in its 2D projection computed by Isomap. Among this projection, one
can easily search the “holes” and control the “holes” found within
the bound of the 2D embedding. We have also run this operation
in the higher dimensional projection (e.g., 3D, 4D, etc.) and find the
difference among the resulting classifiers is limited.

After finding the holes in the manifold embedding of the gener-
ated populations, the next step is to generate some virtual examples
to fill in these holes. The algorithm is as follows (cf. Fig. 10):

Algorithm 2. Filling in holes.

Input: The embedding of face manifolds by Isomap;
Output: The embedding with some holes filled.
Step 1: In the low-dimensional manifold embedding, calculate its

K neighbors {yp,0, yp,1, . . . , yp,K−1} of a virtual-example em-
bedding vector yVEp (p = 0, . . . ,m − 1), where an embed-
ding vector corresponds to the center of a found hole, and
the upper index “VE” denotes virtual example in the low-
dimensional manifold embedding and m is the number of
virtual face examples;

Step 2: Compute the weights �pj (j = 0, . . . , K−1), which are the
reciprocals of the geodesic distances between the virtual
samples and their neighbors;

Step 3: For the K neighbors {yp,0, yp,1, . . . , yp,K−1} of a virtual-example
embedding vector, get their corresponding original data
points {xp,0, xp,1, . . . , xp,K−1} and compute the reconstructed
vector xVEp by �pj and its K neighbors: xVEp = ∑K−1

j=0 �pjxpj.

Whether do the found holes in the 2D embedding locate inside
the data space? The reasons lie in the following two aspects: The-
oretically, the basis of our “hole-filling” algorithm is run in the lo-
cal linearity data space, which is also the fundamental of manifold.
Intuitively, some observed facts also suggest that the faces distribu-
tion is continuous in the high dimension space. For example, com-
ponent exchanging, local deformation (e.g., expression), and/or 3D
morphing also generate legal faces. Therefore, in our case, using the
neighbors and their corresponding weights to generate the virtual
samples sounds reasonable.

Herein, an issue is to determine howmany virtual samples should
be generated. In general, it depends on two factors: one is the di-
versity of the collected dataset, and the other is the density of the
final dataset. Specifically, on one hand, if the diversity of dataset in-
creases, we usually generate more virtual samples and vice versa. On
the other hand, if the dataset distributes sparsely, we generate more
samples in comparison with the case when the dataset distributes
densely.

4. Experimental results

In this section, some experiments are designed to evaluate the
proposed method. We first show how our method improves the
detection accuracy. Subsequently, we compare the performance of
our detector with the state-of-the-art results on MIT+CMU frontal
face test set [29].

4.1. Resampling a training set based on GAM

As discussed in Section 3, we perform the GA operations on an ini-
tial population and evaluate all the intermediate solutions of current
generation by SNoW. After every 10 generations, we use a manifold-
based method to resample the population to keep its size in control
and optimize its distribution.

In general, it is usually difficult to model the manifolds from a
large dataset by Isomap because the modeling needs to calculate the
eigenvalues and eigenvectors of a large matrix. For example, if the
number of a set is n (it is equal to 100,000 in our implementation),
the matrix is n×n (i.e., 100,000×100,000). It is obviously difficult to
calculate the eigenvalues and eigenvectors of such a large matrix. In
order to avoid this problem, we divide a large set into some subsets
according to their fitness, i.e., those solutions with similar fitness
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Fig. 11. Some face samples generated by GAM.

are fallen into the same subset to ensure the compactness of a local
manifold embedding. We have three reasons to use the fitness as
a criterion to partition dataset: (1) the sample fitness contains the
clustering similarity; (2) the fitness can be obtained easily because
it has been attached for each solution during GA; and (3) it turns out
to be simple and effective experimentally.

