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Abstract—This paper proposes a new perspective—Vicept rep-
resentation to solve the problem of visual polysemia and concept
polymorphism in the large-scale semantic image understanding.
Vicept characterizes the membership probability distribution be-
tween visual appearances and semantic concepts, and forms a hi-
erarchical representation of image semantic from local to global.
In the implementation, incorporating group sparse coding, visual
appearance is encoded as a weighted sum of dictionary elements,
which could obtain more accurate image representation with spar-
sity at the image level. To obtain discriminative Vicept descriptions
with structural sparsity, mixed-norm regularization is adopted in
the optimization problem for learning the conceptmembership dis-
tribution of visual appearance. Furthermore, we introduce a novel
image distance measurement based on the hierarchical Vicept de-
scription, where different levels of Vicept distance are fused to-
gether by multi-level separability analysis. Finally, the wide appli-
cations of Vicept description are validated in our experiments, in-
cluding large-scale semantic image search, image annotation, and
semantic image re-ranking.

Index Terms—Image representation, large-scale systems, pat-
tern analysis, semantic web, statistical learning.

I. INTRODUCTION

L ARGE scale semantic image analysis has recently be-
come a hot research topic because of its wide applications

in the fields of image understanding. To address this problem,
researchers have proposed various approaches from different
perspectives, including image classification [1]–[4], image
annotation [5]–[7], object and scene recognition [8], [9], [11],
[12], image search [13], [14], [16], [17], [27], etc. However,
the problem of visual polysemia and concept polymorphism
(VPCP) remains a great challenge for the task of large-scale se-
mantic image understanding. Visual polysemia represents a fact
that one certain visual appearance may have different semantic
explanations as illustrated by Fig. 1. We observe that the visual
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Fig. 1. Visual polysemia.

appearance is shared by the elements in concept collection
.

Without extra context information, it is difficult to assign one
certain concept. Concept polymorphism reveals another fact
that one concept may have various visual appearances under
different instances. Fig. 2 gives a concrete example of concept
polymorphism for the concept “skyscraper”. The influence
of VPCP may be slight in small image datasets; however, it
becomes a significant problem under large-scale scenarios. On
the side of VP, one visual appearance may occur in thousands
of concepts so that it is extremely difficult to infer its exact
concept. On the side of CP, one concept usually has thousands
of various instances and most of them have diverse visual
appearances. To sum up, the connections between visual ap-
pearances and semantic concepts are multi-aspect and complex
in large-scale image environment.
Though many significant works have been proposed to ad-

dress the large-scale image understanding, none of them solve
the problem of VPCP directly. One main reason is that the re-
lationship between image visual description and semantic in-
formation has not been specified. The de-facto image represen-
tation standard in these researches is based on the bag-of-vi-
sual-words (BOV) model [18]. The BOV approach regards an
image as a collection of visual appearance descriptors extracted
from local patches and quantized into discrete “visual words”,
and then computes a compact histogram representation for fur-
ther image application. BOV has been extensively investigated
for the following reasons: 1) visual words are discriminative due
to the consideration of local salient and invariant information;
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Fig. 2. Concept polymorphism.

2) similar to the word-document representation used in text re-
trieval, BOV provides a succinct and compact representation
with a bag of visual words for images; 3) the similarity be-
tween images can be measured quickly through simple oper-
ations, such as dot-product.
Researchers have studied and improved the BOV approach

for large-scale image application in the following four aspects:
1) aggregating local descriptors into more discriminative de-
scriptions [2], [16], [19]; 2) generating compact codebook [3],
[4], [8], [12], [20], [21], [22]; 3) efficient quantization tech-
niques [3], [9], [11], [14], [15], [23]; 4) post-processing tech-
niques on spatial information and image re-ranking [17], [24].
These above techniques can improve the performance to some
extent, but the problem of VPCP has still been pendent.
Recently, researchers have paid more attention to machine

learning for the applications of face recognition [6], image anno-
tation [13], [25], image classification [1], [26], [28], scene and
object recognition [29], [30], and so on. These works provide
new insights on dealing with the problem of VPCP; however,
they are still in the preliminary research stage and limited for
wide applications on large-scale dataset.
In this paper, incorporating with the BOV model, we learn

a Vicept (visual appearance-to-semantic concept) image repre-
sentation for large-scale semantic image understanding. Vicept
is to characterize the membership distribution between each vi-
sual word and semantic concepts, and construct a hierarchical
representation of image semantic. In details, Vicept is to present
the probability relationship between visual appearances and hi-
erarchical semantic concepts. Each Vicept word is a hierarchical
concept membership distribution histogram about one visual ap-
pearance, which is illustrated in Figs. 4 and 5. Vicept can di-
rectly deal with the VPCP problem. For the visual polysemia
problem, each Vicept word is an estimation of multiple con-
cept possibilities of one visual appearance. It describes the con-
cepts membership correlation with this visual appearance. For
the concept polymorphism problem, in the Vicept dictionary,
each visual appearance has a probability with one certain con-
cept. In other words, one certain concept has the probability re-
lationship with all the visual appearances.

Fig. 3. Proposed framework for Vicept generation and applications.

