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Fusing Local Patterns of Gabor Magnitude
and Phase for Face Recognition
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Abstract—Gabor features have been known to be effective for
face recognition. However, only a few approaches utilize phase fea-
ture and they usually perform worse than those using magnitude
feature. To investigate the potential of Gabor phase and its fusion
with magnitude for face recognition, in this paper, we first pro-
pose local Gabor XOR patterns (LGXP), which encodes the Gabor
phase by using the local XOR pattern (LXP) operator. Then, we in-
troduce block-based Fisher’s linear discriminant (BFLD) to reduce
the dimensionality of the proposed descriptor and at the same time
enhance its discriminative power. Finally, by using BFLD, we fuse
local patterns of Gabor magnitude and phase for face recognition.
We evaluate our approach on FERET and FRGC 2.0 databases.
In particular, we perform comparative experimental studies of dif-
ferent local Gabor patterns. We also make a detailed comparison of
their combinations with BFLD, as well as the fusion of different de-
scriptors by using BFLD. Extensive experimental results verify the
effectiveness of our LGXP descriptor and also show that our fusion
approach outperforms most of the state-of-the-art approaches.

Index Terms—Face representation, Fisher’s linear discriminant
(FLD), fusion, histogram, local Gabor XOR patterns (LGXP).

I. INTRODUCTION

F ACE recognition, as one of the most typical applications
of image analysis and understanding, has attracted signif-

icant attention in many areas such as entertainment, informa-
tion security, law enforcement, and surveillance [48]. In the last
few decades, numerous approaches have been proposed for face
recognition and much progress has been made [48]. However,
it is still difficult for a machine to recognize human faces ac-
curately under the uncontrolled circumstances. The main chal-
lenges include the small interpersonal variations as well as the
large intrapersonal variations arising from illumination, pose,
expression and other factors.
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Fig. 1. Architecture of a typical face recognition system. Note: Dashed rec-
tangle represents optional procedure.

Generally speaking, as shown in Fig. 1, a typical face recog-
nition system consists of the following three stages: face detec-
tion, face representation and face classification. In this paper,
we focus on the second stage, i.e., extracting the internal repre-
sentation from the normalized face image, which is widely be-
lieved the key to the successful face recognition system. As il-
lustrated in Fig. 1, the face representation process might be com-
posed of two sequential procedures: feature design and feature
extraction/selection. Specifically, the feature design procedure
generally generates a face descriptor from one face image by
using some signal processing techniques (e.g., Gabor wavelets
[13], discrete Fourier transform (DFT) [17]) or designed oper-
ators (e.g., local binary patterns (LBP) [1]). In the second pro-
cedure, feature extraction methods commonly generate low-di-
mensional features by applying subspace analysis (e.g., prin-
cipal component analysis (PCA) [35] and linear discriminant
analysis (LDA) [2]) to the normalized face image or the de-
signed features, while feature selection methods generally select
a subset from the input feature set according to some criterion.

Under the above definition, the feature design procedure
usually does not depend on any training set or learning process,
and the features are commonly empirically designed or derived
directly from some signal processing tools. In the earlier years,
geometrical features (e.g., nose width and length, mouth posi-
tion and chin shape) and image template were widely exploited
for face recognition. Though intuitively reasonable, they are
easily affected by the variations of facial appearances [3]. Later
on, transformation features in the frequency domain or wavelet
domain attracted much attention for face recognition, such as
DFT [17], discrete cosine transform (DCT) [9], discrete wavelet
transform (DWT) [5], and Gabor wavelet [6], [13]. Among
them, face representation based on Gabor wavelet has been well
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known as one of the most successful methods (e.g., [16], [19],
[29], and [37]). Recently, motivated by the success of LBP [1],
a few methods based on local patterns of Gabor feature have
been proposed, such as local Gabor binary patterns (LGBP)
[46], [47] and histogram of Gabor phase patterns (HGPP) [43],
which are called local Gabor patterns in this paper.

Compared with the feature design procedure, feature extrac-
tion procedure generally needs a training set to learn how to
distinguish different persons. Among this category, Eigenfaces
[35], Fisherfaces [2], and the Bayesian approach [22] are the
representative studies, and some variants of them have also been
proposed (e.g., [33], [36], and [40]). Essentially, most of these
methods belong to either supervised or unsupervised dimen-
sionality reduction approaches. Considering the essential non-
linearity of face images, many manifold-related methods have
been proposed for feature extraction, such as Isomap [34], lo-
cally linear embedding (LLE) [26], locality preserving projec-
tions (LPP) [10] and some variants of it (e.g., [4] and [41]). Re-
cently, to unify these dimensionality reduction methods, graph
embedding has been proposed as a general framework [39].