Subsequently, we learn a manifold of each subset by Isomap and
compute the estimated geodesic distances in the high-dimensional
space between pairs. These estimated geodesic distances are then
used directly to subsample by deleting some examples from the
database. In this way, we can obtain a smaller representative subset
of a huge dataset. After checking the distribution of the resulting
faces embedding, we generate more samples as discussed in Section
3.4.2. In our case, we use KNN mode and K = 12 for Isomap.

Our experimental results show that GAM converges after 40
iterations. The last population of GAM is used as the ultimate so-
lutions. It consists of about 100,000 individuals, which includes
15,000 original samples and 85,000 their children. Some solutions
generated by GAM are shown in Fig. 11. The first row is some
examples by crossover. The second row is by mutation, which are
four samples relighted under different lighting conditions. The third
row is some virtual samples. Furthermore, we also show some
generated false samples but automatically discarded by SNoW
in the fourth row, where some due to inaccurate label and oth-
ers due to the extreme lighting conditions of original samples or
occlusion. Note that the generated samples do not change the
symmetry of faces but the expressions might not be the same as
the collected initial generation due to the crossover between two
parents.

4.2. The relationship between GAM and other classifier

In this section, we use another classifier, i.e., AdaBoost classifier,
to thest the generalization performance of the optimized training
set and verify whether the generated solutions are independent of
any special classifier though they are evaluated by SNoW during GA
iteration. Simultaneously, we discuss the effects of the distribution
and size of the resulting training set by GAM on the trained AdaBoost
classifier [36].

4.2.1. A comparison of face detectors with different training sets
The goals of GAM are to expand the size of a training set and

to improve its distribution by resampling to significantly improve
the performance of an object detector. In order to illustrate the

effectiveness of GAM on the trained classifier, we prepare seven dif-
ferent training sets to train seven different detectors. In our imple-
mentation, we use AdaBoost as a classifier and test the seven trained
detectors on the MIT+CMU frontal face dataset, which consists of
130 images showing 507 upright faces. Here, the first training set
is the initial population NoGAM (i.e., the original training set which
consists of 15,000 samples as described in Section 3.2). The other six
training sets are reproduced by GAM (after 40 generations) but in
different sizes, as illustrated in Fig. 12(a). Meanwhile, GAM-N con-
sists of N thousand individuals. For example, GAM-100 consists of
100,000 individuals. We use 100,000 non-faces as negative samples.
Each detector is then trained using a bootstrapping approach similar
to what described in [32] to increase the number of samples in the
non-face set. The bootstrapping is carried out several times on a set
of 16,536 images containing no faces.

The ROC curves of the seven detectors are illustrated as in
Fig. 12(a). One can find that we obtain a detection rate of 90.73%
with no false alarm using the detector trained on the set by GAM-
100. It shows that the training set can be also used to train other
classifiers rather than SNoW only. Similarly, from the ROC curves in
Fig. 12(a), one can find out that GAM-15 works better than NoGAM
(note that both GAM-15 and NoGAM contain 15,000 positive
samples). We believe that this performance gain comes from the
enriched variations and optimized distribution of face samples gen-
erated by GAM. In addition, from Fig. 12(a), we can find out that
the performance of a detector trained on GAM-M is better than one
trained on GAM-N (N<M). However, the difference becomes less
and less when N � 100. This phenomenon shows that a well pre-
pared training set is depended on two factors: a proper distribution
and the size of samples.

4.2.2. A comparison of face detectors with different resampling schemes
To show the effects of two parts of our method—GA and manifold

learning—on improving the accuracy of a face detector, we compare
three classifiers trained on three different expanded training sets.
The first one is expanded by GA and sampled by a manifold learning,
whichwe call it GAM. The second one is expanded by GA and sampled
by a clustering algorithm, which we call it GAC (i.e., GA+cluster). It
is obtained by sampling the expanded solutions using the K-means
clustering algorithm and the Euclidian distances among solutions
as the similarity measure and K = 12. The third one is expanded
by some basic image processing operations (such as rotation and
shifting) and sampled by Isomap algorithm, which we call it IPM (i.e.,
image processing and manifold). It is obtained by randomly rotating
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Fig. 12. A comparison of face detectors: (a) the ROC curves for the trained detectors by GAM but with the different size of the resulting population on the MIT+CMU frontal
face test set and (b) the ROC curves on the validation set based on the four different subsampling methods: randomly sampling, evenly sampling based on the sorted
sequence in decreasing order of the fitness value, sampling based on the manifold, and sampling by a clustering algorithm.

each faces in plane ranging from −15◦ to +15◦ and then shifting it
from 0 to 1 pixel. Each training set is composed of 100,000 faces.