In fact, the relationship between visual appearances and con-
cepts is structural sparse in the practical situations: one visual
appearance only has the correlation with limited concepts and
one semantic concept only has the limited visual appearances.
Taking this structural sparsity property of Vicept into account,
we adopt the idea of mixed-norm regularization in our optimiza-
tion problem for learning the Vicept, which is effective for ob-
taining a discriminative Vicept with structural sparsity. During
visual appearance representation, considering the BOV struc-
ture, we encode visual descriptors as a weighted sum of dic-
tionary elements by group sparse coding, which could obtain
more accurate image representation with sparsity at the image
level. Further, we formulate the image-level Vicept represen-
tation procedure from local to global. Besides we introduce the
image distancemeasurement for the hierarchical Vicept descrip-
tion, where the different levels of Vicept distance are fused to-
gether by separability analysis.
The procedure of Vicept generation is illustrated in Fig. 3.

Firstly, a large image training dataset with concept labels is
established based on a hierarchical concept structure, which
covers frequently used concepts in the daily life. Secondly,
SIFT descriptors are extracted from these images and an
initial dictionary is obtained by clustering these descriptors
with hierarchical k-means. Thirdly, descriptors are encoded
with group sparse coding based on the visual words, while
a more discriminative and compact codebook can be learned
from sparse representations of these descriptors. This is a
procedure for visual appearance representation, and it is the
crucial step before learning the Vicept. Fourthly, Vicept is
obtained by learning from the above sparse representations
with the mixed-norm regularization optimization method, and
the Vicept description with hierarchical concept membership
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Fig. 4. One visualization of Vicept description.

Fig. 5. Image representation based on Vicept description.

distribution is built based on the hierarchical concept structure.
Finally, for one image, we can compute its global semantic
description via vector product between Vicept and its group
sparse code representation for further semantic applications.
The proposed scheme can quickly compute the semantic

information of a given image without depending on specified
training model so that it is easy to use under the large-scale
applications. Experiments on large-scale semantic image
search tasks show strong semantic descriptive power of Vicept.
Furthermore, in the experiments of image annotation and
semantic image re-ranking, our method also shows promising
performances.
The contributions of our work are summarized as follows:
1) The problem of VPCP is discussed. Taking this paradox
into account, a novel method for generating image hier-
archical Vicept description is proposed for large-scale se-
mantic image understanding.

2) Group sparse coding is utilized to encode the images for
a more sparse representation. Meanwhile, a discriminative
and compact dictionary is learned relying on this sparse
representation.

3) The idea of mixed-norm regularization is adopted in our
optimization problem to learn a discriminative Vicept with
structural sparsity.

4) Aiming at the hierarchical structure of Vicept description,
a distance metric is introduced to fuse the distance at dif-
ferent concept levels by separability analysis.

The research in this paper is an extension of our previous
work “Learning image Vicept description via mixed-norm reg-
ularization for large scale semantic image search”(CVPR2011),
where our main contribution focused on the local Vicept gen-
eration. However, in this paper, we focus on the whole Vicept
framework in a global view. A summary of the main difference
is as follows: 1) For the problem of visual polysemia and con-
cept polymorphism, a clear motivation and intuition behind our
proposed approach is described in Section I, and state-of-the-art
related works is also added in Section II. 2) A deep analysis on
the Vicept mechanism is done in Sections IV and V. Also the
benefit of using mixed-norm regularization into the Vicept is
presented in Section IV-C. 3) A new subsection (Section V-A) is
added to formulate the image (or partial image) Vicept represen-
tation procedure, which provides a Vicept computing method
from local to global. 4) A novel distance measurement for hi-
erarchical Vicept representation is proposed based on multi-
level separability analysis (Section V-B). 5) For each task in
the experimental section, more state-of-the-art approaches are
implemented as the baseline to validate the performance of our
approach. Besides, more experimental analysis is presented in
depth.
The rest of this paper is organized as follows: Section II gives

an overview of previous related work. Section III introduces the
visual appearance representation methods. Section IV presents
the hierarchical Vicept description and details the learning
procedure of Vicept under the mixed-norm regularization.
Section V introduces the image representation based on the
Vicept and its similarity measurement. Section VI presents the
experimental results of different image applications on both the
standard benchmark and a large-scale image database. Finally,
Section VII concludes this paper.