Since most feature extraction/selection methods have no spe-
cial requirement on the input feature, it is reasonable to combine
it with feature design procedure in order to seek more effective
face representation (e.g., [11], [14], [19], [27], [28], [38], and
[42]). Recently, a few methods fusing diverse features have re-
ceived much attention, such as different frequency bands [12],
[21], features in multiple scales [18], global and local features
[30], and fusion of Gabor and LBP [32]. Considering that the
two parts of Gabor feature (i.e., magnitude and phase) are com-
plementary for face recognition, some approaches based on their
fusion have been proposed, such as combining the weak clas-
sifiers constructed respectively based on magnitude and phase
features [45], the weighted Gabor complex features [8] and the
enhanced local Gabor binary patterns [47]. In these works, how-
ever, we notice that the phase-based approaches usually achieve
worse results than those using magnitude (e.g., [8] and [45]).
The reason might be the sensitivity of phase to the varying posi-
tions, which leads to severe problems when matching two face
images with slight misalignment [16], [37].

To further study the potentials of Gabor phase as well as
its fusion with Gabor magnitude, this paper firstly propose
local Gabor XOR patterns (LGXP), which encodes Gabor
phase by using local XOR pattern (LXP) operator. Then, to
reduce the high dimensionality of LGXP descriptor, we propose
block-based Fisher’s linear discriminant (BFLD) to extract the
discriminative low-dimensional features. The BFLD method
is borrowed from the previous work in [28], [30], which di-
vides the entire feature set into many feature segments and
applies FLD to each segment. Finally, by using BFLD, we fuse
local patterns of Gabor magnitude and phase to utilize their
complementary information for face recognition. We conduct
comparative experimental studies of different local Gabor
patterns, their combinations with BFLD as well as their fusion
on FERET [24] and FRGC 2.0 [25] databases. Experimental
results show that the proposed phase-based method achieves
better results than magnitude-based methods in many cases and
the introduction of BFLD greatly improves the performances.
In addition, on FRGC 2.0 database, the proposed fusion ap-
proach achieves results comparable to the best known ones.

The main contribution of this paper lies in two aspects: the
LGXP descriptor for Gabor phase encoding and its fusion

with local patterns of Gabor magnitude by BFLD. Specif-
ically, the LGXP descriptor, unlike previous studies (e.g.,
LGBP [46], [47], HGPP [43]), is defined on Gabor phase part
with XOR-based local operator. The detailed comparisons
with previous work on local Gabor patterns are presented in
Section III. Additionally, also different from previous fusion
methods (e.g., [8], [45], and [47]), we fuse the local patterns of
Gabor magnitude and phase by introducing BFLD to derive the
discriminative low-dimensional features.

The rest of this paper is organized as follows. Section II
briefly describes the related work. Section III presents the
LGXP descriptor. Section IV details our feature extraction
approach and Section V presents our fusion approach. Exper-
imental results are presented in Section VI and Section VII
gives some conclusions.

II. RELATED WORK

In this section, we firstly describe Gabor wavelet representa-
tion and LBP respectively in Sections II-A and II-B. Then, we
briefly review the related work about local Gabor patterns in
Section II-C.

A. Gabor Wavelet Representation

The Gabor wavelet representation of an image is defined as
the convolution of the image with Gabor kernels, i.e.,

(1)

Here, denotes the input image, and denotes the convolu-
tion operator; denotes the pixel, i.e., , and
denotes the Gabor kernel with orientation and scale , which
is defined as follows:

(2)
where denotes the norm operator, and the wave vector
is defined as follows:

(3)

where and ; is the maximum
frequency, and is the spacing between kernels in the frequency
domain [19], [37].

For each Gabor kernel, at every image pixel , a complex
number containing two Gabor parts, i.e., real part and
imaginary part , can be generated. Based on these two
parts, magnitude and phase can be computed
by (4) and (5), respectively

(4)

(5)

B. Local Binary Patterns (LBP)

The LBP operator assigns a label to every pixel of an image
by thresholding the 3 3 neighborhood of each pixel with the
center pixel value and considering the result as a binary number
[23]. For example, as shown in Fig. 2, “11010011” is the de-
signed pattern of the central pixel. By applying LBP operator
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Fig. 2. LBP operator defined in 3 � 3 neighborhood.

to one facial image, one pattern map can be computed. Then,
the pattern map is divided into many blocks and the histogram
computed in each block is concatenated together to form the de-
scription of the input facial image [1].

C. Local Gabor Patterns

Recently, a few methods based on local Gabor patterns have
been proposed. By encoding local patterns of Gabor magni-
tude and phase feature via LBP operator, LGBP_Mag [46] and
LGBP_Pha [47] have been proposed, respectively. Motivated
by the successful applications of Gabor feature in iris recog-
nition [7] and palmprint identification [44], Zhang et al. pro-
pose local Gabor phase patterns (LGPP) to encode the varia-
tions in the local neighborhood of Gabor real and imaginary
part by using the LXP operator, which are respectively denoted
Re_LGPP and Im_LGPP [43]. Since Gabor wavelet captures
salient visual properties such as spatial localization and orien-
tation selectivity, this approach generally performs better than
LBP [43].

