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Transferring Boosted Detectors Towards Viewpoint
and Scene Adaptiveness
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Abstract—In object detection, disparities in distributions be-
tween the training samples and the test ones are often inevitable,
resulting in degraded performance for application scenarios. In
this paper, we focus on the disparities caused by viewpoint and
scene changes and propose an efficient solution to these particular
cases by adapting generic detectors, assuming boosting style. A
pretrained boosting-style detector encodes a priori knowledge
in the form of selected features and weak classifier weighting.
Towards adaptiveness, the selected features are shifted to the most
discriminative locations and scales to compensate for the possible
appearance variations. Moreover, the weighting coefficients are
further adapted with covariate boost, which maximally utilizes
the related training data to enrich the limited new examples. Ex-
tensive experiments validate the proposed adaptation mechanism
towards viewpoint and scene adaptiveness and show encouraging
improvement on detection accuracy over state-of-the-art methods.

Index Terms— Boosting, covariate shift, detector adaptiveness,
object detection, transfer learning.

1. INTRODUCTION

BJECT detection/localization has been extensively
O studied for more than two decades. Although most prior
algorithms have been proposed to detect frontal human faces
[30], [37], pedestrians [10], [27], etc., they are believed to be
readily extensible to detection of other visual objects, e.g.,
animals and profile faces. A straightforward extension scheme
normally consists of three steps: training examples collection,
detection model selection, and detector training. Nevertheless,
many object detection tasks are still beyond the capabilities
of the state of the art [10], [27], [37]. Even for those nearly
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Fig. 1. Data-distribution disparity problem illustrated by examples selected
from two different viewpoints. (a) Frontal view. (b) Overhead view.

solved tasks [37], the high initial cost, i.e., the cost to acquire
sufficient training examples, may prohibit building practical
detection systems.

The high initial cost inherently arises from the fact that most
current solutions are based on statistical learning techniques,
whereby several thousands of positive examples are typically
required to train a detector. For instance, an early face detector
uses nearly 1050 face examples [30]. Moreover, detection prob-
lems are further complicated by variations of appearance [10],
[26]. On the other hand, a considerable number of training im-
ages which do not contain any instance of the specific object are
also required during the training phase. Negative examples are
bootstrapped from these “negative” images to ensure a low false
positive rate, e.g., 107%.

In practice, disparities in data distributions are often in-
evitable between the training data and test one, possibly
resulting from differing viewpoints or scenes. For example, in
pedestrian detection, the appearance of a pedestrian may be
substantially changed when the capturing viewpoint is altered
(see Fig. 1). If we take an example of overhead view as test
data while using the detector trained from the frontal view, the
detection performance would be seriously hurt. One immediate
solution is to retrain the detector with examples recollected
from the new viewpoint, incurring again the high initial cost.
In addition, specific applications often entail confined scenes,
such as a surveillance system with stationary cameras watching
a particular region only. This observation suggests the possi-
bility to improve detection performance by adapting a generic
detector to the particular scene. Such a specialized detector is
expected to perform better than the generic detector in terms
of both accuracy and efficiency, since to deal with variable
backgrounds tends to increase the complexity of the detector.

We advocate transferring the knowledge residing with vi-
sual detectors across viewpoints and scenes. Although examples
captured from different viewpoints are generally distinct in ap-
pearance, there exists certainly close relationship among them.
To determine which part in a generic detector is still useful for
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Fig.2. Schematic of transfer learning across viewpoints or scenes. (a) Transfer
learning in boosting: the image patches are transferred from the auxiliary task
to the target task. The weight of each image patch is also relearned. Note that
the image patches are all normalized into the same size for better visualization.
(b) A weak classifier is built upon an image patch, where the parameter of weak
classifier and threshold are learned.

a particular case, we utilize a small amount of labeled data cap-
tured from the new viewpoints or scenes, called target-distribu-
tion training data. By comparison, we term the training data for
the generic detector as auxiliary-distribution data, in view of its
potential usefulness for the target task. We transfer the generic
detector into the target task by exploiting the relation between
the auxiliary data and the target one. This naturally leads to an
instance of classic transfer learning [3], [8], [9], [28], [33].

The key underlying argument for our transfer learning is that
shared visual features may handle the overall appearance distor-
tion. These shared local features tend to be semantically iden-
tical for auxiliary and target examples, but are observed to be
at different locations and scales [see Fig. 2(a)]. To establish
these features, it is desirable to find correspondences of local
features between the different viewpoints or scenes. We start
with boosting-style detectors [35], [37] for viewpoint and scene
adaptiveness. The reason is that boosted detectors have been
successfully applied for detecting various objects, e.g., face [37]
and pedestrian [26], [35].

The remainder of this paper is organized as follows. After
summarizing the related work, we first review the loss func-
tion for the classical boosted detector in Section III and then
elaborate on feature shift in Section III-B and on CovBoost
in Section III-C. In Section IV, we discuss our methods to
transfer the boosted detector across viewpoints and scenes.
Extensive experiments on two challenging tasks are presented
in Section V. We provide concluding remarks on detection
transfer in Section VI.

II. RELATED WORK

Existing possible solutions to the viewpoint and scene adap-
tiveness problem are partially related to three popular research
topics, i.e., multitask learning, semisupervised learning, and
transfer learning.

Multitask Learning: Learning for multiple related tasks si-
multaneously can be advantageous, as compared to learning for
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these tasks independently [8], [18]. There has been various the-
oretic work devoted to multitask learning [4], [5]. In computer
vision, JointBoost [34] demonstrated that multiple simultane-
ously trained object detectors behave better than independently
learned ones. Recently, Ahmed et al. [2] also learned sharing
features simultaneously from pseudo (auxiliary) tasks and target
tasks with convolutional neural networks (CNNs). Multitask
learning can partly solve the deficiency of training examples and
possibly improve the performance. However, multitask learning
requires that new task has sufficient examples in order to per-
form simultaneous learning with other related tasks. The high
initial cost in the viewpoint or scene adaptiveness is hence in-
evitable.