II. RELATED WORK

After presenting the problem of visual polysemia and con-
cept polymorphism, we present the related work to provide a
further comprehensive discussion about the large-scale image
semantic understanding. In this section, we firstly discuss the
state-of-the-art image representation model in large-scale image
applications, and then introduce recent machine learning ap-
proaches on image understanding.
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Traditional global features such as color and texture only
capture parts of visual characteristics, and thus they usually
cannot be directly correlated with image semantics. In most
cases, semantic exists in the various scales and locations within
an image. On noticing this, researchers try to detect image
concepts based on local descriptions. Many significant works
have been proposed to address the problem of large-scale image
understanding. The de-facto standard in these works is based on
the BOV model [18]. The BOV approach has been ameliorated
in the following four ways: 1) Local descriptor aggregation
techniques. Bronstein et al. [2] construct a spatially-sensitive
image descriptor in which both the features and their relations
are affine-invariant. Perronnin et al. [16] propose a simple yet
efficient way of aggregating local descriptors into a vector of
limited dimension inspired by the Fisher kernel representation.
In all, the main aim of these works is to generate a discriminative
and compact description with spatial information for further
image applications. 2) Discriminative codebook generation
methods. Sivic and Zisserman [18] originally propose to cluster
the low-level features into codebooks with the k-means algo-
rithm.Nister et al. [27] quantize the local region descriptors with
hierarchical k-means in a vocabulary tree, which allows a larger
and more discriminative vocabulary. Philbin et al. [17] improve
the visual vocabulary with approximate k-means algorithm.
Jurie and Triggs [8] propose a scalable acceptance-radius based
codebook clustering method that can generate better codebooks.
Marial et al. [31] raise an online codebook learning scheme for
sparse coding.Germert et al. [22] learn the codebookwith kernel
method. Codebook generated by learning approaches has lower
noise than that generated by clustering, and thus researchers are
paying more attention to the related learning methods. 3) Effi-
cient quantization techniques. Nearest neighbor algorithm is
the most commonly used method for quantization. Besides this,
Jégou et al. [14] propose a hamming Embedding technique to
provide binary signatures for visual words matching refinement.
Torralba et al. [9], [11] construct a small code to compress the
BOV. Recently, sparse coding is applied to find a succinct set
of codeword from the dictionary to efficiently represent visual
descriptors [3], [23], [15], and sparse representations have
obvious computational benefits of saving both processing time
in handling visual descriptors and space in storing encoded
images. Gemert et al. [22] demonstrate explicitly that modeling
visualword assignment ambiguity improves search performance
compared to the hard assignment of the traditional codebook
model. 4) Post-processing techniques. Chum et al. [24] bring
the query expansion idea into the text retrieval literature into the
visual domain via spatial constraints and learn a latent feature
model. Weak geometric consistency constraints [17] are also
widely used in the post-processing phase. Post-processing plays
an important role in improving the performance. Although the
above techniques provide feasible solutions to some extent, how
to find the semantic information from the local description is
an important challenge due to the VPCP problem. In fact, local
visual description such as SIFT [32] is able to keep elementary
semantic information due to consideration of local salient
and invariant information. Therefore, local description can be
used as the basic visual unit to construct the visual-semantic
relations under the large-scale environment.

Recently, machine learning approaches have received a lot of
attention on the image understanding tasks, such as face recog-
nition [6], image annotation [13], [25], image classification [1],
[33], [28], object recognition, and scene understanding [12],
[19], [29]. Weinberger and Saul [33] study how to improve
large margin nearest neighbor classification by distance metric
learning method. Boiman et al. [1] suggest an Image-To-Class
distance metric learning method for image classification by
learning per-class Mahalanobis metrics. Qi et al. [28] develop
an approach for cross-category transfer learning for a visual
classification task. Sadeghi and Farhadi [29] introduce visual
phases as categories to recognize the object and understand
the scene. Bucak et al. [30] develop an efficient algorithm for
multi-label multiple kernel learning (ML-MKL) to recognize
the visual object. These works provide insights on learning
image semantics, but the problem of VPCP has not been
directly resolved, especially under large-scale dataset. Some
works focus on dealing with intra-class variance of images
while ignoring the polysemia of visual appearances. Some
works pay attention to learning the visual pattern of different
concepts; however, they neglect the influence of semantic
polymorphism.
To specifically solve the VPCP problem, this paper proposes

a hierarchical semantic description—Vicept, which constructs
the connection between visual appearance to semantic concepts.
In the following sections, we will introduce the generating pro-
cedure of Vicept in detail: 1) visual appearance representation;
2) hierarchical Vicept learning.

III. VISUAL APPEARANCE REPRESENTATION

Visual appearance representation is one of the crucial steps in
the BOVmodel and it is also the precondition of learning the Vi-
cept. In this section, wewill introduce several different methods,
and explain the reasons of using the group sparse coding in our
scheme.

A. Vector Quantization (VQ)

In the traditional BOV approach, every visual descriptor is
encoded by k-means vector quantization. Let be a set of
local visual descriptors in a -dimensional feature space, such
as SIFT [32], i.e., . The VQmethod
applies the k-means clustering algorithm to minimize the con-
struction error:

(1)

where includes cluster centers,
which is called dictionary, and each cluster center is regarded as
a visual word. depicts the -norm of vector. The optimiza-
tion problem can be re-formulated into a matrix factorization
problem with cluster membership indictors

(2)
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where is a cardinality constraint, meaning that only
one element of is nonzero, means that all the ele-
ments of are nonnegative, and is the -norm of the
vector, the sum of the absolute value of each element in .
After the optimization procedure, the index of the only nonzero
element in indicates which visual word the belongs to.
However, the constraint may be too rigorous,

often giving rise to a coarse reconstruction of . We relax the
constraint by putting a -norm regularization on , which
enforces to have a small number of nonzero elements. Then
the VQ formulation is turned into another problem known as
sparse coding (SC [3], [23], [31], [34]):

(3)

The first term of the objective weighs the reconstruction error
and the second term weighs the degree of sparsity. The larger
the parameter is, the sparser the reconstruction coefficient is.
Sparse representations have obvious benefits, by economizing
both processing time in handling visual descriptors and the
storage space in encoding image descriptors.

