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Automatically locating facial landmarks in images is an important task in computer vision. This paper pro-
poses a novel context modeling method for facial landmark detection, which integrates context constraints
together with local texture model in the cascaded AdaBoost framework. The motivation of our method lies
in the basic human psychology observation that not only the local texture information but also the global
context information is used for human to locate facial landmarks in faces. Therefore, in our solution, a
novel type of feature, called Non-Adjacent Rectangle (NAR) Haar-like feature, is proposed to characterize
the co-occurrence between facial landmarks and its surroundings, i.e., the context information, in terms of
low-level features. For the locating task, traditional Haar-like features (characterizing local texture informa-
tion) and NAR Haar-like features (characterizing context constraints in global sense) are combined together
to form more powerful representations. Through Real AdaBoost learning, the most discriminative feature set
is selected automatically and used for facial landmark detection. To verify the effectiveness of the proposed
method, we evaluate our facial landmark detection algorithm on BioID and Cohn-Kanade face databases. Ex-
perimental results convincingly show that the NAR Haar-like feature is effective to model the context and our
proposed algorithm impressively outperforms the published state-of-the-art methods. In addition, the gen-
eralization capability of the NAR Haar-like feature is further validated by extended applications to face detec-
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tion task on FDDB face database.
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1. Introduction

Automatically locating facial landmarks in images is an important
task in computer vision. It is useful for various practical applications,
such as face recognition, facial attribute analysis, and intelligent
human computer interface. Yet, facial landmark detection still re-
mains challenging because the appearance of facial landmarks can
vary a lot due to tremendous variations in pose, lighting, occlusion,
and low quality imaging, etc.

To solve this problem, many methods have been proposed in re-
cent years. One of the most widely used algorithms is the cascaded
AdaBoost framework [1], which has remarkably improved the accura-
cy and efficiency of facial landmark detection. Typically, it is a local
texture-based method, where Haar-like features are used to describe
local textures around the target facial landmark (e.g., mouth corners,
and the corners of the eyes). Based on the extracted Haar-like fea-
tures, a cascaded classifier is built by exploiting AdaBoost learning
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and applied to exhaustively analyze the patches or windows of each
testing image at all positions and at multiple scales. When a patch is
extracted from the testing image, it is classified according to its
local appearance and associated with a detection score. Similar
AdaBoost-based methods can be found in [2,3]. In work [2], 2D cas-
caded AdaBoost framework is used for eye detection, which boot-
straps both positive and negative samples in training stage. In work
[3], a Gabor facial feature point detector (Gabor-ffpd) has been devel-
oped, where GentleBoost is used to learn classifiers and local textures
are extracted by Gabor filters.

Although the local texture-based methods have been quite suc-
cessful, one major drawback of these methods is that sometimes it
is insufficient to distinguish facial landmarks from background by
just exploring the local appearance information. Especially under
complex environment, multiple similar modes in face region maybe
undistinguished, or no matched mode can be detected in case of par-
tial occlusions or image blur. In such situation, it is expected that the
global facial information can be helpful for facial landmark detection.
Actually, in the real world, objects tend to co-vary with other objects
and particular environments (i.e., the context information) [4], and
the visual systems of human and animal use these context constraints
to improve their ability of object recognition. Specifically, taking the
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Fig. 1. Widely used Haar-like features.

(a) (b)

(©)

Fig. 2. Typical examples of traditional and NAR Haar-like features. Figure (a) shows a
typical traditional Haar-like feature, and figures (b), (c), and (d) show typical NAR
Haar-like features.

task of locating left mouth corner as an example, the position of left
mouth corner is not only predicted by local textures around it but
also predicted by other local texture patterns, such as nose and eyes.

Recently, the notion of exploiting context information to improve
facial landmark detection has been increasingly realized [5-8]. For ex-
ample, T. Kozakaya et al. present a weighted vector concentration ap-
proach [5]. They first place regular sampling points in the face region,
and extract local pattern descriptors at each sampling point. Subse-
quently, both the local patterns and geometrical relationship between
the sampling points and the target facial landmark are simultaneous-
ly learned. So, the location of the target facial point is predicted by
local patterns extracted from the sampling points. Similarly, M.
Valstar et al. propose a regression-based method for facial landmark
detection [6]. In this method, each local texture pattern is related
with a vector pointing to the target facial landmark. Regressors are
learned based on these local patterns and vectors. So, the localization
of the target facial landmark is voted by all regressors. In addition,
Markov Random Filed model of all facial landmarks is constructed
to prevent unfeasible predictions. Fink et al. also propose Mutual
Boosting to incorporate context information to augment the detection
of facial landmarks [7]. They train AdaBoost-based detectors for mul-
tiple facial landmarks in parallel. For each detector, the remaining