Recently, the idea of weighted mixture probabilities [20], [41]
suggests to weight distributions among different scenarios, but
emphasized storing knowledge in a parametric model [20]. For
instance, Taylor expansion of the loss function for auxiliary data
is parameterized as the coefficients of weak classifiers [41]. De-
spite how the possible changes of appearance are handled, [20]
and [41] are not designed for either viewpoint or scene adap-
tiveness. In this work, feature shift is proposed to handle the
appearance distortion caused by varying viewpoint or scene.

Semi-Supervised Learning: Another related work is the
semi-supervised learning utilizing the unlabeled examples for
detectors. One of the popular methods is cotraining [6]—mul-
tiple detectors based on independent features are applied to
the same unlabeled example, and its label is determined by the
highest confidence of detector. To avoid the costly retraining
process, the seminal idea [23] has inspired the research in [21]
to combine cotraining with an online method [25]. Obviously,
cotraining requires different visual cues upon which to build
independent detectors. This necessarily brings out the feature
design and representation problem, which remains largely
open-ended, e.g., bicycles, cars in visual object challenge
(VOC)’s tasks [12]. Moreover, the iterative retraining process
prohibits practical use. It is also an open problem to apply the
generic semi-supervised learning for detectors adaption. For
instance, [22] propagated the label information by pair-wise
similarity. However, available object examples are often sparse
as compared to the large volume of negative examples (the
ratio of positive and negative examples can be 1:10000). How
to apply semi-supervised method for adaptation in the case of
detection is still vague.

Transfer Learning: Transferring knowledge across related
tasks is a known phenomenon in human learning [28]. The re-
lated research can be roughly categorized into three classes, ac-
cording to the level of knowledge transferred. The model-level
transfer first estimates the hyper prior of parameters from sev-
eral related tasks and then transfers this prior to similar tasks,
e.g., hierarchical Bayesian models with hyper prior constructed
for similar tasks [4], [14], [29], [39]. However, it is generally
difficult to model and incorporate priors for discriminative clas-
sifiers, which underpin most efficient detection and recogni-
tion algorithms, e.g., boosting [16] and support vector machines
(SVM) [36] used in detection of faces [37] and human bodies
[10], [26], [35]. Second, the data-level transfer instead discovers
useful examples from the auxiliary tasks, and uses them along
with the target data in a proper strategy. For instance, auxiliary
data were used in the covariate shift [32], and the usability of
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auxiliary examples was adaptively determined in boosting [9].
Rather than determining the usability of examples by the re-
sponses of target classifiers, our approach instead adopts impor-
tance sampling mechanism in covariate shift. The third category
is the feature-level transfer, which searches for the shared fea-
tures with satisfactory performance across domains. To uncover
these features, one might introduce some related target tasks
[3] or learn a distance function which behaves well to transfer
knowledge [33]. For instance, Farhadi et al. [13] proposed to
construct the stable features for recognizing activities from dif-
ferent viewpoints. Comparing with the model-level approach,
the data- and feature-level approaches are well suited to trans-
ferring knowledge in discriminative models.

The most promising approach for adaptiveness seems to be
online boosting [25] (and its variant [17]). With the i.i.d. as-
sumption, the online boosting updates the coefficients of weak
classifiers, and requires that weak classifiers have the incre-
mental learning ability. Varying the viewpoint makes the i.i.d.
barely hold. Nevertheless, many types of weak classifiers do not
have the corresponding incremental versions.

III. TRANSFER DETECTOR CROSS VIEWPOINTS AND SCENES

Here, we first review the basic notations for boosting and its
applications to object detection. Thereafter, we introduce fea-
ture shift and CovBoost for transferring classifiers, respectively
[see Fig. 2(a)].

A. Basic Notations and Boosted Detectors

The general approach to object detection is to learn a classi-
fier, which predicts the class label for a subwindow, e.g., 1 for
yes and —1 for no. Within the context of boosting-style detec-
tors, the strong classifier H(x) can be obtained by minimizing
the exponential loss L!

‘= /P(day)e_yH('”)d(:v;y) = Eq [e‘”H(m)} (1)
Q

where  is the domain of the example-label pair (z,y),
which is generated according to the distribution p(z,y), and
y € {—1,41} is the class label of example z. The strong clas-
sifier H(z) : * — y is obtained from a weighted combination
of weak classifiers h,, (z)

M
H(z) = Z Al () 2
m=1

where «,,, € R™ is the coefficient characterizing the importance
of the weak classifier h, (). The final object detector D is the
cascaded strong classifier H (z) [37].

In boosted detectors [37], h,, () essentially consists of three
elements: 1) location of image patches; 2) parameters of weak
classifiers; and 3) decision thresholds for the weak classifiers.
Fig. 2(b) illustrates the relation among these elements. For in-
stance, a simple classifier can be obtained by thresholding the
Haar feature [37].

Note that, although we focus in this paper on the discrete version of Ad-
aBoost, the proposed approach can be easily extended for other versions of
boosting, e.g., RealBoost and LogistBoost.
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Let T, = {(z!,y))},, be the target data, where
zt € X, is drawn i.i.d. from the target-distribution p;(z).
Let 7, = {(:L";, yj)}JT: L be the auxiliary data, where 2% € X,
is sampled from the auxiliary-distribution p,(x).2 For a partic-
ular case of detector transferring across viewpoints, 7, could
represent the examples collected from the horizontal viewpoint,
while 7; could describe the examples collected from other

viewpoint (see Fig. 1).