B. Group Sparse Coding (GSC)

The sparse code approaches based on -norm regularization
consider each visual descriptor in the image as a separate coding
problem and do not take the fact into account that descriptor
coding is just an intermediate step in creating a BOV represen-
tation for the whole image. This might prevent the use of these
methods in real large-scale image applications, which are con-
strained by either time or space resources. Thus, considering
the structure of BOV in images, we encode jointly all the visual
descriptors in an image by instead putting the -norm reg-
ularizer [35]–[37]:

(4)

where and are non-
negative vectors and is the
reconstructionmatrix, is the total number of visual descriptors
in the image.
Using the sparse coding with the -norm regularizer, we

can for example specify an encoder that exploits the fact that
once a visual word has been selected to help represent one of
the visual descriptors of an image, it may as well be used to rep-
resent other visual descriptors of the same image without much
additional regularization cost. Similar to SC, GSC has an en-
coding phase and a dictionary learning phase. In the encoding
phase, for each image represented as a descriptor set , the GSC
code is obtained by optimizing (4) with respect to the dictio-
nary only. For improving the accuracy of encoding, the dic-
tionary usually needs a further refinement, which is also called
“dictionary learning”. In the dictionary learning phase, the new
is obtained by current and its corresponding code . After

Fig. 6. Bipartite graph for local visual appearance set versus concept collection.

several alternations between these two phases, we can obtain a
discriminative and compact dictionary.
We choose GSC to derive image representations because it

has a number of attractive properties: 1) Compared with the VQ
method, GSC can achieve a much lower reconstruction error
rate due to the less restrictive constraint; 2) Sparsity allows
the representation to be special, and to capture salient proper-
ties of images; 3) Research in image statistics clearly reveals
that image patches are sparse signals; 4) Compared with the SC
coding, GSC can obtain the sparse representation at the level of
image rather than descriptor.

IV. VICEPT GENERATION

As mentioned above, Vicept builds the bridge between visual
appearances and semantic concepts. In other words, we aim to
provide a method which binds “visual word-semantic concept”
together as well as takes the VPCP problem into account. In this
section, we first formulate the problem, and then present a care-
fully prepared training image dataset. Finally, we detail the ap-
proach for generating the bottom-level Vicept and constructing
the Vicept description with hierarchical semantic concepts.

A. Image Vicept Description

The observation of VPCP problem motivates us that the rela-
tionship between concept collections and visual appearance
set can be formalized as a bipartite graph, which is illustrated
in Fig. 6, where K is the number of visual appearances and M
is the number of concepts. The relationship indicates the
relationship between the th visual appearance and the th con-
cept. To efficiently make use of this structure, we design Vicept
with the following details:
1) Local Visual Appearance: We adopt local descriptor to rep-
resent image. In our approach, SIFT [32] is detected and
quantized into visual words by group sparse coding.

2) Semantic Concept Collection: The concepts in real world
are not independent but closely related. Following the
structure in [5] and [38], we simplify the concept mod-
eling with a hierarchical representation and all the concepts
are organized in a concept tree. We detail this concept
collection in the next subsection.

Before learning the Vicept description, a short interpretation
is presented as follows. Suppose having a dictionary with
visual words and a hierarchical concept collection with
concepts, a membership distribution can be learned between
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Fig. 7. Example images in the dataset.

each visual word and concept collection. In a Vicept word, each
visual word has a corresponding -bin membership distribu-
tion histogram with concept collection . Each Vicept consists
of two parts: one is the original visual word, and the other is the
corresponding -bin membership distribution histogram. Fi-
nally, we can obtain a Vicept dictionary according to the visual
dictionary .

B. Image Training Dataset and Concepts

As [5] declares, “a large-scale ontology of images is a critical
resource for developing advanced, large content-based image
search and image understanding algorithms.” ImageNet [5] is
the largest clean image dataset available to the vision research
community. We use it as the source of our dataset by searching
the concept names and downloading the returned images ac-
cording to their URLs. Fig. 7 provides some example images
in our dataset.
The concept collection in our dataset is organized by a se-

mantic hierarchy which is used by ImageNet. However, to en-
sure enough training images and for the sake of limited compu-
tation capacity, we manually filter the concepts with less than
1 k images returned by ImageNet and select a frequently used
collection with 217 concepts. In all, there are altogether 267 k
images in our dataset and we use a simple 3-level concept struc-
ture: 10 concepts on level-1, 88 on level-2, and 217 on level-3.
Note that we maintain an “Is-a” relationship between different
concept levels and only the concepts at the same level are inde-
pendent and comparable.
Although ImageNet offers clean image annotation, the gener-

ation of concept labeled local features is also “unclean”. This is
because the interest points are generated from both of the fore-
ground and background. Supposing there is an image about a
man using a cup to drink water, once the image is related with
concept “cup”, the local features generated from the man’s area
are also label as “cup” which is not expected in our approach.
On noticing this fact, we try to “purify” the dataset by man-

ually segmenting the image and eliminate the irrelevant areas.

Fig. 8. Examples for image matting.