intermediate detectors are used to enrich the weak learner set. Addi-
tionally, “auto-context” algorithm is proposed to learn an effective
and efficient context model, together with an image appearance
model [8]. It integrates the local image appearance model with the
context information by learning a series of classifiers. The first classi-
fier is trained to assign each pixel a confidence and produces a classi-
fication map for each image. Then, in the later stage, local texture
features and context features extracted from the classification map
are used to train classifiers.

In the above-mentioned context constrained methods, the context
information is either modeled based on the classification map or
densely extracted within the face region in detection stage. Different
from these methods, this paper proposes a simple but discriminative
feature to model the context. Essentially, it is a generalization of the
widely used Haar-like features. We remove the constraint that the
rectangles of Haar-like feature must be adjacent. In this case, it can
model not only the short range but also the long range co-
occurrence relationships of local texture patterns. To differentiate
from the traditional Haar-like features, the proposed feature is
named as Non-Adjacent Rectangle (NAR) Haar-like feature. The
most significant advantage of the NAR Haar-like feature is that it
can model the co-variation relationships of local textures implicitly
by the co-occurrence of local texture features. For example, if we
want to represent the co-occurrence relationship of left mouth corner
and nose tip, it is convenient by using two separate rectangles which
centered on left mouth corner and nose tip respectively. Although it's
obvious that this feature represents the co-variation relationship of
left mouth corner and nose tip in semantic level, it just represents
the lighter or darker pattern of local textures in feature level. It
must be pointed out that similar features were mentioned in [15]
for face detection, but without details and experimental validations.
More importantly, it is not designed for context modeling as in this
work.

In our method, we try to combine the traditional Haar-like feature,
which can characterize the local texture information, with the pro-
posed NAR Haar-like feature to form a more representative feature
set. Among this huge feature set, the most discriminative features
are selected automatically through Real AdaBoost learning. In addi-
tion, with the computation advantage of integral image, the Non-
Adjacent Rectangle (NAR) Haar-like feature can also be extracted ef-
ficiently. We evaluate the effectiveness of the proposed algorithm
and the context modeling capability of the NAR Haar-like feature on
BioID [9] and Cohn-Kanade [10] face datasets with respect to facial
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Fig. 3. Sketch map of classifier learning procedure with both traditional and NAR Haar-like features.
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Fig. 4. Sketch map of our facial landmark detection procedure.

landmark detection task. Experimental results demonstrate that the
proposed method is promising and outperforms many published
state-of-the-art methods.

To verify the generalization capability of the NAR Haar-like fea-
ture, we further apply it to model context for face detection task. In
addition, we deeply investigate the capability of the NAR Haar-like
feature to characterize the local texture for face detection. Experi-
ments conducted on the FDDB face dataset [11] convincingly show
that the proposed NAR Haar-like feature generalizes well to model
context for face detection, but just a slight improvement is obtained
when the NAR Haar-like feature is used to model the local texture in-
formation for face detection. So, the proposed NAR Haar-like feature
is more suitable to model context information.

This paper is an extension of our previous conference work [12]. In
this extension work, we further validate the generalization capability
of the NAR Haar-like feature to model the context for face detection.
The remaining part of the paper is organized as follows. Section 2 in-
troduces the proposed NAR Haar-like feature and the procedure of
classifier learning. Sections 3 and 4 are the evaluations of our algo-
rithm on facial landmark detection and face detection tasks respec-
tively. Detailed experimental results and analysis are also given in
these two sections. Section 5 concludes the paper.

2. Non-Adjacent Rectangle (NAR) Haar-like feature for context
modeling

2.1. Haar-like feature and other local features

Haar-like feature [1] is a typical local texture descriptor, which
measures the average intensity differences of the adjacent rectangle
regions. Fig. 1 illustrates the widely used Haar-like features. Wealth
of information, such as the intensity gradient at different locations,
spatial frequencies and directions, can be captured by Haar-like fea-
tures when we change the position, size, shape, and arrangement of
rectangular regions. In literature [1], Viola and Jones use three kinds
of Haar-like features to detect faces with very high efficiency. Howev-
er, traditional Haar-like features are too simple and show some limits
[13]. To enhance the capability of Haar-like features, many kinds of
variations have been proposed, such as joint Haar-like feature [13],
rotated Haar-like feature [14], and block difference feature [15].