B. Transferring Features by Feature Shift

Denote the location/state of an image patch as 6§ = (I, ¢,r,b),
where [, ¢, r, b are the left-top-right-bottom corner coordinates.
Based on the above analysis, the auxiliary state of an image
patch should be transferred to the target state ;. In other words,
the new state ; should be determined by using the old state as
a priori knowledge

p(0¢]0.) o< N (., 021) 3)

where N (6,,0%1) is a Gaussian distribution with mean 6, and
covariance matrix o21. The o is empirically set to be ten pixels
in this work. The Gaussian dependence in (3) means that, in
most cases, 0; deviates slightly from 6. As Fig. 2(b) shows, the
parameters and the threshold of a weak classifier do not change
in this stage. Usually, we can generate L new features based on
an old state #,,. The critical question is how to locate the optimal
feature from these L features.

Two strategies are used to locate the optimal feature. One is
to directly select from the shifted feature by updating CovBoost
in Section III-C1. The other is to average by predicting shifted
features according to target data only (see Fig. 3). We will elab-
orate on these two strategies next.

1) Selecting Shifted Features: Feature shift first generates a
new enlarged feature pool, and then the optimal feature is se-
lected by stage-wise optimization in CovBoost. Advantages of
this strategy are twofold: simultaneous updating CovBoost and
supplying more features for boosting than the following aver-
aging strategy.

2) Averaging Shifted Features: Averaging shifted features
uses the auxiliary state as an initial guess to predict the target
state, according to the target data only. For a clear presentation,
we use h®(x) instead of h%, () to represent the mth weak classi-
fier. The state #; can be computed by estimating the probability
p(0:| T, 7,) in terms of Bayesian inference. However, the con-
ditional probability p(6:|7¢,7,) cannot be computed directly.
Hence, conditional independence between 7, and 7; is adopted
to simplify p(7;, 7,|6:) as

(7o, Te|0:) = p(7al0:)p(T:10:). 4

Based on the Bayes rule and (4), we have p(0:|7;,7,)
p(7T¢|0:)p(0:|7,). Further, we have

PO, T.) o p(To 16w (0:|To)
—(T.160) / (0006 T)d02 (5)

2Hereafter, the notation ¢ and a generally represent the target and the auxiliary
data, respectively.
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Fig. 3. Feature shifts from the old (pink, online version) state to a new (blue, online version) state by different strategies. The margin gain (6) of the weak classifier
on the target data is plotted in (a)—(c). Further comparing the maximum points of the margin gain map in (a)—(c), we can see that the feature often shifts to the
local maximum in the margin gain map. Note that the map describes the discrimination capability of weak classifiers. (a) Old state. (b) Target by selecting strategy.

(c) Target state by averaging strategy.

where

P(T:]0:) o ©)

> exp (—ythe (xf))

is the margin gain of the weak classifier h*(x) on the target data,
and p(6,|7,) is the probability that the weak classifier occurs at
the old state 6,,. exp(—yfh“(xﬁ)) in (6) is a variation of margin
[15], where yh*(x?!) is positive if and only if h*(z!) correctly
classifies a example. Therefore, the essence of (5) is to search
for the target status ; by following the largest margin criterion.

The optimal target status §; can be estimated via uniform sam-
pling [24] as follows. A set of samples {sj },_ 1, are gener-
ated by repeating the old state 6,. After the state sy shifts to
st with (3), the state s! is associated with the weights 7} o
p(Ti|st)p(st]st) with 37 7t = 1. Monte Carlo is used to ap-
proximate the optimal target state 6; as the expectation 6, =
Zle sy In this paper, we set L to be 50.

3) Discussions on Feature Shift: Pose variation is one of
the main difficulties for visual object detection. To handle this
problem, multiple instance learning (MIL) [38] uses a set of in-
stances to encode the variation of appearance, and then trains a
detector to discover the aligned instances. In this regard, feature
shift uses a set of image patches to encode the variation at the
feature level. Furthermore, feature shift is a general framework
to achieve the feature-level transfer; more types of transforms
(e.g., affine or perspective) can be easily incorporated into our
system.

C. Covariate Boost

Although the auxiliary distribution p,(z) is generally dif-
ferent from the target distribution p:(z) (pa(z) # pi(2)),
the conditional probability distribution can be considered to
be equal, namely p,(y|lz) = pi(y|z). Covariate shift [32]
therefore can be applied to utilize the auxiliary distribution
pa(z,y). Applying covariate shift into the exponential loss (1),
we have the covariate loss

L=Fg, [ 4 By, [remv)] )

where A = pi(z,y)/pa(x,y) is the ratio of the target and auxil-
iary density. As illustrated in Fig. 4, there are three pivot points,
A, B, and C, where A = 1. At the white region (B-C), A > 1,

P2 Pivot C

(a)

Fig. 4. Analysis of the meaning for ratio A in (7). (a) The dotted line represents
the distribution of auxiliary data p, (#, y), whereas the solid line represents the
distribution of target data p,(x, y). (b) The value of A for every example is
shown with respect to the distribution disparity.

whereas at the gray region (A-B) A < 1. The more A approaches
1, the more similar are the distributions; otherwise, the distribu-
tions are more distinct. It should be noted that A does not mean
the usability of auxiliary examples, but indicates the disparity
between the target and the auxiliary distribution.