Balancing the workload for image matting and the data require-
ment in this task, we prepare a subset of the original 260 k image
dataset with 120 “purified” images in each concept. This subset
contains 120 217 one-concept-labeled images and it is only
used for generating Vicept words. Fig. 8 illustrates the result for
the “purification” of images, which bring the reliability and ro-
bustness for the Vicept learning.

C. Learning Vicept Word via Mixed Norm Regularization

Vicept is to present the characteristic/typical relationship be-
tween visual appearances and hierarchical semantic concepts. In
fact, this relationship is structurally sparse in the practical situ-
ations: one visual appearance normally has the correlation with
some limited concepts and one semantic concept usually has the
limited visual appearances. Taking this structural sparsity prop-
erty of Vicept into account, we adopt the idea of mixed-norm
regularization in our optimization problem of learning the dis-
criminative Vicept. Let be a group of im-
ages and be the corresponding labels of im-
ages. is relative to the concept collection
with concepts, and is the possibility that the th
concept appears in image . is the cor-
responding reconstruction coefficient related to dictionary .

denotes the Vicept dictionary and is the
number of visual words in . The following objective optimiza-
tion is as follows:

(5)

where is the reconstruction coefficient of the th visual
word for the th descriptor of the th image, and the non-neg-
ative vector indicates the relationship of
the th visual word with concept collection. The first term of the
objective measures the reconstruction quality. The mixed-norm
regularization is the form of -norm [35], [36], which is
presented by the second term of (5) and measures the recon-
struction complesity. It consists of two parts: One is -norm
complexity of , and the other is the -norm sum of . In the
view of Vicept, the mixed-norm regularization helps the Vicept
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achieve the structural sparsity that all the images from the same
concept have the similar sparse Vicept representation, which is
the essential difference with the - or -norm regularization.
The parameter balances the effect of these two terms.
The problem of (5) can be solved by coordinate descent.

Leaving all indices of intact except for index , omitting
fixed argument of the objective, let be the term which does
not rely on and , we obtain the following
reduced objective function:

Next we show how to find the optimum . Let be the first
reconstruction term of the objective, and its partial derivatives
with respect with to each are

Let us make the following abbreviation for a given index :

where . In this case of , the objective
function is isolated and we can get the following sub-gradient
condition for optimality:

(6)

Since , the above sub-gradient condition for op-
timality implies that when and otherwise

.

For , indicating , the gradient of
with the -norm penalty is as follows:

(7)

At the optimum, the value of the gradient should be equal to
zero, thus we obtain

(8)

Let is the scale. We can rewrite (8) as follows:

(9)

which infers that

(10)

Because should be a non-negative, we get that if
; otherwise and is defined as (10). Finally,

we can obtain the Vicept dictionary via above recursions.

D. Building Vicept With Hierarchical Concept Membership
Distribution

Following the structure [5], concept collection is organized
into a hierarchical tree. Based on the above learning, we obtain
the bottom-level Vicept. In this paragraph we show how to es-
tablish the high-level concept memberships.
One basic approach is to bottom-up construct the multi-level

histograms using “Is-a” relationship. That is, to sum the low-
level concept membership distributions and obtain the higher
one. However, as the density of the bottom-level concepts is
not high enough (of course we cannot cover all the concepts
in real world, in fact we only select 217 bottom-level concepts
in this paper), the imbalance of the concept selection restricts
the performance for high-level histogram generation. Fig. 9 de-
tails an example. According to the low-level histogram, the Vi-
cept word is closely related with concept “apple” (0.4) and we
further infer that the Vicept word may have a high possibility
belonging to the concept “fruit” on high-level histogram. Nev-
ertheless, because of the imbalance of the concept selection (6
concepts belong to animal but only 2 belong to fruit on low-level
histogram), the Vicept word is more closely related to concept
“animal” on high-level histogram and this error could be accu-
mulated when calculating higher level histograms. In that case,
rather than simply summing the bins that belong to the same
high-level concept, we should assign large weights to the bins
with large bin value. In fact, we implement this by adopting sig-
moid function and normalize the sum of high-level histogram
into 1. We implement this by adopting sigmoid function and
normalize the sum of high-level histogram. The weight for
the th bin is calculated by the value of itself:

(11)
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Fig. 9. Imbalance of the concept selection restricts the performance for high-
level histogram generation.

Finally, we obtain a complete Vicept dictionary, where
each Vicept word has a visual word with multi-level concept
membership distribution histograms. Fig. 4 illustrates a typical
Vicept word.

V. IMAGE VICEPT REPRESENTATION AND

SIMILARITY MEASUREMENT

Through the learning from the above section, we can obtain
the Vicept description. In this section, we formulate the image-
level Vicept representation procedure, which provide a Vicept
computingmethod from local to global. Moreover, we introduce
the distance metric for hierarchical Vicept representation based
on multi-level separability analysis.