Besides, many other types of local features are proposed to character-
ize the local appearance information of image patches, such as Gabor
wavelet [16], SIFT [17], HOG [18], LBP [19], WLD [20], LAB [21], etc. In
some specific applications, these features show good performance. For
example, SIFT feature performs well in object matching and recognition
area due to its invariance to scaling and rotations [22]. And the Gabor
wavelet is widely used in image analysis applications, including texture
classification, image registration and face recognition, etc.

However, the above-mentioned features are all local texture de-
scriptors in essence. They can only characterize local texture informa-
tion, while ignoring the facial context information.

2.2. NAR Haar-like feature

In local texture-based methods, features are usually extracted with-
in a local image patch. As for the context constrained method, a larger
region should be defined to include the context information. In order
to characterize the co-variation relationship of the local image patch
and its context, we generalize the traditional Haar-like feature by
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Fig. 6. Facial landmark detection results on BiolD database, including four eye corners and two mouth corners.

removing the constraint that the rectangles of Haar-like feature must be
adjacent. In our following experiments, we constrain one rectangle of
the NAR Haar-like feature within the local image patch and the other
rectangle lies in the whole context region. So, it can model the long
range co-occurrences of local texture features within the local image
patch and the context region. For example, if we want to locate left
mouth corner in the face region, usually we perform “sliding-window-

search” detection within the face region. For each window, traditional
Haar-like features are extracted within it, as shown in Fig. 2 (a).

As an extension of the traditional Haar-like feature, the NAR Haar-
like feature is characterized by separated rectangles in the face re-
gion, where one rectangle is extracted within the sliding window
and the other lies in the normalized face region (i.e., the context re-
gion), as illustrated in Fig. 2 (b), (c), and (d). The constructed
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Fig. 8. Percentage of two different features in “Context w NAR” algorithm.

nonadjacent rectangles describe the co-variation relationships be-
tween the target facial landmark and other facial textures.

The computation of the NAR Haar-like feature is similar to tradi-
tional Haar-like feature. The output value of the NAR Haar-like feature
can be computed by the following formula:

n

output =~ brec;(j)— zn: wrec(j), 1)
P

i=1

where i brec;(j) is the intensity sum of the pixels within the black
rectang'let i wrec;(j) is the intensity sum of the pixels within the
white rectalnlgle. In addition, the output value of the NAR Haar-like
feature can be calculated rapidly through integral image. Note that
the rectangles must have the same size.

There are two parameters to control the size of the NAR Haar-like
feature space: rectangle size of the NAR Haar-like feature and step
size of feature sampling. Dense sampling or various rectangle size
combinations will generate a huge feature set, which will burden
the training process. So, in real applications, we just allow several
possible combinations of rectangle sizes.

2.3. Classifier learning with the NAR Haar-like feature

It is known that Real AdaBoost is powerful for feature selection
and classifier assembling [23]. So, in our implementation, Real Ada-
Boost is used to automatically select features and learn classifiers for
the facial landmark detection task. Besides describing the local tex-
ture pattern by traditional Haar-like features, the proposed NAR
Haar-like features are introduced to describe the context informa-
tion. Different from “auto-context” algorithm, which extracts context
features from the classification map produced by previous stage

Fig. 9. Top 4 features of the proposed method (i.e., “Context w NAR”), which are select-
ed automatically by Real AdaBoost learning.

Table 1
Localization results on BiolD database.

Method Average of left Average of right Average of mouth
eye corners eye corners corners

STASM [33] 0.927 0.962 0911

ASAM [34] 0.935 0.978 0.957

Ours 0.961 0.969 0.963

classifiers, we directly model the context by NAR Haar-like features.
In the training stage, traditional Haar-like features and the proposed
NAR Haar-like features are combined to train classifiers. It's up to
the learning algorithm to select the most discriminative features, ei-
ther the traditional Haar-like features or the NAR Haar-like features.