Essentially, the second term of (7) uses the p,(z,y) as the
proposal probability in importance sampling to reuse the auxil-
iary data 7,. We reformulate the density ratio A with the condi-
tional probabilities by using the Bayes rule

nle,y)
A pe(y)

poalt)
=yl

_p(tlz, y)p(z, y) 1
p(t) plalz,y)p(z,y)

p(a)
_ p(tlz, y)p(a)
plalz,y)p(t)

It is natural to presume that human has equal possibility to be
observed in different view angles or scenes; thus, the probability
of target view angle p(¢) and of auxiliary viewpoint p(a) are
assumed to be equal. For other adaptiveness tasks, p(a) and p(%)
should also be determined by the domain knowledge. Therefore,
(8) can be estimated by the ratio of conditional probabilities,
p(t|z,y) and p(a|z,y) (measuring the likelihood an example
(z,y) belonging to the target data 7; or the auxiliary data 7,

®
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TABLE I
COMPARISON AMONG DIFFERENT METHODS. NOTE THAT Loss( xg, y;) IS THE
LOSS OF A SINGLE EXAMPLE, WHICH CORRESPONDS TO e~ ¥ (#) IN (1)

| Method I Loss function | Comments |
Multi-task Lo+Lt Learn all tasks simultane-
learning ously and unbiasedly.

Method [20],
[41]

T—NLat L 20]
(La+ALy [41])

The A(0<A<1) controls
the degree of adaptive-
ness. If A\ = 0, there
is no adaption process. If
A = 1, only target data
is used to learn. The op-
timal A can be estimated
via cross-validation tech-
nique. L,+AL: [41] can
be easily changed into
(1 — NLa+AL: [20],
thus A in [41] has similar

meaning.
Our method > AiLoss(z?,y¢) | The A;(0<A;<+00) acts
+L¢ as example ‘“‘selector”.
If i =~ 0, («f,y)

will be useless; other-
wise, (zf,yj) will con-
tribute to adaption. The
more larger \; means that
(xF,y5) be more useful
for classifier adaption. \;
can be estimated via (8).

respectively). Here, we model these conditional probabilities as
the logistic functions

1 1
p(tz,y) = [Epae) plalz,y) = T ovHa@) €))
where H,(x) is trained on the auxiliary data 7,, and Hy(z) is
adaptively trained with examples from both the auxiliary data

7, and the target data 7;. The A has an analytical form

1 + e_'!/Ha (Z)

A (10)

BRETSTACN
If y = 1in (10), it means that the positive auxiliary examples
are used for viewpoint adaptiveness. On the contrary, if y = —1
in (10), the negative auxiliary examples from new scenes are uti-
lized for scene adaptiveness. That is, our method can treat both
the viewpoint and the scene adaptiveness in a unified frame-
work. The covariate loss (7) can be further written as

~ , 14 e~ vHa(2)
_ —yH, (x
E_EﬂFul(q+En[T:EEET]

1D

The loss £ consists of two different data sources: the auxil-
iary-data 7, and the target-data 7;. Rather than these weighted
mixture training [20], [41], CovBoost weights every auxiliary
example (z%,y§). Table I further summaries the difference
among the multitask learning, approaches [20], [41] and our
method. By comparing the loss functions in Table I, our
approach is distinct in methodology to handle the classifier
adaptiveness problem.

1) Optimizing the Covariate Loss: Our method adopts the
stage-wise optimization method. We select or update the weak
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Fig. 5. Relation of the different types of training data between two tasks. Note
that the dotted rectangles or circles describe the examples from auxiliary tasks,
whereas the solid rectangles or circles represent the examples from target tasks.
(a) Angle-scene adaptiveness. (b) Scene adaptiveness.

classifier h!, () by minimizing the first-order approximation of
covariate loss (11) as

Er, [e ™ yhl, (o)
(1 + e—yHn,(Z)) eyH:(2)
(1 + evHe@)?

+E7

a

yhy(z)| . (12)

After the weak classifier A%, (z) is updated, the optimal co-
efficient of,, for h%,(z) can be solved by minimizing covariate
loss (11) with two kinds of methods, i.e., linear searching or gra-
dient based method.

The efficiency can be further improved by recording
the weight Dy(z!) = e ¥ H:(") for the target data and
D, (z%) = e¥"H:(") for the auxiliary data iteratively. More-
over, the mth weak classifier %, (z) and o, can be computed
by using only the weight D; and D,,.

2) Discussions on CovBoost: It may be argued that the target
and the auxiliary data can be considered as the mixture distri-
bution, and then classifiers can be trained based on mixture es-
timation. On the other hand, classifiers could also be directly
trained on the target data. We refer to these thoughts as mixture
training and single training respectively. For mixture training,
more variation of appearance from new viewpoints will enlarge
the intra-class variability, which may damage the ability of tra-
ditional classifiers. Second, training on a small number of target
examples locally often causes a serious overfitting problem. A
comparison among mixture training, single training, and Cov-
Boost is presented in Section V-C2.

IV. TRANSFERRING BOOSTED DETECTOR ACROSS VIEWPOINT
AND SCENE

In this study, we apply the above transfer algorithm into the
cascaded detector proposed by Viola and Jones [37] for two vi-
sual tasks. As discussed in Section III-C, the transfer learning
algorithm can easily be applied to two scenarios: viewpoint and
scene adaptiveness. In essence, the difference between these two
tasks lies at utilizing different types of training examples (see
Fig. 5). In the following, we will elaborate on these adaptive-
ness tasks, and consider how to update the other parameters of
weak classifiers.

A. Viewpoint-Scene Adaptiveness

Viewpoint-scene adaptiveness means that transferring
generic detectors to a specific scenario with new viewpoint
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and scene. This task covers a series of instances, for example,
changing the detectors trained for the frontal viewpoint into
the overhead viewpoints in surveillance. After the viewpoints
are changed, a detector is often fixed with viewpoints, and
monitors a special scene. One of the main challenges of this
task is the transferred detectors should efficiently recognize
these instances in new viewpoints when the appearance of
objects is seriously changed. A small number of target data
barely covers all possible appearances of objects, and hardly
guarantees the generalization ability. Therefore, it is necessary
to “borrow” examples from the auxiliary data in Fig. 5(a). The
viewpoint-scene adaptiveness process is described in Algo-
rithm 2.