III. LGXP: LOCAL GABOR XOR PATTERNS

The basic idea of our method is that, to alleviate the sen-
sitivity of Gabor phase to the varying positions, whether two
phases reflect similar local feature should be determined in a
“looser” way. Specifically, if two phases belong to the same in-
terval (e.g., ), they are believed similar local features;
otherwise, they reflect different local features. In this section,
we first present the LGXP descriptor, and then make one com-
parison with previous local Gabor patterns.

A. LGXP Descriptor

Briefly speaking, as shown in Fig. 3, in our LGXP, phases
are firstly quantized into different range, then LXP operator is
applied to the quantized phases of the central pixel and each of
its neighbors, and finally the resulting binary labels are concate-
nated together as the local pattern of the central pixel.

Formally, the pattern of LGXP in binary and decimal form is
defined as follows:

(6)

where denotes the central pixel position in the Gabor phase
map with scale and orientation , is the size of neighbor-
hood, and denotes the pattern cal-

Fig. 3. Example of the encoding method of LGXP where the phase is quantized
into 4 ranges.

culated between and its neighbor , which is computed as
follows:

(7)
where denotes the phase, denotes the LXP operator,
which is based on XOR operator, as defined in (8); denotes
the quantization operator, which calculates the quantized code
of phase according to the number of phase ranges, as defined in
(9)

if
(8)

(9)

where denotes the number of phase ranges.
With the pattern defined above, one pattern map is calculated

for each Gabor kernel. Then, each pattern map is divided into
nonoverlapping sub-blocks, and the histograms of all these

sub-blocks of all the scales and orientations are concatenated to
form the proposed LGXP descriptor of the input face image

(10)

where denotes the histogram of the
sub-block of LGXP map with scale and orientation . In this
paper, Gabor filters of five scales and eight orientations are used.
Then, for face recognition, the similarity between two LGXP
descriptors and can be calculated as follows:

(11)

where denotes the histogram intersection operator defined as
follows:

(12)

where denotes the number of histogram bins.
Obviously, it is important for LGXP to set appropriate in

(9). In order to make the patterns robust to the variations of
Gabor phase, the value of can not be too large. In this study, we
find that LGXP performs well enough when . The reason
might be that this setting achieves a good balance between the
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Fig. 4. Comparison of different local Gabor patterns.

robustness to phase variations and representation power of local
patterns.

B. Comparisons With Other Local Gabor Patterns

To highlight the difference of the proposed LGXP from pre-
vious methods based on local Gabor patterns, we illustrate their
brief flowcharts in Fig. 4. As shown in the figure, these methods
differ in either the Gabor part or the local operator. Specifically,
Re_LGPP and Im_LGPP are respectively based on the real and
imaginary parts followed by LXP operator [43]; LGBP_Mag
[46] and LGBP_Pha [47] use the LBP operator to encode re-
spectively the magnitude and phase part, while the proposed
LGXP exploits the phase part and the LXP operator.

Compared with LGBP_Pha, attributing to the large-step
quantizing operation in our method, the LGXP is expected
to be more robust to the phase variations due to the varying
position. Even when a phase changes significantly, its quantized
code keeps invariant if only it is still within the same range.
However, for LBP, the pattern is easily affected when the order
relationship of two phases changes, which occurs frequently
especially in the near-uniform regions [31].

In some sense, LGXP can be seen as a fusion
of Re_LGPP and Im_LGPP at the “encoding”
level. Intuitively, the four phase angle ranges (i.e.,

) correspond
to the four combination of the signs of real and imaginary
parts in the LGPP method (i.e., “00”, “10”, “11”, “01”, where
“0” and “1” denote the signs of real and imaginary parts,
respectively). As a combination, the patterns in LGXP reflect
more local variations than those in Re_LGPP and Im_LGPP.

IV. FEATURE EXTRACTION USING BLOCK-BASED FLD

As one feature design approach, the proposed LGXP de-
scriptor can be directly applied to face recognition by using
(11) as similarity measurement. However, this is not good
enough since its feature dimension (i.e., ) is very
high due to the use of multiple Gabor filters (e.g., 40 in this
study). In theory, to reduce the dimensionality, we can apply
FLD directly; whereas, in the case of so high-dimensional

Fig. 5. Flowchart of the BFLD feature extraction approach.

Fig. 6. Block partition strategy in our approaches. (a) LGXP. (b) BFLD.

Fig. 7. Fusion of LGBP_Mag and LGXP. (a) Feature-level fusion. (b) Score-
level fusion.

feature, FLD also suffers from heavy “small sample size (SSS)”
problem. Therefore, we further present the block-based FLD
(BFLD) approach.

A. Block-Based FLD

The basic idea of BFLD is firstly to divide the high-dimen-
sional LGXP descriptor into multiple feature segments (cor-
responding to different spatial blocks in the face image), then
apply FLD to each segment, and finally combine the decisions
of all the block-wise FLD. By such a “ divide and conquer”
strategy, the SSS problem is greatly weakened since the dimen-
sionality of the input feature for each FLD is much lower.