A. Image Vicept Representation

We aim to represent image (or part of the image for tasks such
as partial annotation) into a concept membership distribution
histogram in which the larger bin value denotes the higher prob-
ability of concept existence. In fact, we use the same multi-level
concept structure with Vicept words as our image representation
and this can be implemented by

(12)

denotes the n Vicept words generated by
Section IV-C. is the input image (or partial image) and is
the th concept. The multiplicand at the right side

can be directly accessed according to the Vicept word ; the
multiplicator can also be solved by counting visual
words in the image. For a certain image, firstly we detect its
interest points (SIFT), then encode them into sparse code ac-
cording to the visual vocabulary generated in Section III-B.
Thirdly we quantize them into Vicept words according to
the Vicept vocabulary generated in Section IV-C. Finally, the
image is represented as multi-level concept membership distri-
bution histograms by (12). Note that our approach has already
embedded semantic information into the Vicept description,
after detecting the interest points, the multi-level histograms
directly depict the existence probability for the semantic con-
cepts. Fig. 5 illustrates a typical (partial) image represented
by multi-level histograms according to Vicept. According to
the bin values of the multi-level histograms at the left bottom,
the image is likely to contain concept: “horse” (on level-3),
“mammal” (on level-2), and “animal” (on level-1). Further, if
the input is a partial image (areas in the red rectangle), we can
also obtain the concept-level image representation by Vicept
description.

B. Image to Image Distance Based on Vicept

After generating the image-level Vicept representation,
similarity measurement is another crucial question for fur-
ther application. According to Vicept description, image is
represented as multi-level concept membership distribution
histograms (Fig. 5). Intuitively, we cannot concatenate the
histograms into one and calculate the classical histogram
distances (e.g., Euclidean distance, cosine distance, histogram
intersection, chi-square distance, Minkowski-form) because the
concepts at different levels are incomparable and with different
discriminative powers. To measure the distance between two
images, we first compute the distance of histograms on the
same level and then fuse the results together by separability
analysis.
We use weighted chi-square distance to measure the distance

between histograms at the same level of Vicept. For -bin his-
togram and , the distance is defined as

(13)

where the weight reflects the importance of and . In-
tuitively, if both and are large, the two images are
closely related with the concept in the th bin, and we should
assign a high weight value; otherwise, we assign a low weight.
Here, is adopted as the weighting function.
In our approach, the weight for each level of Vicept is learned

by Fisher linear discriminant [39] which aims to achieve high
separability between different patterns. It is generally believed
that the similarities of images from the same concept are higher
than those from the different concept. Therefore we define and
calculate the inter-concept and intra-concept statistics.
Suppose there are levels histogram in the image Vicept rep-

resentation. Without loss of generality, the th level is composed
by concepts . For concept ,
we have images in our dataset.
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Intra-concept mean for the th level:

Intra-concept variance for the th level:

Inter-concept mean for the th level:

Inter-concept variance for the th level:

Finally, the weight for level is defined as

By learning the intra-concept and inter-concept distances for
the images in our dataset, we find the best projection direction
to fuse multi-level histograms of Vicept. The distance between
image and is calculated with level weighting by the fol-
lowing equation:

where is the weight for level and are the Vicept de-
scription of and on the th level, and is calculated
by (13).

VI. EXPERIMENTS

As a visual description closely integrated with semantic con-
cepts, Vicept is recommended to be adopted in semantic related
applications. In this section, we first introduce the experimental
settings and then verify the validation of Vicept in three se-
mantic related tasks: large-scale semantic image search, image
annotation and semantic image re-ranking.

A. Database and Experimental Setting

Database:We use ImageNet [5] as the source of our training
dataset, which is organized by a semantic hierarchy which is
used by WordNet and ImageNet. We select a frequently-used
collection with 217 low-level concepts and there are 267 k
images (later referred to as ImageNet267K). We use a simple
3-level concept structure: 10 concepts on level-1, 88 concepts
on level-2, and 217 concepts on level-3. There is a detailed in-
troduction about the multi-level image dataset in Section IV-B.
This subset contains 120 217 one-concept-labeled images
(later referred as ImageNet25K). Another standard benchmark

(Corel5K) is used in our experiment, which is based on the
Corel image database [41] from 50 Corel Stock Photo CDs
and consists of 5000 images. Furthermore, we use an addi-
tional set of 800 k distracter Flickr images (later referred to as
Flickr800K).
Experimental settings: Vicept is learned from the Ima-

geNet25K dataset. The SIFT description is extracted as the
local visual appearance. The initial dictionary has 4056 visual
words, which were obtained from the hierarchical k-means
clustering. A new dictionary with 473 visual words is generated
through group sparse coding, which is detailed in Section III-B.

B. Large-Scale Semantic Image Search

Incorporating with the BOV approach, Vicept builds the
bridge between visual words and semantic concepts. In this
paragraph, we validate its efficiency on a large-scale dataset,
which consists of 1M images (ImageNet267K and Flickr800K).
Baseline: We use a traditional BOV approach [27] as the

baseline approach and a dictionary of 200 K visual words is
used.We experimented with different size of visual word dictio-
nary, and found 200 K dictionary to give the best performance.
Comparisons: We also enhance the baseline method with

soft assignment [20], where the number of nearest neighbors
is set to be 4. We call this method “Soft BOV”. A state-of-
the-art descriptor-VLAD (vector of locally aggregated descrip-
tors) [10], which derived from both BOV and Fisher kernel, is
compared with our method. Here, we use the same parameter
as [10]: the cluster centroids is 128, and the final dimension
is 16 384. The Vicept-based approach has two variants: 1)