Similarly, we use 100,000 non-faces as negative samples and
bootstrapping approach. The ROC curves of three detectors are illus-
trated in Fig. 12(b). From the ROC curves one can find out that the
performance of the detector GAM is the best and the detector GAC
outperforms the detector IPM obviously. This indicates that expand-
ing the training set by GA is more effective to improve the perfor-
mance of a face detector. In addition, the GAM outperforms the GAC
shows the value of sample expansion by manifolds.

4.3. GAM with a small initial population

Although it is difficult to determine the minimum size of an ini-
tial population for GAM to work properly, we use a small subset
(only 600 face samples) as input of GAM. Firstly, we randomly draw
a subset (e.g., 10%, 600 samples) from the original 6000 faces (as
mentioned in Section 3.2). By applying the preprocessing (i.e., affine
transformations), we obtain 5000 face samples. The database is then
divided into three subsets: training set (3000 samples), validating
set (1000 samples), and testing set (1000 samples). During GA, the
remaining ratio of solutions are less than �p (It is equal to 50%, here)
of the current population. Note that the remaining ratio here is larger
than the ratio for the case as mentioned in Section 3.3.2 because the
former is composed of a smaller size (only 3000 samples) compared
to the latter (15,000 samples). Otherwise, we keep all of those solu-
tions whose fitness value is larger than the threshold �f (it is equal to
0.55, here). After every 10 generations, the population will contain
3000× 1.510 ≈ 172, 995 individuals. We cut down the population to
97,000 individuals as described in Section 3.4. After the resampling
operations, we obtain 100,000 individuals, including 3000 individu-
als from the initial population and their 97,000 children.

We use four different face training sets to train an AdaBoost-based
classifier. The first dataset is the subset including only 600 faces (we
call it NoGAM-Orig-Subset). The second is the set after preprocessing,
which consists of 3000 faces (we call it NoGAM-PreProcess-Subset).
The third contains 100,000 face samples generated by GAM (we call it
GAM-Subset). The fourth also contains 100,000 face images generated
by GAM from the original training set (i.e., GAM-100 as mentioned
in Section 4.2.1).

The resulting AdaBoost-based detectors, trained on these four
different datasets, are also evaluated on the MIT+CMU frontal face
test set. Their performances are compared in Fig. 13. From these

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1
C

or
re

ct
 D

et
ec

tio
n 

R
at

e

False Positive

ROC curves for face detectors on CMU database

GAM
GAM-Subset
NoGAM-PreProcess-Subset
NoGAM-orig-Subset

Fig. 13. The ROC curves of AdaBoost-based detectors trained from different small
initial sets for GAM.

ROC curves, one can conclude that GAM-subset works much better
than NoGAM-Orig-Subset (about 30% higher for 10 false alarms) and
NoGAM-PreProcess-Subset (about 17% higher for 10 false alarms).
Especially, the results of GAM-Subset are comparable to that of GAM,
although the former is expanded from 600 samples while the latter
from 6000 samples. It demonstrates that GAM can still work ele-
gantly even with a small initial population.

As to the distribution of the initial population for GAM, our ex-
perience shows that some variations, such as out-of-plane rotation,
skins and well-focused face images, etc., are necessary, while other
variations such as lighting, shadow, blurring, and various organs,
are optional since the proposed method can generate these vari-
ations automatically. Herein, we need well-focused face samples
for GAM because too blurred samples imply little useful statistical
information.