Fig. 5 illustrates the flowchart of the BFLD approach. Briefly
speaking, for each face image, we firstly calculate its multiple
LGXP maps. Then, we divide these pattern maps into multiple
nonoverlapping blocks and calculate the block based represen-
tations. Based on the training set, we learn the FLD matrices
to calculate the low-dimensional features for each block. For
clarity, we describe the FLD matrices learning procedure and
feature extraction procedure in Algorithms 1 and 2, respectively.
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Algorithm 1 Procedure of FLD matrices learning

Input: : the training set with normalized face images;
: number of blocks for FLD learning; : number of

sub-blocks per block for histogram extraction; : size of
neighborhood for LGXP.

Output: FLD matrices .

Step 1 For each image , compute its block-based
representation according to Steps 1.1 1.3:
Step 1.1 Compute its LGXP maps

.
Step 1.2 Divide into nonoverlapping blocks

, and further partition each block
into nonoverlapping sub-blocks .
For sub-block , calculate its histogram .
Step 1.3 For each block ,
concatenate the histograms of all its sub-blocks at
all the scales and orientations to get one histogram
sequence:

, where denotes
the concatenated histograms of its sub-blocks,
i.e., . Thus,
image is represented as histogram sequences

.
Step 2 Learn FLD matrices for each block by using training
set according to Steps 2.1 2.2:
Step 2.1 Obtain feature sets by
collecting the features of the same spatial block from each
of the training images, i.e., ,
where denotes the histogram feature
from the block of the training image.
Step 2.2 Based on each (i.e., the training set for the th
block), learn an FLD matrix according to the mode in
Fisherfaces [2], i.e., the histogram vectors are first projected
to a PCA subspace and the transformed features are then
used to learn the matrix.

Algorithm 2 Feature extraction using FLD matrices

Input: Normalized face image ; , and , with the
same meanings as those in Algorithm 1; the learned FLD
matrices .

Output: low-dimensional vectors .

Step 1 For face image , calculate its block-based
representation according to Steps 1.1

1.3 in Algorithm 1.
Step 2 Calculate its low-dimensional vectors using
the linear transforms: .

B. Block Partition Strategy

This part describes the block partition strategy used in LGXP
and BFLD, which is respectively illustrated in Fig. 6(a) and
(b). Specifically, in LGXP, each pattern map is directly divided
into sub-blocks; while in BFLD, each pattern map is di-
vided into blocks and each block is further partitioned into

sub-blocks. For BFLD, this strategy preserves the spatial re-
lations of different sub-blocks, and obtains better representa-
tion than using only one histogram. In some sense, one block
in BFLD can be viewed as the combination of some sub-blocks
in LGXP, and they satisfy the following equation when the ap-
propriate values are set for them: . To make the
sub-block partition clear, we adopt “ ” to denote the number
of sub-blocks, where is the number of sub-blocks in horizontal
direction and that in vertical direction. The similar notations
are also used in BFLD, as shown in Fig. 6.

V. FUSING LOCAL PATTERNS OF GABOR MAGNITUDE AND

PHASE FOR FACE RECOGNITION

Gabor magnitude and phase provide complementary infor-
mation to distinguish different human faces. Therefore, to fur-
ther improve the recognition accuracy, this section presents how
to combine the local patterns of Gabor magnitude and phase,
i.e., LGBP_Mag and LGXP. Briefly speaking, we fuse them by
using BFLD at two levels, i.e., feature-level and score-level, as
illustrated in Fig. 7.

Both feature-level and score-level fusion methods are con-
ducted on block-level. As shown in Fig. 7(a), in the case of
feature-level fusion, for each block, the histogram representa-
tions of LGBP_Mag and LGXP are simply concatenated into
one vector, which is then used to extract feature by FLD; based
on the extracted features, one similarity can be calculated. In
contrast, for the score-level fusion, as shown in Fig. 7(b), for
each block, two low-dimensional vectors are respectively ex-
tracted from the histogram representations of LGBP_Mag and
LGXP by FLD, and then used to compute two separate simi-
larity scores; finally, these two scores are fused together as the
final score.

Formally, these two fusion approaches are described in details
as follows.

1) Calculating block-based representation. For each
image, calculate its block-based representation of
LGBP_Mag and LGXP according to Algorithm 1 Steps
1.1 1.3: and ,
where denotes the number of blocks per pattern map.

2) Fusing LGBP_Mag and LGXP.
i) Feature-level Fusion. As shown in Fig. 7(a), for

the th block, we represent it as one vector by con-
catenating its LGBP_Mag histograms and LGXP his-
tograms, i.e., . Then,
by using the similar procedures as in Algorithms 1
and 2, we calculate its low-dimensional feature vector

. For the gallery block and its corresponding
probe block , the similarity between them is cal-
culated as follows:

(13)

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on June 28,2010 at 01:09:25 UTC from IEEE Xplore.  Restrictions apply. 