Algorithm 1. Transfer Boosted Detector Across Angle-Scene

1: Given: The target positive data 7, and the initial target
negative data 7,~ extracted from new viewpoint and
scene, respectively. The learned auxiliary cascaded
detector D, = {H}(z),..., HX(x)}, where H*(x) is
kth stage auxiliary classifier and the auxiliary positive
examples {7, } for every stage.

2: Fork =1,...

— Using feature shift to generate a new feature pool for
CovBoost.

— Updating the auxiliary H”(z) into target HF () via
CovBoost, where the parameters or the thresh of weak
classifiers are also updated.

— Bootstrapping the hard negative examples from the
auxiliary negative images set for next stage classifier.

End For

3: Output: The transferred angle-scene detector
D; = {H}(z),...,HF (z),...}.

?

B. Scene Adaptiveness

This task means that transferring generic detectors to partic-
ular scenes without viewpoint changes. There are wide appli-
cations for scene adaptiveness, for instance, applying detectors
from the outdoors into the indoors scenes, adapting detectors
from generic scenes into special application scenes, e.g., tele-
conference room [41]. Intuitively, this task only requires detec-
tors to aggressively reject more negative examples from the lim-
ited scenes than auxiliary detectors. Therefore, a small set of im-
ages without instances of the particular objects are supplied as
target negative examples. Similar to viewpoint-scene adaptive-
ness, the small number of target negative examples can not cover
all scenes in novel scenarios. The auxiliary negative examples
are also used to increase the generalization ability of detectors
in Fig. 5(b). In this paper, we simply achieve scene adaptiveness
by appending new classifiers trained by CovBoost onto the aux-
iliary detector (see Algorithm 3). The false positives generated
by step-3 in Algorithm 3 are too “hard” for the initial target de-
tector, and thus “selecting strategy” is used to generate a feature
pool for transferring the learned auxiliary classifier HX ().

Algorithm 2. Transfer Boosted Detector Across Scenes
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1: Given: The last stage auxiliary negative data 7, the
auxiliary positive data 7,", the auxiliary cascaded detector
D,(z) = {HX(x),..., HE (2)}, where HF(x) is k-th
stage auxiliary classifier. The target negative images
sampled from new scenes.

2: Initializing the target detector Dy, Dy «— D,.

3: Bootstrapping the hard negative examples 7, for the
target negative images by the detector D, (z).

4: Using “selecting strategy” in feature shift to generate a
feature pool from the last staged classifier HX ().

5: Training a target classifier H;(x) using the hard negative
examples 7, , auxiliary negative examples 7,~ and
auxiliary positive examples 7" via CovBoost.

6: Appending the target classifier H¢(z) onto Dy(z),
Di(x) — {Di(x), Hy(x)}.

7: Return to Step3, until the target negative images are
corrected classified.

8: Output: the transferred scene detector
D = {H;(.T% S 7Hf(l‘), s 7Ht(x)}'

C. Updating Weak Classifier

Feature shift only updates the location of weak classifiers,
whereas the threshold and parameters of weak classifier could
also be updated. There are two straightforward strategies to deal
with these elements: 1) online updating and 2) retraining weak
classifiers. To our best knowledge, not all types of weak clas-
sifiers have corresponding online versions. Although retraining
weak classifiers is somewhat time-costing, we only adopt it to
update the threshold without adjusting the parameters of weak
classifiers. Taking the single-threshold weak classifier [37] as
an example, the threshold of a weak classifier can be simply re-
computed to maximize (12). It is also easy to extend the single-
threshold weak classifier into the decision-tree-based weak clas-
sifier [16].

V. EXPERIMENTS

The proposed algorithm has been thoroughly tested on both
the synthetic and the real datasets. In Section V-A, we show
that the ratio of conditional probabilities is efficient to describe
the disparity of the different distributions. In Section V-B, we
evaluate its ability on pedestrian detection for two tasks, and
also verify its ability on another visual object, i.e., human face.

A. Experiments on Synthetic Data

To give an intuitive illustration of CovBoost, Fig. 6 shows
2-D synthetic data with the distribution disparity to emphasize
the advantage of using auxiliary data. The synthetic data are first
presented by [32], and consists of two parts, i.e., auxiliary data
and target ones. Fig. 6 shows that we are considering a non-i.i.d.
problem: the auxiliary data is totally different from the target
ones.

We generate 3000 auxiliary data and 20 target data from the
distributions in Fig. 6(a). Two naive strategies, mixture training
and single training are evaluated. As expected, the decision
plane output by CovBoost is more accurate. Also notice that
single training and mixture training overfit to the target and the
auxiliary data respectively. One can immediately see that Cov-
Boost can properly use auxiliary data to improve performance.
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data and the positive target data respectively. Note that only 30% auxiliary data are plotted for better illustrating the decision plane. For more details, please refer
to Section V-A. (a) Synthetic data. (b) Decision plane. (c) Single training. (d) Mixture training. (e) CovBoost.