As Fig. 3 illustrated, the most discriminative feature is selected au-
tomatically in each round of the Real AdaBoost learning, which is
noted by a check mark. With all the selected features h,(x), we cons-
truct a strong classifier

T
> ht(x):| ) 2)

t=1

H(x) = sign(

Similar to Viola-Jones [1], strong classifiers learned by Real Ada-
Boost algorithm are cascaded for facial landmark detection. To
speed up the process of cascade learning, feature-inheriting tech-
nique [24] is adopted in our method. Using this technique, features
learned by the previous stage are inherited by the current stage,
which can greatly reduce the computation cost for feature selection.
In addition, Look-Up-Table (LUT) type weak classifier proposed by lit-
erature [25] is used in our implementation to fit more complex distri-
bution of samples. It's a real-valued weak classifier, which gives
samples real-valued confidence instead of Boolean prediction.

3. Application to facial landmark detection

To evaluate the context modeling capability of the NAR Haar-like
feature, we apply it to a facial landmark detection problem and com-
pare our method with other state-of-the-art facial landmark detec-
tion methods.

3.1. Locating procedure

For the facial landmark detection problem, facial organs or
smoothing skin regions can be regarded as context information for a
specific target facial point. To model the co-occurrence relationship
of these facial textures patterns, we restrict one rectangle of the
NAR Haar-like feature to be located within the local image patch
around the target point, the other rectangle should be located within
the whole face region.

With the cascaded classifier learned in Section 2.3, our facial land-
mark locating procedure is shown in Fig. 4.

Here, left mouth corner is taken as the example target point. Given
a testing image, we first detect face in it, and obtain the normalized
face region accordingly. Secondly, a prior location model is applied
to determine the search region for this target facial landmark. Note

Table 2
Localization results on Cohn-Kanade database.
Method Left Left Left Right Right Right Average
inner outer mouth inner outer mouth of six points
eye eye corner eye eye corner

corner corner

Gabor-ffpd [3] 0.96 0.92 0.97 0.99 0.96 0.91 0.952
STASM [33] 0959 0.888 0.862 0942 0.895 0.835 0.897
Ours 0988 0.965 0973 0977 0976 0975 0.976

corner corner
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Fig. 10. Some example images from comparison of our method with STASM (v2.4). Top row: localization results of STASM. Bottom row: localization results of our method.

that the prior location model is learned as a bivariate Gaussian model
on images with manually labeled landmarks, relative to the coordi-
nate system of the normalized face. Then multi-scales detection is ap-
plied to each location in the search region. For each location, a
confidence value that evaluates how well it represents the target fa-
cial landmark is assigned. Finally, the center of the k x k neighborhood
with the maximal confidence is selected as the final position of the
target facial landmark.

3.2. Data set and evaluation protocol

We collect about 7000 near-frontal face images from various
sources, such as CAS-PEAL [26], CMU PIE [27], FRGC v1 [28], and FG-
NET Aging [29], to train our facial landmark detectors. More synthe-
sized positive samples are generated by transformations, such as
shifting by +1 pixel, in-plane rotation within 3°. Negative samples
are image patches shifted 5-8 pixels away from the manually labeled
ground truth position. Totally, a set of roughly 80,000 positive sam-
ples and 3,800,000 negative samples are taken as our training set.

In our experiments, six facial landmarks are localized and evaluat-
ed, which include four eye corners and two mouth corners. For each
facial landmark, one cascaded classifier is trained separately. To re-
duce the size of feature space, we assume that the rectangle of the
NAR Haar-like feature is square.
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Fig. 11. Examples of the face patch pattern and context patch pattern, (a) face patch,
(b) context patch, (c) specific definition of face patch and context patch. In our exper-
iments, we set the distance of two eyes to 12 pixels. The sizes of face patch and context
patch are set to 20x 20 and 32x42 pixels respectively. The example image is from
FRGC v2 [28] face database.

We evaluate our algorithm on two public databases, BiolD and
Cohn-Kanade. The BiolD database consists of 1521 images of frontal
faces taken in uncontrolled conditions using a web camera within
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Table 3
Feature distribution statistics for different methods.
Method No. of selected No. of NAR Average time
features Haar-like features cost (ms)
Face patch 2292 - 1017
w Haar
Face patch 2040 351 981
w NAR
Context 433 - 692
w Haar
Context 948 558 663
w NAR

an office environment. It features a large variety of illuminations,
backgrounds and face sizes. The Cohn-Kanade database includes 486
image sequences (8796 static images) in nearly frontal view from
97 subjects. Each sequence begins with a neutral expression and pro-
ceeds to a peak expression. Note that all of the databases we test on
are definitely excluded from our training set.