4.4. A comparison with the state-of-the-art results

As shown in Fig. 14, we discuss a performance comparison of
the proposed method with some existing face detection algorithms
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reported results on the MIT+CMU test set, such as in Brubaker [9],
Garcia [16], Li [23], Schneiderman [30], and Viola [36].

It is obvious that our detector (the AdaBoost-based classifier
trained by the optimized training set, i.e., GAM-100 mentioned in
Section 4.2.1) compares favorably with the others. However, differ-
ent criteria (e.g., number of training examples involved, execution
time, and the number of scannedwindows during detection, etc.) can
be used to favor one over another, which makes it difficult to evalu-
ate the performance of different methods even though they use the
same benchmark datasets [39]. Fig. 15 shows some examples of the
detected faces from MIT+CMU frontal face test set, web site, sports
video games and video surveillance, etc.

In general, the selection of training examples and execution
time change the performance of a detector significantly. We pro-
vide some experimental results on how to organize the training
set and explore the performance of a detector. Specifically, for the
training examples involved, one can draw a conclusion from Figs.
12(a) and 13 that the performance of a trained face detector is sig-
nificantly influenced by the different training set. For better views,
we consider the face detection accuracies with false alarms (FAs)
being equal to 10 and show them in Table 1. Each row in this ta-
ble corresponds to the different training sets which are the same
as Figs. 12(a) and 13. Specifically, the first three rows are taken
from Fig. 13 and the others from Fig. 12a. One can find out that
the detector trained with the set GAM-100 generated by the pro-
posed method performs the best. For more details, please refer to
Sections 4.2 and 4.3.
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Fig. 14. A performance comparison of the proposed method with other published
methods.

Fig. 15. Some testing results of our trained face detector.

Table 1
Face detection accuracies varying with the training examples involved (FAs = 10).

Different training sets Accuracies (%)

NoGAM-Orig-Subset 60.65
NoGAM-Preprocess-Subset 73.57
GAM-Subset 90.34
NoGAM 82.84
GAM-15 90.93
GAM-45 91.12
GAM-80 92.50
GAM-100 94.08
GAM-120 94.08
GAM-150 94.28

Table 2
Face detection accuracies varying with the total execution time on the MIT+CMU
frontal face test set (FA = 0).

Scaling factor (�1) Step size (sx , sy) Total execution time (s) Accuracies (%)

0.5 (1, 1) 7.53 65.88
1 (2, 2) 14.88 82.64
1 (1, 2) 16.05 86.98
1 (2, 1) 26.87 90.53
1 (1, 1) 31.25 90.73

For the execution time, we show some experimental results in
Table 2. Here, we change the execution time of a detector by the
two approaches: (1) resizing the input image by a scaling factor �1
before the detector runs across the image and (2) varying the step
size (sx, sy) of the detector when it scans the sub- windows across
the input image. Specifically, for the first approach, there are two
scaling factors to change the execution time of a detector: one is the
scaling factor �1 before the detector runs; the other is the scaling
factor �2 used during the detector running to build the input image
pyramid. Here, we change the first scaling factor (�1) and keep the
other factor �2 as a constant (�2 = 1.2) since the factor �1 changes
the execution time more significantly than the factor �2. For the
second approach, the step sizes in Table 2 mean that a detector can
bemoved in steps of several pixels across the image in horizontal and
vertical directions respectively. For example, the step sizes (sx = 1,
sy = 2) in the third row mean that the detector moves in steps of
one pixel in horizontal direction and two pixels in vertical direction
when scanning the sub-windows across the image.