1354 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 5, MAY 2010

where and respectively denote the low-dimen-
sional features of and , and cosine similarity is
adopted.

ii) Score-level Fusion. As shown in Fig. 7(b), from
the two histogram sequences of the th block,

and , we respectively extract
their low-dimensional FLD features,
and . Then, we respectively compute two
similarities between the gallery block and its
corresponding probe block according to (13),
namely, and . Finally, these
two similarities are fused together according to the
weighted sum rule

(14)

where denotes the weight of LGBP_Mag, and
varies within [0, 1].

3) Calculating the similarity between any two face im-
ages. Based on the block-wise similarities computed in
Step 2, the similarity between the gallery and probe face
images is calculated by fusing the similarities of the corre-
sponding blocks according to the sum rule [15]

(15)

4) Face classification. For identification tasks, the identity
of the input unknown face is usually classified as the face
which is the most similar to the input one, or recognized
as “unknown person” if this maximal similarity is smaller
than a given threshold; whereas for verification tasks, the
similarity between the query face and the claimed target
face is first computed, and then the claimed identity of the
query face is confirmed or rejected by judging the simi-
larity larger or smaller than a predefined threshold.

For both fusion methods, in principle, the parameters (e.g.,
and ) of LGBP_Mag and LGXP can take different values since
they are calculated individually. However, this implies more
parameters for us to empirically tune. So, the corresponding
parameters of LGBP_Mag and LGXP are set the same, i.e.,

and . In addi-
tion, for the score-level fusion, the weighted sum rule is adopted
in (14) to account for different contributions of LGBP_Mag
and LGXP for classification. Actually, our experimental results
show that nearly equal weights (e.g., 0.5) perform well, which
also implies that the proposed phase-based LGXP method per-
forms equally well compared with magnitude-based LGBP.

VI. EXPERIMENTS

In this section, we evaluate our approach on FERET [24]
and FRGC 2.0 databases [25]. First, we briefly describe exper-
imental conditions. Then, we evaluate our approach with dif-
ferent parameters using two probe sets of FERET. Finally, we
make a detailed comparison between our approach and some
state-of-the-art approaches on these two databases.

Fig. 8. Some examples of normalized face images in our experiments.
(a) FERET. (b) FRGC 2.0.

A. Databases and Experimental Setup

The FERET is a general evaluation designed to measure the
performance of laboratory algorithms. Please refer to [24] for
details. In our experiments, based on the standard gallery (1,196
images of 1,196 subjects), we test the recognition rates of our
approaches on the four probe sets: Fb (1,195 images of 1,195
subjects), Fc (194 images of 194 subjects), Duplicate I (abbre-
viated as “DupI”, 722 images of 243 subjects), and Duplicate II
(abbreviated as “DupII”, 234 images of 75 subjects). In our ex-
periments, 1,002 frontal images of 429 subjects in the FERET
training CD are used as the training set to learn FLD matrices.
As shown in Fig. 8(a), all the face images are aligned based on
the manually located eye centers provided by the original data-
base, and then normalized to 80 88 pixels. No photometric
normalization is conducted for all the methods under compar-
ison, and nearest neighbor classifier is adopted for the final clas-
sification. For the Gabor filters, the parameters are set as fol-
lows: , , , ,

, and the size of the filter window is set to 32 32
pixels.

The Face Recognition Grand Challenge (FRGC) is designed
to determine the merits of face recognition techniques by
presenting to researchers a six-experiment challenge problem
along with data corpus of 50,000 images [25]. For each exper-
iment, three Receiving Operator Characteristic (ROC) curves
are generated. ROC1 corresponds to the images collected
within semesters, ROC2 within a year, and ROC3 between
semesters. In our experiments, we use the given training set
(12,776 images of 222 subjects) to learn the FLD matrices and
carry out Experiment 1 and 4 for evaluations. Since FRGC
intends to evaluate the effectiveness of high-resolution, in
our experiments, all the face images are aligned based on the
manually located eye centers provided by the original data-
base and normalized to a larger size, i.e., 128 168 pixels.
Some examples are shown in Fig. 8(b). Correspondingly, the
size of the Gabor filter window is set to 64 64 pixels and

. In our following experiments, unless otherwise
stated, no photometric preprocessing is conducted.

B. Parameter Selection

In this section, by using Fb and DupI probe sets in FERET,
we evaluate how the free parameters influence the proposed
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Fig. 9. Effect of different parameters of LGXP approach when tested on
FERET probe sets.

method, namely, LGXP, “LGXP+BFLD”, the feature-level fu-
sion method (denoted as “F[LGBP_Mag+LGXP]”) and score-
level fusion method (denoted as “S[LGBP_Mag+LGXP]”).

1) Performances of LGXP With Different Parameters: For
LGXP, it has three free parameters, i.e., number of phase ranges
, number of sub-blocks per pattern map and size of neighbor-

hood . We analyze their meanings as follows: the parameter
determines whether two phases are similar enough, so, it forms
a tradeoff between robustness and accuracy; the parameter af-
fects the relationship of different facial parts as well as the final
feature dimensionality, and it can balance between the spatial
information preserving and the feature dimension; the param-
eter decides how much local variation is encoded in LGXP,
and a larger leads to more elaborate local patterns. However,
this also implies higher feature dimension, since the number of
the histogram bins is and the final dimension of the LGXP
feature is .