In our experiments, we adopt the test criterion proposed in work
[9]. The error measure for each individual landmark is defined accord-
ing to the following formula:

lIL—G]|

e—=
dIOD

3)

where djop is defined as the Inter-Ocular Distance, i.e., the distance
between the two eye centers. L represents the auto-located facial
landmark location, G represents the location of manually labeled
ground truth.

Thus, the cumulative error distribution (y) of the error (x) is used
to evaluate the performance of the localization algorithm, as shown in
the following formula:

_ Num(e=x)
B @

where N is the number of all testing images.
3.3. Experimental results and analysis

In this section, we investigate the effectiveness of the proposed
NAR Haar-like feature through evaluation experiments with respect
to facial landmark detection.

3.3.1. Experiment on different rectangle sizes of the NAR Haar-like
feature

In this subsection, we evaluate the performance of our method
according to the rectangle size of the NAR Haar-like feature. More
specifically, three different rectangle sizes are evaluated, which are
5x5,10x 10, and 15x 15 pixels. In our experiments, the average lo-
calization accuracy of six landmarks (i.e., mouth corners, corners of
the eyes, etc.) is calculated. The faces are all normalized into
105 x 105 pixels and the distance between two eyes is set to 50 pixels.
Experimental results on BiolD database show that with our current
experimental configuration, the rectangle size of 10x 10 pixels is
the most appropriate parameter than the others for the best

performance, as shown in Fig. 5. So, in the following experiments,
the size of the NAR Haar-like feature is fixed to 10x 10 pixels.

3.3.2. Evaluation on context-modeling effectiveness of the NAR Haar-like
feature

In this subsection, we evaluate the effectiveness of the proposed
NAR Haar-like feature on BiolD database. Two facial landmark detec-
tors are trained separately by using different Haar-like feature sets.
One method just extracts traditional Haar-like features within local
image patch of samples, briefly noted by “Local patch w Haar”. The
other method uses both traditional and NAR Haar-like features, brief-
ly noted by “Context w NAR” (i.e., the proposed method). The com-
parison results of these two methods on six facial landmarks are
shown in Fig. 6.

It is obvious that better localization results are obtained by our
proposed method. Especially, for the inner corner of right eye, the lo-
calization accuracy of “Context w NAR” algorithm is about 12% higher
than the “Local patch w Haar” algorithm when the error is less than
4%. Besides the higher localization accuracy, distinctive feature set se-
lected by “Context w NAR” algorithm is usually smaller than the
“Local patch w Haar” algorithm, as Fig. 7 illustrated. It is also interest-
ing to mention that about 1/3 distinctive features are selected from
the NAR Haar-like feature set, shown in Fig. 8. As for the time cost
of facial landmark detection, the “Context w NAR” algorithm costs
49 ms averagely when locating six points in images with 384 x286
pixels, comparing with 51 ms of the “Local patch w Haar” algorithm.
Fig. 9 shows the top four features selected by Real AdaBoost of the
proposed method. Here, take the left mouth corner as the example
target landmark.

From these experiments, it can be derived that: 1) the facial con-
text information is useful for facial landmark detection; 2) the pro-
posed NAR Haar-like feature can well model the facial context
information.

3.3.3. Comparisons with other methods

Besides the cascaded AdaBoost-based methods, Active Shape
Models (ASM) [30] and Active Appearance Models (AAM) [31] are
two popular global shape-based methods for facial landmark detec-
tion. In these kinds of methods, statistical face models are constructed
to prevent locating inappropriate facial landmarks. Also, some vari-
ants are proposed to get more robust and efficient performance
[32-34].

In this subsection, we compare our method with current state-of-
the-art methods: Gabor facial feature point detector (Gabor-ffpd) [3],
Stacked Active Shape Model (STASM) [33], and Active Structure Ap-
pearance Model (ASAM) [34].

In the first comparison on BiolD database, the implementation of
STASM is available from the internet and the results of ASAM are
obtained from their published paper. However, only average localiza-
tion results of left eye corners, right eye corners, and mouth corners
are given by the literature of ASAM. So, here we just compare the av-
erage localization results on BiolD. Table 1 gives the localization re-
sults when the error is less than 10%. It shows clearly that we
achieve better localization accuracy except on “average of right eye
corners”.