Here, the detector is the AdaBoost-based classifier trained by the
optimized training set (i.e., GAM-100 mentioned in Section 4.2.1).
The test set is the MIT+CMU frontal face test set. Here, the execution
time in Table 2 is the total time that the detector runs on the test set.
The first row shows the results with the scaling factor �1 = 0.5 and
steps (sx = 1, sy = 1). Thus the minimum detectable faces are 40×40
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since they are 20×20 for the original images. By image resizing the
detector can work much faster and it is often safe for the automatic
face recognition since the face resolution for recognition is usually
larger than 40×40. However, the performance drops greatly since
many faces in the MIT+CMU testing set are smaller than 40×40. An-
other method to make a detector run faster is to vary the step size
horizontally and/or vertically as shown in Table 2 from the second
row to the fourth row (and �1 = 1). One can find out that varying
the step size horizontally outperforms varying the step size verti-
cally. In addition, running the detector pixelwise obtains the best
performance. However, the performance differences resulted from
the different step sizes (e.g. from the second row to the fifth row in
Table 2) is related to the test set. We believe that the significant
difference in Table 2 is brought about by the diverse faces of the
MIT+CMU test set.

5. Conclusions

In this paper, we have proposed a novel method to optimize a
training set by expanding the size and reshaping the distribution of a
face sample set using GAM. The optimized training set can improve
the performance of a classifier. In our case, the proposed method can
generate new face samples by crossover and mutation operations.
These generated samples can simulate wide variations, such as face
variations in daily life and image variations due to lighting and qual-
ity conditions. The solutions are further resampled by manifolds to
control the size of a population and optimize its distribution. We use
the optimized face set to train an AdaBoost-based classifier and test
the trained classifier on the MIT+CMU frontal face test set, and a de-
tection rate 90.73% is achieved without a false alarm. Furthermore,
the experimental results show that the proposed method improves
the performance of an AdaBoost-based classifier significantly, espe-
cially with low false alarms. For example, the face detector trained
from the optimized dataset is 17.98% better for 10 false alarms com-
pared with that of the AdaBoost-based face detector proposed by
Viola and Jones.

While most of the researchers pay much attention to the design
of the classifiers and resampling (by bootstrap, for instance) the neg-
ative samples (/non-faces), the experimental results of this paper
indicate that optimization of the training set by resampling of posi-
tive samples (/faces) can also improve the performance of the clas-
sifier significantly. Furthermore, the proposed method is a fully au-
tomatic procedure and can significantly facilitate the preparation of
a training set in order to obtain a well-performed face detector. The
proposed method can also be applied to other object detection and
recognition tasks for automatically obtaining an optimal training set
and enhancing detection and recognition performance of a classifier.
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[15] B. Fröba, A. Ernst, Fast frontal-view face detection using a multi-path
decision tree, in: Proceedings of Audio- and Video-based Biometric Person
Authentication, 2003, pp. 921–928.

[16] C. Garcia, M. Delakis, Convolutional face finder: a neural architecture for fast
and robust face detection, IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (2004) 1408–1423.

[17] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Reprinted in 1992, MIT Press.

[18] C. Huang, H. Ai, Y. Li, S. Lao, High-performance rotation invariant multiview
face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence
29 (2007) 671–686.

[19] C. Huang, H. Ai, T. Yamashita, S. Lao, M. Kawade, Incremental learning of
boosted face detector, in: Proceedings of the IEEE International Conference on
Computer Vision, 2007

[20] A.K. Jain, R.P.W. Duin, J.C. Mao, Statistical pattern recognition: a review, IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 4–37.

[21] M. Kirby, L. Sirovich, Application of the karhunen–Loève procedure for the
characterization of human faces, IEEE Transactions on Pattern Analysis and
Machine Intelligence 12 (1990) 103–108.

[22] V. Krueger, Gabor wavelet networks for object representation, Ph.D.
Dissertation, Christian-Albrechts University, Kiel, Germany, January 2001.

[23] S. Li, Z. Zhang, Floatboost learning and statistical face detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (2004)
1112–1123.

[24] J. Liu, X. Tang, Evolutionary search for faces from line drawings, IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 861–872.

[25] X. Lu, A.K. Jain, Resampling for face recognition, in: Proceedings of Internal
Conference on Audio- and Video-Based Biometric Person Authentication, 2003,
pp. 869–877.