To test the ability of estimating the A in (8), a comparison
is done between the state of the art, i.e., importance weighted
cross validation IWCV) [32], and our method. IWCYV needs a
precondition that the probability of auxiliary data p,(z,y) and
target data p;(z, y) are already known or estimated, and further
applies the weighted cross validation to select best A\. However,
collecting a proper scale of validation data for cross validation
somewhat falls into the high initial cost problem in the terms of
adaptiveness. In contrast, our method does not require the prob-
ability p, (x,y) and p;(z, y) to be estimated, but the conditional
probability of auxiliary data p(a|z, y). Following the test proce-
dure described in [32] on this dataset, we sample 20 target data
(10 for positive and 10 for negative examples) for transferring.
0.156 £ 0.041 error rate is achieved with our method, while
IWCYV reports 0.108 £ 0.026 by adaptive importance weighted
Fisher linear discriminant analysis as classifier. From this toy
data, we can conclude that the ratio of conditional probabilities
is an efficient approach to estimate the disparity of data, and
achieves comparable performance with IWCV.

B. Experiments on Real Data

Two diverse datasets are used to evaluate the effectiveness
of the proposed algorithm in transferring detectors across view-
points and scenes. The first dataset is obtained from the PETS
2007 [1], which is captured at a resolution of 720 x 576 pixels
from the real environment without constraints. For the target
training set, 220 target positive examples (with reflection) is
randomly extracted from the Dataset S8 view3 and normalized
into the size of 128 x 64 pixels. The Dataset S7 view3 is la-
beled every 10 frames as the test set, which amounts to a total
of 300 frames with 973 pedestrian instances. These video se-
quences contain many challenges which are representative in
real-life cases: the pose near the camera would be changed in-
tensively with comparison to the ones from the front-view; dif-
ferent actions and moving directions produce diverse poses; un-
constrained video streams exhibit a much lower quality than
their photographed counterparts [10]. Above factors would en-
large the degree of intra-category variability, and thus increase
difficulty for detectors. The auxiliary data are borrowed from
the INRIA pedestrian dataset [10]. Fig. 1 shows some samples
used in the training stage. Although some examples have similar
appearance as the data from the frontal view, mostly the human
bodies in the target data is transformed into a slant direction by
the new viewpoint.

The second dataset, ETHZ dataset [11], is recorded at a
resolution of 640 x 480 pixels, using a stereo pair of cameras
mounted on a children stroller. Only the videos captured with
the left camera are used for training and test in our scene
adaptiveness task. We sample a small number of target negative
images (87 image patches) from the training sequences. The
INRIA pedestrian dataset [10] is also used to train the auxiliary
detector. The training sequence shows a walk over a fairly busy
square on a cloudy day. The first test sequence is taken under
a similar weather condition, strolling on a sidewalk, whereas
the second sequence shows a stroll over a busy square in the
shadow. Here, we ignore the challenges of appearance itself,
for instance, partial occlusions between pedestrians, large range
of scales of human, multitude of viewpoints, etc. The scenes
in two test sequences even pose several main difficulties: a
large number of trees and dust bins; reflections from shopping
windows; bad weather condition resulting in low contrast;
video streams suffering from slight motion blur or some times
missing contrast. As a comparison, above difficulties make
itself different from the INRIA dataset. Although ETHZ dataset
is not originally built for scene adaptiveness, this work adopts
it to this task for its disparity from INRIA data.

The false positives per image (FPPI) is used as the evaluation
metric. A detection is to be counted as correct, only if it has to
overlap with an annotation by more than 50%, using the inter-
section-over-union measure [12].

C. Experiments on PETS2007 for Viewpoint-Scene
Adaptiveness

1) Systematic Experiments: The experiments in this subsec-
tion are performed to determine the optimal choices in feature
shift. Therefore, an analysis is done to study the efficacy of fea-
ture shift strategies: averaging strategy, selecting strategy and
without feature shift (WFS). In this experiment, the thresholds
of weak classifiers are not changed.

As expected, WFES has the worse result on accuracy in Fig. 7.
This is mainly due to that the intensive change of appearance
is too difficult to WFS. Variation resulting in large intra-class
variability becomes a major problem in the angle-scene adap-
tiveness task. Further, the averaging strategy performs better
than WES, but worse than the selecting strategy as shown in
Fig. 7. Although the averaging strategy is explicitly designed to
account for viewpoint change, the reasons for its inferior accu-
racy may be twofold: 1) only target data is utilized to predict the
states of weak classifiers and 2) a small number of feature pool
is built by the averaging approach. The latter also confirms the
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Fig. 7. Effect of feature shift methods with HOG feature.

(b)

Fig. 8. Illustration of the four features selected by the feature shift. (a) Fea-
tures selected by the auxiliary classifier. (b) Features selected by the averaging
strategy. (c) Features selected by the selecting strategy. The tags of rectangles
show the sequence of features selected in boosting iteration.

fact: the number of weak classifiers should be large enough to
obtain better performance [26], [35], [37] in boosted detectors.

To understand the correspondence among shifted features, we
build a auxiliary classifier with 4 features, and shift them ac-
cording to the different strategies. It can be seen that the position
and the selected sequence are different. For example, the first
feature in Fig. 7(b) corresponds to the first feature in Fig. 7(a),
while the fourth feature in Fig. 7(a) turns into the first feature se-
lected by selecting strategy. These difference empirically shows
that the auxiliary data can influence the boosting iteration in
CovBoost.

The ratio of p(a)/p(t) is also empirically evaluated to verify
our assumption in (9). In this experiment, 700 positive and 1000
negative examples are extracted as test data from PETS2007;
only 100 positive examples and 500 negative examples are
used as target data for training. It can been seen that the region
[1.0,1.3] approximates at the bottom of the curve in Fig. 9.
Although the minimal error is not exactly achieved at 1.0, it is
still valid to assume that human has the same probability to be
observed under different view angles.

2) Comparative Experiments: With the possible choice mo-
tivated in the previous subsection, we now apply the proposed
system to the challenging test sequence—Dataset S7 view3 in
PETS2007 is a surveillance video watching the intersection be-
tween two alleyways from the overhead viewpoint. By using this
test set, we compare our system to the state of the art [41] and
several naive thoughts.