“ -vicept”, in which we set as the norm penalty in (5).
2) “ -vicept”, in which is set to be 2 in (5). The param-
eter impacts the structural sparsity of Vicept. The larger it
is, the sparser the Vicept is. This sparsity saves the processing
time and storage space, but the performance decreases rapidly
when the Vicept is too sparse. Thus, as the experiment set-
ting of [40], we set for and for

. As to the similarity measurement between image repre-
sentations based on Vicept, two methods are compared: 1) fol-
lowing [40], we simply compute a weighted histogram intersec-
tion for the level-3 membership distribution. We mark this sim-
ilarity measurement method “HI”; 2) we measure the distance
between images using the novel method, which is represented
in Section V-B and is called “FisherWeight” for short.
In the evaluation, we select 250 representative images from

the ImageNet267K as our queries. We use mean average preci-
sion (MAP) as our evaluation metric. For each query image, we
compute its precision-recall curve and count the area below the
curve. Finally, we take the mean value over all queries.
Fig. 10 compares the above seven approaches with MAP,

leading to five observations. Firstly, our Vicept significantly im-
proves the MAP, as can be seen by comparing the results with
“baseline”. On the 1 M image dataset, the methods based on
the Vicept boost the MAP from 0.09 to 0.49, a 40% improve-
ment. Secondly, soft assignment of visual words plays an im-
portant role in improving the performance (a 20% improvement
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Fig. 10. Comparisons of different methods using MAP with different scale of
image dataset.

on average). This point is also demonstrated in [22]. Thirdly,
when the number of images is under 0.5 M, the MAP of our
approach is comparable with that of VLAD [10]. The good per-
formance of our method attributes to the reason that we take the
VPCP problem into account when designing the Vicept schema.
However, when the number of images is about 1 M, the VLAD
performance descends rapidly with a 10.43% rate while our
“ -vicept” method has only a 9.27% descending rate. The
slow performance descent of our method demonstrates that our
method is less sensitive to the increment of the dataset scale
compared with the VLADmethod. Fourthly, the “ -vicept”
method reaches a higher MAP than the “ -vicept”. One main
reason is that the Vicept learned via -norm regularization
is structural sparser, which allows the representation to cap-
ture salient properties of relations between visual appearances
and semantic concepts. Fifthly, for both -vicept and -vi-
cept, the new distance metric has a better performance, which
attribute to the fact that the learned weights by Fisher linear
method can capture the discriminative power of concepts at the
different levels.

C. Image Annotation

To evaluate the performance, Vicept is evaluated on the Ima-
geNet267K and one standard benchmark (Corel5K).
1) Image Annotation on Imagenet267K: Three different ap-

proaches are implemented as baseline for Image Annotation,
1) Binary SVM [43]: For Binary SVM, we prepare 217 bi-
nary SVM classifiers with an output of classification proba-
bility. In the training phase, for every SVM concept classifier,
we pick 100 positive samples and 200 negative samples from
ImageNet25K. 2) Tiny Image voting [9]: For the Tiny Image
voting, we replicate the experiment described in [9]. Firstly, the
query image and the images in 267 K dataset are down sam-
pled to 32 32. Then 100 nearest neighbors for the query are

Fig. 11. Comparisons of different annotation methods with AP over the
ImageNet267 K database: “BSVM”, “TinyImage”, and “SML” is the baseline
approach; “Vicept” is the approach based on the -vicept.

returned based on SSD pixel distance. Finally, we obtain the
concept by aggregating the votes. 3) Supervised Multiclass La-
beling (SML) method [7]: Following [7], we represented im-
ages as bags of localized features and Gaussian mixture model
(GMM) of 64 components is learned from each mixture.
The accuracy is measured as the average precision (AP) aver-

aged over the 100 queries from 10 concepts. For an image, each
approach provides a top-5 annotation. If one of the five labels is
correct, this annotation is valid.
Fig. 11 illustrates the average precision for four approaches.

We can find that Vicept provides a better concept annotation re-
sult than BSVM, TinyImage, and SML for most of the query
images. However, TinyImage has the best performance on the
“nut”, because the diversity of images in “nut” is slight and in
this situation the nearest neighbor is reilable. Besides, benefit-
ting from the GMM, SML has the better annotation result than
Vicept on the “willow”. In the view of Vicept, the fluctuations on
concept “nut” and “willow” are likely to be influenced by small
number of training data for Vicept learning. But the 47.1%mean
AP of Vicept seems to be satisfactory in this annotation task.
2) Image Annotation on Corel5k: Corel5K [41] has become

the benchmark for image annotation, which contains 5000 im-
ages with 260 concepts.We find that the concept collection from
Vicept covers most of the major keywords. In this paragraph, we
complement the annotation task with the Vicept learned from
ImageNet25K.
The baseline is Binary SVM [43]. Similar to the above proce-

dure, we train 260 binary SVM classifiers with an output of clas-
sification probability. In the training stage, we split the Corel5K
into a training set of 4000 images, a validation set of 500 im-
ages, and a test set of 500 images. Another comparison approach
is the supervised multiclass labeling (SML) method [7]. Fol-
lowing [7], images are represented as bags of localized features
and GMM of 64 components is learned from each mixture.
AP is used as the evaluation metric. To have a fair evalua-

tion, we select 10 keyword concepts, which are included by the
concept set of Vicept. For each keyword, 8 representative im-
ages are picked from the test data. During the annotation, we
judge the validation of each annotation if one of its top-3 labels
is correct.
Although our Vicept was not trained on the Corel5K dataset,

the mean average precision of our proposed method is compa-
rable to the “BSVM” [43] and SML [7], with a 1.8% and 2.1%
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Fig. 12. Average precision comparisons of three annotations on Corel5K.