[26] M.-T. Pham, T.-J. Cham, Fast training and selection of Haar features using
statistics in boosting-based face detection, in: Proceedings of the IEEE
International Conference on Computer Vision, 2007.

[27] R. Ramamoorthi, P. Hanrahan, On the relationship between radiance and
irradiance: determining the illumination from images of a convex Lambertian
object, Journal of the Optical Society of America A 18 (2001) 2448–2459.

[28] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (2000) 2323–2326.

[29] H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 23–38.

[30] H. Schneiderman, Feature-centric evaluation for efficient cascaded object
detection, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004, pp. 29–36.

[31] M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in
genetic algorithms, IEEE Transactions on System, Man, and Cybernetics, Part A
24 (4) (1994) 656–667.

[32] K.K. Sung, T. Poggio, Example-based learning for view-based human face
detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 20
(1998) 39–51.

[33] X. Tan, S. Chen, Z.-H. Zhou, F. Zhang, Face recognition from a single image per
person: a survey, Pattern Recognition 39 (2006) 1725–1745.

[34] J.B. Tenenbaum, V. Silva, J. Langford, A global geometric framework for nonlinear
dimensionality reduction, Science 290 (2000) 2319–2323.

[35] F. Torre, R. Gross, S. Baker, V. Kumar, Representational oriented component
analysis (ROCA) for face recognition with one sample image per training class,
in: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005, pp. 266–273.

[36] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2001, pp. 511–518.

[37] S. Yan, S. Shan, X. Chen, W. Gao, J. Chen, Matrix-structural learning (MSL) of
cascaded classifier from enormous training set, in: Proceedings of the IEEE



2840 J. Chen et al. / Pattern Recognition 42 (2009) 2828 -- 2840

Computer Society Conference on Computer Vision and Pattern Recognition,
2007.

[38] M.H. Yang, D. Roth, N. Ahuja, A SNoW-Based Face Detector, Advances in Neural
Information Processing Systems, vol. 12, MIT Press, Cambridge, MA, 2000
pp. 855–861.

[39] M.H. Yang, D. Kriegman, N. Ahuja, Detecting faces in images: a survey,
IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002)
34–58.

[40] J. Yuan, J. Luo, Y. Wu, Mining compositional features for boosting, in:
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2008.

[41] C. Zhou, W. Xiao, T.M. Tirpak, P.C. Nelson, Evolving accurate and compact
classification rules with gene expression programming, IEEE Transactions on
Evolutionary Computation 7 (2003) 519–531.

[42] Z.H. Zhou, Y. Jiang, NeC4.5: neural ensemble based C4.5, IEEE Transactions on
Knowledge and Data Engineering 16 (2004) 770–773.

About the Author—JIE CHEN received the M.S. and Ph.D. degrees from the Harbin Institute of Technology, Harbin, China, in 2002 and 2007, respectively. He is currently
working as a PostDoc in Machine Vision Group, Department of Electrical and Information Engineering, University of Oulu, Finland.
His research interests include pattern recognition, computer vision, machine learning, and watermarking.

About the Author—XILIN CHEN received the B.S., M.S., and Ph.D. degrees in computer science from the Harbin Institute of Technology, Harbin, China, in 1988, 1991, and
1994, respectively.
He was a Professor with the Harbin Institute of Technology from 1999 to 2005. He was a Visiting Scholar with Carnegie Mellon University, Pittsburgh, PA, from 2001 to
2004. He has been with the Institute of Computing Technology, Chinese Academy of Sciences (CAS), Beijing, since August 2004.
He is also with the Key Laboratory of Intelligent Information Processing, CAS. His research interests are image processing, pattern recognition, computer vision, and
multimodal interfaces.
Dr. Chen has served as a program committee member for more than 20 international and national conferences. He has received several awards, including China's State
Scientific and Technological Progress Award in 2000, 2003, and 2005 for his research work.