Based on the above analysis, we empirically set the value of
as one integer within [2, 10], set the minimal size of sub-block to
8 8 pixels to make the sub-block large enough for histogram
estimation, and set the value of to be 3 and 4, which respec-
tively results in 8 or 16 kinds of pattern totally. Our experience
also indicates that how to select these 3 or 4 neighbors brings
no much difference in performances, so we select them evenly
from 3 3 neighborhood.

So, we sample some parameter combinations and conduct ex-
periments to show their performances, as shown in Fig. 9. In
Fig. 9(a), we plot how performance varies with , when
or 4 and or 8 8. From the figure, it can be seen
that the best result is achieved when . The reason might
be that the patterns encoded by four phase ranges achieve one
good tradeoff between robustness to phase variations and repre-
sentation ability of local patterns. We also notice that, the larger

and (e.g., , ) lead to better results than
the smaller ones (e.g., , ), and one limitation is
higher dimensional features used. Fig. 9(b) illustrates how the
performance of LGXP changes with when and
or 4. It is clear that the performances advance roughly with the

Fig. 10. Effects of different parameters of “LGXP+BFLD” when tested on
FERET probe sets. (a) � � �. (b) � � �.

increase of . We owe this observation to its balance between
spatial information preservation and robustness to the variations
in sub-block.

2) Performances of “LGXP+BFLD” With Different Pa-
rameters: Except and , there are two more parameters for
“LGXP+BFLD”: number of blocks per pattern map and
number of sub-blocks per block . In some sense, the product
of and correspond to in LGXP (i.e., ,
referring to Fig. 6 in Section IV-B). In addition, and
together determine the feature dimension (i.e., )
of each block, which can not be very high to avoid the large
computational cost for FLD learning. To show how the per-
formance varies with the parameters, we empirically set the
parameters as follows: the value of varies from 2 2 to 4
8, varies from 1 1 to 2 4, is fixed to 4, is set to 3 or
4, and the FLD dimensionality of each block is set to 200.

Fig. 10(a) and (b) illustrates the results of “LGXP+BLFD” on
FERET Fb and DupI sets with different parameters. As shown in
the figure, the performances roughly increase with the increase
of especially when is small (e.g., 1 1 and 1 2). We also
note that, when (i.e., 4 4) or 24(i.e., 4 6),
(i.e., 2 2), and , our method achieves peak performance.
In this case, each block can be represented effectively by the
concatenated histograms of all its sub-blocks. Thus, each block
has strong representation power and their fusion achieves better
results.

Based on the results in Figs. 9 and 10, we briefly summarize
the appropriate setting of the parameters for “LGXP+BFLD” as
follows: , , , while should be
adapted according to the image size, and our experiences also
show that it performs reasonably well when in most
cases.

3) Comparisons Between BFLD-Based Methods and Fusion
Approaches: This sub-section mainly evaluates the perfor-
mance of the proposed fusion methods. Based on the above
analysis, we simply set the parameters of our method as follows:

(i.e., ), (i.e., 2 2), and is fixed to 3 or 4.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on June 28,2010 at 01:09:25 UTC from IEEE Xplore.  Restrictions apply. 



1356 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 5, MAY 2010

Fig. 11. Rank-1 recognition rates of the proposed BFLD-based approaches on
FERET probe sets. (a) � � �. (b) � � �.

For our score-level fusion method, i.e., S[LGBP_Mag+LGXP],
we evenly sample different weights within [0, 1]. The value of

is set to 4 for LGXP. Fig. 11(a) and (b) illustrates the results
of different methods when is set to 3 and 4 respectively.

From Fig. 11, as expected, both fusion methods outper-
form nonfusion methods, especially on DupI probe set, and
the two fusion methods perform comparably well. As to the
weight for LGBP_Mag in the score-level fusion approach,
the best result is achieved when its value is around 0.5. Since
both “LGBP_Mag+BFLD” and “LGXP+BFLD” approaches
achieve comparable results, it is reasonable to fuse their scores
by regarding nearly equal weights as their prior probabilities.

C. Evaluation of Proposed Approaches on FERET Database

In this part, we evaluate our methods on the four FERET
probe sets, and make a detailed comparison with some state-of-
the-art approaches. The parameters for local Gabor patterns are
as follows: (i.e., 8 8), . The parameters for
BFLD-based approaches are as follows: (i.e., 4
4), (i.e., 2 2), , and the FLD dimensionality
of each block is selected when the best result is achieved. The
value of is set to 4 for LGXP, and the weight for score-level
fusion approach is set to 0.5. Since score-level fusion approach
achieves comparable even better results than the feature-level
fusion approach in most cases, we only report the results of the
score-level fusion of other descriptors.