difference. For the “bear”, “cat”, and “grass” class, the annota-
tion performance of our method has a degradation due to the fact
that the test images from the Corel5K have a great difference
with our training images from ImageNet25K. The feasible so-
lutions of this problem are 1) to increase the number of training
data and choose diverse training images for one class; 2) to en-
large the concept set in the Vicept learning procedure. The result
in Fig. 12 shows that Vicept has potential to be used without re-
lying on any outside information. Thus we could have a coarse
annotation for large/web scale image datasets, such as Flickr
and ImageNet, when the concept set of Vicept covered most
concepts in our daily life. Benefiting from this point, we would
have some significant expansions on these dataset. For users,
they can search interesting images with mature text retrieval
technology. For researchers, they can study image re-tagging
technology [42], [44] to obtain better label results.

D. Semantic Image Re-Ranking

Image re-ranking is to re-rank the images returned by text-
based search engines according to their visual appearances to
make the top-ranked images more relevant to the query. Based
on the Vicept, we propose a novel image re-ranking model: Vi-
ceptRank, which can be considered as distinguishing the se-
mantic concept of the returned images from search engines and
re-ranking the images based on the semantic relevance with the
identified concept.
In our experiment, we submit 50 text queries to Google Image

Search; we crawl 1000 images for each query and score the
graded relevance of the returned results with the query text. The
first image of each category from Google Image is regarded as
the query image. Our baseline is VisualRank [45], which com-
putes the visual similarities between images and leverages the
algorithm similar to PageRank to re-rank the images.
Normalized discounted cumulative gain at top

is adopted as the evaluation metric. nDCG is a normalized ver-
sion of DCG metric. Two assumptions of DCG metric are: 1)
highly relevant results are more useful when appearing earlier
in a result list; 2) highly relevant results are more useful than
marginally relevant ones, which are in turn more useful than ir-
relevant results. is calculated by

(14)

Fig. 13. Performance of semantic image re-ranking with .

TABLE I
AVERAGE TIME BY VISUALRANK AND VICEPTRANK FOR

RE-RANKING AN IMAGE

where is the score that represents the relevance given to the
retrieved image at position is a normalization term derived
from the perfect ranking of top images.
Fig. 13 shows the experimental results. We find that both

VisualRank and ViceptRank outperform the Google search by
40%, which demonstrates the fact that image re-ranking tech-
nique can substantially improve the performance. Although our
method is not as good as VisualRank in the performance of
top-10 in the re-ranked images, our proposed ViceptRank out-
performs the VisualRank by 10.1% in the overall performance.
The imperfection lies in the fact that human are instinctive to
score higher to visual similarity than semantic similarity while
the similarity in our approach is measured based upon the con-
cept membership distribution.
Besides the obvious improvements on , it is nec-

essary to point out that ViceptRank approach is also efficient.
Table I shows the average time of re-ranking an image by Vi-
sualRank and ViceptRank. The above experiments are carried
out on a laptop with 2-GB memory and 2-core 2.10-Ghz pro-
cessor. Our method is faster than “VisualRank” with about 6
times. The low efficiency of VisualRank is mainly rooted in
the expensive image pair similarity computation based on SIFT
and LSH. However, in ViceptRank, images are represented with
multi-level concept membership distribution, which is sparse
representation and easy to compute. In short, the ViceptRank
approach shows significant advantages on both accuracy and ef-
ficiency over the VisualRank.

VII. CONCLUSION

There is a saying “A picture is worth a thousand words.” In
this paper, we propose a new perspective to interpret an image
into its “semantic words” (concept). A Vicept description is in-
troduced to characterize the membership distribution between
visual appearance and concepts. The mixed norm regularization
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is adopted in our optimization problem for learning the mem-
bership distribution, which is effective for obtaining a discrim-
inative Vicept with structural sparsity. Further, to aim at the hi-
erarchal structure of Vicept, a distance metric is introduced to
measure the similarity. Vicept approach provides fast computa-
tion, compact expression, and local-to-global description, and
thus can be implemented for large-scale web applications.
The scalability of Vicept is restrained on the web-scale image

dataset because our Vicept learning algorithm works well on the
purified image dataset. Although our training set has 217 fre-
quently-used concepts in our daily life, web-scale image dataset
has thousands of concepts. For such large scale, the work of
preparing the training images will be a tremendous task. In the
future, we will focus on two tasks: 1) to improve the learning
algorithm to obtain more powerful Vicept descriptions; 2) by
making use of multi-features co-occurrence, to introduce novel
approaches of learning Vicept, which do not depend on this pu-
rified image training dataset.
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