In the second comparison on Cohn-Kanade database, besides the
STASM method, Gabor-ffpd method is also taken as a compared

Fig. 13. Top 10 features of the proposed method (i.e., “Context w NAR"), which are selected automatically by real AdaBoost learning.
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Fig. 14. Top 10 features of method “Face patch w NAR”, which are selected automatically by real AdaBoost learning.

benchmark for its high accuracy on this database. In their paper, local-
ization results of 20 facial landmarks are published. They evaluate
their method on the first frames of 300 video sequences, which only
contain neutral expression. These 300 images are divided equally
into 3 subsets. One of the 3 subsets is used as test set and the other
two subsets are used as training set. A 3-fold cross-validation is con-
ducted on the image set.

Because the partition of the testing set cannot be known precisely
from the related publications, we just evaluate our method on all of
the images (8796 images), including images with extreme facial ex-
pressions. Experimental results show that our method gets better lo-
calization results. Table 2 shows the location accuracy of six facial
landmarks when location error is less than 10%. Averagely, our per-
formance achieves 2.4% higher than Gabor-ffpd method and 7.8%
higher than STASM method. Some facial landmark detection results
compared with STASM are shown in Fig. 10.

4. Extended application to face detection

To further verify the generalization capability of the NAR Haar-like
feature, we apply our algorithm again to face detection problem.

For face detection, information such as hair, neck, ear, etc., can be
used as context. So, similar to work [35], a larger rectangle region sur-
rounding the face is considered to contain the context information for
face detection. The specific definition of “face patch” and “context
patch” is shown in Fig. 11.

To model the co-occurrence relationship of face and the context, it
is constrained that one rectangle of the NAR Haar-like feature should
be located within the face patch region and the other rectangle is
extracted within the whole context patch region. In the process of
face detection, we use traditional Haar-like features (extracted from
the face patch region) to characterize the local texture and NAR
Haar-like features to model the context information.

4.1. Experimental setup and evaluation protocol

We collect 34,612 near-frontal face images from many public da-
tabases to train a near-fontal face detector, including AR [36],
BANCA [37], FRGC v1 [28], CMU PIE [27], XM2VTS [38], ORL [39],
Yale [40], CAS-PEAL [26], and FERET [41], etc. Most faces in the sample
set have the variation of pitch rotation within range of [—20°, 20°].
Totally, a set of roughly 200,000 grayscale face samples with size of
32 x 42 are generated from the original 34,612 face images with man-
ually labeled eyes by following transformations: mirroring, in plane
rotation of —12°, —6°, 0°, and 6°, 12°. As for the negative samples,
6000 images without faces are downloaded from the internet for gen-
erating negative samples. In order to accelerate the training process,
MSL [24] is adopted to train with an enormous sample set in our ex-
periments. In each training stage, the training non-face negative sam-
ples are fixed to 10,000. For the positive bootstrap in MSL, the starting
face sample set size is 3000. At each positive bootstrap, maximally
500 new samples are added. The minimum detection and maximum
false alarm rate of each stage are set to 0.9999 and 0.4 respectively.
The training process terminates automatically when there are no

enough negative samples to train a new stage. To detect faces with
various scales, test images are down-sampled with a coefficient of 0.9.

We evaluate the effectiveness of our method on the FDDB face
database, which has been developed recently for evaluating the per-
formance of face detection algorithms. This dataset contains photo-
graphs from several news sources, and includes images of face
under very challenging, unconstrained environments. There are to-
tally 5171 faces in 2845 images. Jain et al. also specified an evalua-
tion scheme based on computing two ROC curves using (a)
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Fig. 15. A comparison with state-of-the-art methods published on the FDDB face
database.
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Fig. 16. Some example images from comparisons of our detector with Viola-Jones and VJGPR detectors.

discrete score, and (b) continuous score. The discrete score gives
each detection result a binary match/non-match label. The continu-
ous score associates a real-valued score with each detection result
based on the overlap between the detected and annotated regions
[42]. According to the test and evaluation protocols, our following
experiments are carried out on ten folds of the data set separately
and the cumulative performance is reported as the average curve
of ten ROC curves.