Table I tabulates the results of different local Gabor pat-
terns, their combinations with BFLD as well as their fusion
approaches on FERET probe sets. In Fig. 12, we plot the
cumulative match curves of different methods on FERET probe
sets. All the methods are implemented by us, and are conducted
on the same image set. From Table I and Fig. 12, we have
the following observations: first, the proposed phase-based
LGXP method outperforms other previous local Gabor pattern
methods; second, by combining BFLD, the performances of
all local Gabor pattern methods are impressively improved;
third, fusing various Gabor parts in score-level or feature-level

can further improve performance, and the score-level fusion of
LGBP_Mag and LGXP produces nearly the best results on all
the four probes. These observations strongly support the effec-
tiveness of the techniques proposed in this study. Especially,
the proposed phase-based method has outperformed those
magnitude-based methods, which implies that it is possible to
present one effective face descriptor based on Gabor phase if
its limitation is alleviated properly.

Except comparing our methods with other local Gabor
pattern methods, as shown in Table II, comparisons are also
made with other state-of-the-art results reported recently by
other researchers on these FERET probe sets. In the table,
all the results for comparison are directly cited from papers
published recently. From the comparison, we can see that
our S[LGBP_Mag+LGXP] method has made impressive im-
provement especially on the DupI and DupII probe sets, which
further validates the effectiveness of the proposed method.

Clearly, compared with other methods based on local Gabor
patterns (e.g., LGBP and LGPP), LGXP is almost of equal
complexity. However, after combination with BFLD and fu-
sion, computational complexity does increase a lot. Fortunately,
the BFLD matrices are learned off-line, and its application
in online stage is of low complexity. Besides, compared with
local Gabor pattern method without FLD, the dimensionality
of the final feature for each face image is much lower. Thus,
computational cost is reduced accordingly when matching
against the face database. In sum, compared with the accuracy
enhancement, the increase in computational complexity is
acceptable.

D. Evaluation of Proposed Approaches on FRGC2 Database

In this section, we conduct a series of experiments on the
FRGC 2.0 database to further evaluate different approaches. The
parameters for local Gabor pattern methods are as follows:

(i.e., 8 8), , and the parameters for BFLD based
approaches are set as follows: (i.e., 4 4),
(i.e., 4 2), , and the FLD feature dimension of each
block is set to be about 200. The value of is also set to 4 for
LGXP, and the weight is set to 0.5 in the score-level fusion
method. Additionally, to avoid the high-dimensionality problem
for learning FLD matrices, in our feature-level fusion method,

is set to 4.
Similar to Table I, with the above parameters, we make one

comparison between different methods in Table III. Note that,
in this experiment, the performance measurement is Verification
Rate (VR) at False Accept Rate (FAR) equal to 0.1%, which
is quite different from the rank-1 recognition rate on FERET
database. Fig. 13 plots the ROC curves of different methods with
the same parameter values as in Table III. For clarity, only the
curves corresponding to ROC3 are illustrated.

Compared with the results in Table I, Table III further
exhibits several interesting observations. First, the proposed
LGXP method performs the best in Experiment 1, which is
a relatively easy test. But, in Experiment 4, its performances
are a little worse than those of LGBP_Pha. More important,
all the methods based on pure Local Gabor patterns perform
surprisingly bad (mostly lower than 20%) in Experiment 4.
This might be accounted for by the nondiscriminative nature
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TABLE I
RANK-1 RECOGNITION RATES OF DIFFERENT APPROACHES ON FERET DATABASE

Note: Bold value denotes the best result in each method category and the similar notations are also used in the following tables.

Fig. 12. Cumulative match curves of different methods on FERET probe sets.

TABLE II
COMPARISONS WITH SOME STATE-OF-THE-ART METHODS

ON FERET DATABASE

Note: As is in this work, the eye positions in the original face images are
manually located for the methods in [32], [47] and [49], and unknown for
that in [8].

of these methods, which can hardly handle challenging vari-
ations due to complex illumination and blurring effect in the
images of Experiment 4 (i.e., Query set). Second, very exciting
improvement is achieved from the introduction of BFLD for
all local Gabor pattern methods, especially on the Experiment
4 (from 20% to 80%). We attribute this improvement to the
discriminative nature and “divide and conquer” methodology

of BFLD. Specifically, as a kind of statistical learning method,
by modeling the extrinsic variations in different images of
the same person as within-class variation and simultaneously
modeling the intrinsic variations in identity as between-class
variations, FLD can very effectively learn how to distinguish
different persons, if only the extrinsic variation in the testing
set are similar to those in the training set; in addition, as one
“divide and conquer” method, BFLD actually ensembles many
component FLD and ensemble integration might also lead to
much improvement in performance. Finally, fusion of different
local Gabor patterns might lead to further improvement, and
our score-level fusion of LGBP_Mag and LGXP reports the
best results in both Experiment 1 and 4. However, we also
notice that fusion of different Gabor parts does not necessarily
bring improvement, for instance, S[LGBP_Mag+Re_LGPP] is
slightly worse than “LGBP_Mag+BFLD”.