First, we implement a version of our system based on Haar
feature [37], and carry out a comparison between the Taylor ex-
pansion based method (TEB) [41] and our system. Because TEB

1395

0 05 1 15 2 25 3
ratio of p(a)/p(t)

Fig. 9. Impact of different p(a)/p(t) on the classification ability. The means
are the averages of 10 random repeats, as well as their standard deviations. The
accuracy is evaluated as: #the miss-classified/#total examples.
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Fig. 11. Comparison with two naive thoughts.

is the most related work for detector adaptiveness, and uses Haar
feature. For a fair comparison, we implement rigorously the “Di-
rect labels” method in [41], and tune all the listed values of the
parameter A\ (the middle value is adopted in our experiment).
It should be noted that TEB only updates the coefficient !, of
weak classifier by optimizing the hybrid loss in Table I.

The performance of the auxiliary detector is not plotted in
Fig. 10, because the auxiliary detector rejects all image patches
as negative examples in this experiment. In comparison to TEB,
near 5% gain is achieved by our approach at FPPI = 2. The
possible reasons for the success of CovBoost will be further
discussed in Section V-C4.
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Fig. 12. Computational efficiency of transferred detector. (a) Comparing the complexities of auxiliary and target detectors. The ratio of total number of weak
classifiers between the auxiliary detector and the target one approximates 7:1. (b) Accumulated rejection ability of detectors.

In next experiment, we implement another version of our
system based on histogram of gradients (HOG) feature [10]. Be-
cause the HOG is the widely used descriptor for human detec-
tion [10], [12], [26]. Although a thorough comparison is done
among the single training, mixture training and our approach
on synthesis data, Fig. 11 gives another comparison in real data.
From Fig. 11 we can further analyze how the auxiliary data af-
fect the performance and how proper using the auxiliary data
can improve the generalization power.

As illustrated in Fig. 11, the single training approach faces
a serious overfitting problem, which produces many false pos-
itives and false negatives than those using auxiliary data, i.e.,
mixture training and CovBoost. This comparison results show
that the auxiliary data indeed contains reusable examples for the
related tasks, and incorporating the auxiliary data can retain the
generalization ability of detectors.

A comparison between mixture training and CovBoost shows
the importance of proper usage of auxiliary data. Intuitively, the
small number of target data tend to be overlooked by AdaBoost
in mixture training, due to the distribution disparity, as well as
the large ratio between the number of auxiliary and target data.
However, weighting every examples can acts as an example se-
lector to emphasize the examples in the vicinity of target data,
but suppress the ones far from target data. Thus, the effect of
the imbalance between the target and the auxiliary data is adap-
tively countered.

3) Complexity of Transferred Detector: To analyze the com-
plexity of transferred detectors, we measure the “complexity”
of boosted detectors—the sum of weak classifiers in a boosted
classifier. The cascaded detectors distribute the computation
process of a detector among the rejection stages. Therefore,
a smaller number of weak classifiers in a stage implies faster
detection. Fig. 12(a) shows that the number of weak classifiers
of the transferred detector is far smaller than that of the aux-
iliary detector. This means that, if an example goes through
the whole cascaded detector, the transferred detector can still
enjoy approximately seven times faster detection speed than
the original auxiliary detector.

Moreover, the detection speed is also closely related with the
“rejection ability” in a cascaded detector, which measures the
number of negative examples rejected by the classifier in every
stage. The earlier the cascade rejects more negative examples,
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Fig. 13. Distribution of A in CovBoost, where a Haar-like feature is used. For
better visualizing the distribution of A, a series of multiple scaled histograms is
plotted. The mean of A; is 0.334 with std 3.115.

the faster the detection is. This is obvious since the classifiers
in latter stages often consist of more weak classifiers. For the
limited scenes, the fist stage can efficiently reject nearly 99%
negative examples, and as a result, the left negative examples
are difficult to the rest of stages. Consequently, the transferred
detector costs ten stages to reject 0.1% hard negative examples
in Fig. 12(b).

Correlating the accuracy and the complexity of the transferred
detector, it is necessary and possible to transfer a detector to
a scenario with new viewpoints. Because transferred detectors
often obtain faster detection and more accurate performance
than auxiliary detectors.

4) Distribution Disparity: Fig. 6 has already given a glimpse
of the distribution disparity problem, which is successfully han-
dled by CovBoost. Further, an investigation is done to study why
weighting every examples is better than weighting the whole
distribution approach in terms of improving the generalization
ability of detectors.

Fig. 13 shows the distribution of A of every example at
different scales. It is obvious that A for most auxiliary examples
concentrates around 0.1, which means that, auxiliary data does
contribute to detector adaptiveness. Further checking the target
data and auxiliary one in Fig. 1, there are still some common
points in shape: these data all have a rectangle-like shape. This
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may explain why most of examples in auxiliary data still con-
tributes to the target detector, albeit in a limited way. The large
standard deviation (std), 3.1, indicates that a small number of
auxiliary examples live in pivot B-C in Fig. 4. In other words,
in terms of handling distribution disparity, CovBoost gives
higher weight to these examples with visual similarity to target
data. Therefore, determining the A in an adaptive approach
gives more flexibility and accuracy than weighted probability
approach [20], [41].

Fig. 14 further shows the low-dimension distribution of two
different data with principal component analysis (PCA), from
which we can understand the relation between these data, and
the possibility to reuse the auxiliary data. The HOG feature first
is built by cells with 4 X 4 pixels, and then every example is
densely sampled with a block 2 x 2 cell. There are 188 blocks
with 6768 (188 x 36 = 6768) dimensions for every example,
which is similar to the approach in [10] to represent human.
Dense sampling at different scales can then efficiently reduce
the variation problem among examples. Latter, PCA is applied
on these 2636 examples (2416 auxiliary positive data+220 target
positive data) into 2-D and 3-D space, respectively.