4.2. Experimental results and analysis

4.2.1. Evaluation on context-modeling effectiveness of the NAR Haar-like
feature

In this subsection, we comprehensively evaluate the effectiveness
of the NAR Haar-like feature through comparing our method with
other three kinds of methods. To differentiate from other methods,
we briefly note our method as “Context w NAR”, which extracts
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traditional Haar-like features within the face patch region and NAR
Haar-like features with one rectangle in the face patch region and
the other rectangle within the whole context patch region. In order
to perform a fair comparison, for all these methods, the rectangle
size of the NAR Haar-like feature is set to 5x5, 5x10, 10x5,
10x 10. The step sizes of traditional and NAR Haar-like features are
both set to 4 pixels in horizontal direction and 2 pixels in vertical
direction.

The performance curves and statistics of feature number for all
these methods are shown in Fig. 12 and Table 3 respectively.

Comparison 1. Context vs. local texture

To evaluate the effectiveness of the NAR Haar-like feature on con-
text modeling for face detection, we just extract traditional Haar-like
features within the face patch region (briefly noted by “Face patch
w Haar”) and compare it with our “Context w NAR” method. Experi-
mental results show that the proposed method impressively outper-
forms “Face patch w Haar” method, which convincingly shows that
the proposed NAR Haar-like feature generalizes well to model the
context for face detection problem. The top 10 automatically selected
features of our method are shown in Fig. 13.

Comparison 2. Context modeling with the NAR Haar-like feature vs.
with traditional Haar-like feature

In comparison 1, we just extract NAR Haar-like features within the
face patch region. So, to perform a more fair comparison, we extract
traditional Haar-like features within the context patch region (briefly
noted by “Context w Haar”) and compare it with the proposed meth-
od. Experimental results show that the proposed method (i.e., “Con-
text w NAR”) outperforms “Context w Haar” method with a lower
false alarm rate. And, in the proposed method, about 58% (558/948)
features are NAR Haar-like features. It can be observed from the ex-
perimental results that the NAR Haar-like feature is more effective
to model the context than just using traditional Haar-like features.

Comparison 3. Context modeling vs. local texture modeling with the
NAR Haar-like feature

To deeply investigate the power of the NAR Haar-like feature, we
exploit it to characterize the local texture of faces. In our experiments,
we extract both traditional and NAR Haar-like features within the
face patch region, called “Face patch w NAR”, and compare it with
“Face patch w Haar” method and the proposed “Context w NAR”
method. As shown in Fig. 12, the performance of “Face patch
w NAR” is just slightly higher than those of “Face patch w Haar”.
But the proposed “Context w NAR” method outperforms these two
methods evidently. Based on these experimental results, it is ob-
served that: the proposed NAR Haar-like feature is more suitable to
model the context information rather than model the local texture in-
formation. The top 10 automatically selected features of “Face patch
w NAR” method are shown in Fig. 14.

To evaluate the detection speed of each method, we conduct face
detection experiments on 100 images with 384 x 286 pixels and the
average detection speed is shown in Table 3.

4.2.2. A comparison with other methods

In this part, we compare our method with other published state-
of-the-art methods [1,42-45] on the FDDB face database. As shown
in Fig. 15, our method outperforms these methods on both discrete
and continuous score measurements.

Fig. 16 gives some typical comparison examples among our face
detector, Viola-Jones detector [1] and VJGPR detector [42]. It's impor-
tant to note that these images are not manually selected by us, they
are the examples used in VJGPR. We use these images here to expect
a fair comparison. Quantitative and visualized results convincingly
show that our method performs better than other methods.

5. Conclusions

Through introducing the context constraints, a novel solution is pro-
posed for face and facial landmark detection by integrating the local
texture information and the global context information. In our method,
anovel type of the NAR Haar-like feature is designed to characterize the
co-variation relationships between face or facial landmarks and its sur-
rounding context. Essentially, it models these co-variation relationships
implicitly through the co-occurrence of low-level features. Combined
with the traditional Haar-like features, a powerful representation is
formed to realize more robust face and facial landmark detection
under Real AdaBoost framework. Experimental results convincingly
show that the NAR Haar-like feature is effective to model the context
for face and facial landmark detection. In addition, our proposed meth-
od obtains state-of-the-art performance on both face detection and fa-
cial landmark detection tasks for multiple databases.

Similar to the widely used rectangle Haar-like feature, the NAR
Haar-like feature can also be designed to many different modes.
Therefore, it would be our direct future work to extend the NAR
Haar-like feature to more complicated patterns, such as the features
characterized by three- or four-rectangle mode. And experiments on
general object detection, such as car detection, horse detection, etc.,
will be further explored.
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