About the Author—JIE YANG received the Ph.D. degree in electrical engineering from the University of Akron, Akron, OH, in 1994.
He is currently a Senior Systems Scientist at the School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. He pioneered the hidden Markov model for human
performance modeling in his Ph.D. dissertation research. He joined the Interactive Systems Laboratories in 1994, where he has been leading research efforts to develop visual
tracking and recognition systems for multimodal human–computer interaction. He developed adaptive skin color modeling techniques and demonstrated software-based real-
time face tracking system in 1995. He has been involved in the development of many multimodal systems in both intelligent working spaces and mobile platforms. He has
been working on automatic detection of text from natural scenes over last six years, with applications to automatic sign translation and intelligent driving assistant systems.
Dr. Yang is an Associate Editor of the IEEE Transactions on Multimedia. His current research interests include multimodal interfaces, computer vision, and pattern recognition.

About the Author—SHIGUANG SHAN received the B.S. and M.S. degrees in computer science from the Harbin Institute of Technology, Harbin, China, in 1997 and 1999,
respectively, and the Ph.D. degree in computer science from the Institute of Computing Technology, Chinese Academy of Sciences (CAS), Beijing, in 2004.
He is currently an Associate Researcher and serves as the Vice-Director with the Digital Media Center, Institute of Computing Technology, CAS. He is also with the Key
Laboratory of Intelligent Information Processing, CAS. He is also the Vice-Director with ICT-ISVision Joint R&D Laboratory for Face Recognition. His research interests cover
image analysis, pattern recognition, and computer vision. He is particularly focusing on face recognition-related research topics.

About the Author—RUIPING WANG received the B.S. degree in applied mathematics from Beijing Jiaotong University, Beijing, China, in 2003. He is currently working toward
the Ph.D. degree in the Institute of Computing Technology, Chinese Academy of Sciences (CAS), Beijing. He is currently with the Key Laboratory of Intelligent Information
Processing, CAS. His research interests include computer vision, pattern recognition, and machine learning.

About the Author—WEN GAO received the B.Sc. degree from the Harbin University of Science and Technology, Harbin, China, in 1982, the M.Sc. degree from the Harbin
Institute of Technology, Harbin, in 1985, all in computer science, and the Ph.D. degree in electronics engineering from the University of Tokyo, Tokyo, Japan, in 1991.
He was with the Harbin Institute of Technology, in 1985, where he served as a Lecturer, Professor, and the Head of the Department of Computer Science until 1995. He
was with Institute of Computing Technology, Chinese Academy of Sciences (CAS), Beijing, from 1996 to 2005. During his professor career with CAS, he was also appointed
as Director with the Institute of Computing Technology, Executive Vice-President with the Graduate School, as well as the Vice President with the University of Science
and Technology of China. He is currently a Professor with the School of Electronics Engineering and Computer Science, Peking University, Beijing. He has published four
books and over 300 technical articles in refereed journals and proceedings in the areas of multimedia, video compression, face recognition, sign language recognition and
synthesis, image retrieval, multimodal interface, and bioinformatics.
Dr. Gao is an Associate Editor of IEEE Transactions on Circuits and Systems for Video Technology, an Associate Editor of the IEEE Transactions on Multimedia, an Editor of
the Journal of Visual Communication and Image Representation, and the Editor-in-Chief of the Journal of Computer (in Chinese). He received the Chinese National Award for
Science and Technology Achievement in 2000, 2002, 2003, and 2005.


	Optimization of a training set for more robust face detection
	Introduction
	Related work
	Expanding a training set
	Variations of face images
	Preprocessing face samples
	Expanding a training set by GA
	GA procedure for face generation
	Sample partition for GA
	Solution evaluation based on SNoW

	Resampling by manifolds
	Subsampling on over-dense regions
	Interweaving on over-sparse regions


	Experimental results
	Resampling a training set based on GAM
	The relationship between GAM and other classifier
	A comparison of face detectors with different training sets
	A comparison of face detectors with different resampling schemes

	GAM with a small initial population
	A comparison with the state-of-the-art results

	Conclusions
	Acknowledgments
	References