The distribution disparity is very serious: target data only has
a partial overlap with the auxiliary data [see scattered points
in Fig. 14(a) and (b)], e.g., in Fig. 14(b), some examples are
far away from the auxiliary data, making AdaBoost easily treat
themselves as noise, and thus causing AdaBoost to be sensi-
tive in mixture training [7]. Nevertheless, the self-tuning \ turns
these sparse target data as landmarks to accord more attention to
vicinal auxiliary examples and to endow low weight to the aux-
iliary examples faraway from these landmarks. In this way, the
heterogeneous data can by adaptively utilized for target tasks,
and, as a result, the generalization ability of transferred detec-
tors is improved. Fig. 16 gives some quantitative results of the
auxiliary detector and the target one, respectively.

D. Experiments on ETHZ for Scene Adaptiveness

Here, we experimentally validate our system on two test se-
quences for busy shopping streets in Fig. 15. We compare our
approach with a naive approach, i.e., replacing CovBoost with
AdaBoost in Algorithm 3, but training AdaBoost with the auxil-
iary positive and the target negative data. The auxiliary detector
is considered as a fair baseline to compare the ability of trans-
ferred detectors.

Fig. 15(a) shows performance plots. Before adaptation, the
power of the auxiliary detector is very limited, as its score is
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Fig. 15. Performance of different approach for scene adaptiveness task and
baseline for the test sequence.

not distinctive enough to separate some human-like shapes, i.e.,
dust bins and rectangle-like windows. As for the adapted detec-
tors, slightly better result is obtained by the detectors trained by
AdaBoost. CovBoost achieves a even better result from using
the auxiliary negative examples than AdaBoost on target data
only. The plots for sequence #2 also corroborates the advantage
of our approach.

Fig. 17 shows two sequences with street scenes in ETHZ
dataset. As for the AdaBoost based method, some types of
objects tend to be misclassified. For instance, most of FPs
in Fig. 17(a) are the trunks. The low contrast feature is the
main challenge of Fig. 17(b). Although there are some FPs in
Fig. 17(d), our method still achieves less FPs than AdaBoost
based method.
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(b)

Fig. 17. Scene adaptiveness evaluated on ETHZ dataset under different scenes. (a), (b) Comparative detection results on seq.#1. (c), (d) Detection results on seq.#2

is compared. For more details, please refer to Section V-D.

E. Extension to Other Objects

To demonstrate the generalization ability, we apply the pro-
posed approach to face detection with view-angle change. The
100-profile face (with reflection) collected from web are consid-
ered as the target data; while the frontal face examples in [37]
are used as the auxiliary data. We use the Haar features [37],
because these features show the good ability in face detection.
The experiment is carried on CMU profile dataset. It should be
noted that this dataset contains a range of view angles of faces,
and most of baseline systems [19], [31] divide these faces into
subclasses to reduce variations.

The appearance of some profile faces is totally different from
the frontal faces; thus, this is not essentially an adaptiveness

problem, but a new visual task. The curve of the frontal face
detector was not plotted in Fig. 18, because the frontal face de-
tector almost rejects all image patches as negative examples.
The improvement of result (10% at 100 false positives) illus-
trates the benefit of using auxiliary data: even by using a small
number of profile face images in training, a portion of pro-
file faces can be detected correctly. Since our profile face de-
tector is handled in a naive approach (it does not divide the non-
frontal faces into several subclass [19], [31]), our result is nat-
ural worse than the baseline [31]. However, the improvement of
performance validates the generalization ability to other visual
objects.
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Fig. 18. Performance on CMU profile face detection. (a) Comparison with
the baseline result [31]. (b) Some sample results of face detection from our
approach.

VI. CONCLUSION AND FUTURE WORK

In practice, there exist both necessity and feasibility for trans-
ferring a generic detector to new scenarios. The difficulty in
collecting universal training data makes a well-trained detector
easily fail in a specific scenario. Handling more generic scenes
means increasing the complexity of detectors. On the other
hand, the possibility to transfer a generic detector also comes
from two facts: 1) instances in new scenarios may still share
local patches with auxiliary data and 2) specific application
scenes have limited backgrounds.

To exploit the possibility, this paper investigates how to
transfer boosting-style detectors specifically across viewpoints
and scenes. The underlying truth is that the weak classifier cor-
responds to a local image patch, which is assumed to be shared
across viewpoints. By formulating the adaptiveness as covariate
shift problem, we propose CovBoost to transfer the auxiliary
data in updating detectors. The effectiveness of the proposed
method is evaluated on two types of datasets, synthesis and
real datasets, from two aspects, i.e., the intuitive efficacy of
CovBoost in handling the disparity of data, and the quantitative
validation for transferring visual object detectors. The results
show that the proposed method can impressively improve the
performance of generic detectors across viewpoints and scenes.

It is well known in statistics that importance sampling would
be challenged, when the proposal density is far different from
the real distribution [24]. A possible solution is to utilize 3-D
object model for estimating the underlying mechanism across
viewpoints. Therefore, more general transformations of objects
should be tested in feature shift.

One of the shortcomings of the proposed method is that,
rather than parameterizing the auxiliary knowledge, CovBoost,
the data-level transfer learning, requires that auxiliary data
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should be stored. Moreover, CovBoost does not have the ability
of online learning to handle the time-varying scenes. To handle
these drawbacks, we are preparing to integrate online updating
ability into parameterized CovBoost in our future work.
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