Considering that face images in FRGC 2.0 database display
complex illumination variations, two photometric normalization
methods, Histogram Equalization (abbreviated as “HE”) and the
preprocessing method in [31] (abbreviated as “PP”), are tested
and compared with no photometric normalization in Table IV.
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TABLE III
VERIFICATION RATES OF DIFFERENT METHODS ON FRGC 2.0 DATABASE WHEN ��� � ���%

Fig. 13. ROC curves of different methods on FRGC 2.0 database.

Fig. 14. Preprocessed face images with different photometric normalization
methods. (a) “NO”. (b) “HE”. (c) “PP”.

Fig. 14 illustrates one example of the preprocessed images using
these methods.

From Table IV, we can find that neither “HE” nor “PP” can
consistently improve the performance of all these methods
for both Experiment 1 and 4. Specifically, by using the “HE”
normalization, all the methods achieve the best results in Ex-
periment 1, but in Experiment 4 they perform even worse than
those with “NO” photometric normalization. In contrast, by
using the “PP” method, all the methods except “LGXP+BFLD”
perform the best in Experiment 4 but just comparable to the

results with “NO” photometric normalization. Another impor-
tant observation is that all the methods with “NO” illumination
preprocessing achieve results comparable to the best ones with
the “HE” or “PP” normalization.

From these comparisons, we might draw two conclusions:
1) by carefully choosing appropriate photometric normalization
methods, the methods can be further improved; 2) the proposed
method by itself is very robust to illumination variations. We at-
tribute the robustness to two points. First, the local patterns of
Gabor feature are robust to the illumination variations. Specifi-
cally, it is known that Gabor magnitude feature is robust to the il-
lumination variations, and the proposed quantized Gabor phase
codes also result in the robustness by using the large-step quan-
tizing operation. Second, the BFLD method leads to robustness
to illumination variations, since the BFLD can model these vari-
ations as intrapersonal variations.

Besides the above comparison, we also compare the results of
our method with those results reported recently on this database
with the same evaluation protocol, as shown in Table V. In the
table, all the results for comparison are directly cited from the
related papers. For clarity, only the results of ROC3 are listed
in the table. From the comparison, we can see that our score-
level fusion method works comparatively well to the best known
results reported in [30], which further validates the effectiveness
of the proposed techniques.

VII. CONCLUSION

This paper investigates how to exploit effectively the Gabor
phase information, as well as its fusion with Gabor magnitude.
Under the framework of local pattern encoding, we propose
the so-called Local Gabor XOR Patterns (LGXP) to encode
locally the Gabor phase. Additionally, by one “ divide and
conquer” strategy, we introduce the BFLD method, and study
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TABLE IV
VERIFICATION RATES ON FRGC 2.0 DATABASE WITH DIFFERENT PHOTOMETRIC NORMALIZATION METHODS WHEN ��� � ���%

TABLE V
COMPARISONS WITH SOME STATE-OF-THE-ART METHODS ON FRGC 2.0

DATABASE (VR WHEN ��� � ���%)

Note: As is in this work, the eye positions in original face images are also
manually located for all the comparison methods in [12], [20], [21], [30]
and [32].

the fusion methods of different local patterns of Gabor feature.
These methods are extensively evaluated and compared with
previous methods on the FERET and FRGC 2.0 datasets, which
indicates that our fusion method achieves better or comparable
results than the best known ones.

Unlike previous work, this study indicates that Gabor phase
might embody more (at least equal) discriminating power than
Gabor magnitude, if only it is appropriately exploited. We ob-
serve this phenomenon on both FERET datasets and Experi-
ments 1 and 4 of FRGC 2.0.

We also experimentally reveal that methods based on local
Gabor patterns, both the proposed LGXP and existing LGBP/
LGPP, work reasonably well under relatively simple testing sce-
narios, for instance, FERET Fb, Fc, and Experiment 1 of FRGC
2.0. But, they all degrade abruptly when the testing is chal-
lenging with large variations due to unconstrained imaging con-
ditions, e.g., FERET DupI, DupII, especially Experiment 4 of
FRGC 2.0. This observation might imply that these local pat-
tern methods are sensitive to large extrinsic variations.

Fortunately, the challenging problems caused by uncon-
strained conditions can be well addressed by combining local
Gabor patterns with the proposed BFLD method. Impressive
improvements are achieved on FERET DupI, DupII, and Ex-
periment 4 of FRGC 2.0, which safely validate the effectiveness

of BFLD for challenging testing scenarios. We attribute this
performance gain to the discriminating nature of FLD and the
“divide and conquer” methodology brought by the block-based
strategy.

Finally, as expected, the fusion of magnitude and phase fur-
ther enhance the recognition accuracy when they are encoded
by local patterns and combined with BFLD. In the current
score-level fusion, we simply combine component classifiers
by sum rule. It is evidently not optimal, and as a future work
we will exploit better statistical fusion schemes. Additionally,
as one statistical learning method, the generalization ability
of BFLD method is influenced greatly by the training set.
We need more future efforts to improve its performance for
out-of-sample problem.
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