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Abstract In this paper, we propose an attention-based

virtual content insertion solution, called @ICT. Virtual

content insertion (VCI) is an emerging application of video

analysis and has been used in video augmentation and

advertisement insertion. An ideal VCI solution should

make the inserted virtual content being noticed by audi-

ences and at the same time should not interfere with

audiences’ viewing experience on the original content. To

balance these two conflicting issues, meaning high atten-

tion and low intrusiveness, we choose higher attentive

shots as insertion time while determine insertion place and

content interdependently by considering lower attention

together with visual consistency. We also propose a mea-

surement of intrusiveness from the viewpoint of visual

attention. Furthermore, @ICT includes an in-scene inser-

tion module, which embeds the virtual content into the

videos with higher vividness and lower intrusiveness.

@ICT is able to obtain an optimal balance between the

noticing of the virtual content by audiences and disruption

of viewing experience to the original content. It needs little

prior knowledge and is applied to general videos. Extensive

quantitative and qualitative evaluations on the VCI result

have verified the effectiveness of the solution.

Keywords Video content analysis � Virtual content

insertion � Visual attention

1 Introduction

Virtual content insertion (VCI) is an emerging application

of video analysis and has been applied in video augmen-

tation, to improve the audiences’ viewing experience to the

original content [33], and advertisement insertion to pro-

vide more advertising opportunities to the advertisers

[1, 11, 20, 21, 32]. Manual insertion is a time-consuming

and labor-intensive work for the huge amount of video

data. To tackle this problem, automatic VCI approaches

and systems have been studied in the past years.

The challenge of VCI is to balance its two conflicting

tasks, which are to make the inserted content more prob-

able to be noticed by the audiences and meanwhile not to

interfere with the audiences’ viewing experience on the

original content. A conventional method is to insert the

virtual content (VC), usually advertisement, at the begin-

ning or the end of a video. But it is believed that the

advertisement should be inserted at appropriate positions

within video streams. Regarding this, VideoSense inserts

advertisements at the time of higher discontinuity and

lower attractiveness to avoid disturbing the audience from

watching the video [21]. It chooses advertisement clips

under the principle of textual and visual-aural consistency

to improve the advertising effect.

In the aforementioned methods, the advertisement clips

are inserted into the video stream, which is referred to

as in-stream insertion. Figure 1a illustrates an example of
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in-stream insertion. Another choice is to insert the virtual

content into the video frames, referred to as in-video

insertion. In-video insertion can be overlay or in-scene

insertion. In overlay insertion, the virtual content flows

over the original content, as shown in Fig. 1b. In-scene

insertion embeds the VC into the video scene, as shown in

Fig. 1c. In-video insertion has two advantages over in-

stream insertion. First, in-video insertion does not increase

the video length while in-stream insertion does. Second,

under in-video insertion, the inserted contents cannot be

avoided without loss of the original video and so are more

probable to be noticed by audiences. In spite of the two

advantages, in-video insertion is more challenging for the

risk of annoying the audiences. This risk is usually reduced

through insertion time, insertion place, insertion content,

and insertion method. Existing approaches of in-video

insertion mainly focus on sports video for the reason that

there is plenty of domain knowledge available which can

be used in VCI to determine the insertion time [30] and

place [32], and to calibrate the camera [3, 27, 33]. These

methods rely on domain knowledge of sports video, such as

the structure of the play field. They lack generality and are

difficult to be extended to other video types. Visual

attention analysis is a rational way to generalize virtual

content insertion. AdOn [22] is an instance of visual

attention-based generic contextual in-video advertising

system. It chooses attractive shots as insertion time, less

attentive region as insertion place, and chooses advertise-

ment according to textual relevance, user preference, and

visual content consistency.

In this paper, we concentrate on in-video insertion and

aim to construct a generic virtual content insertion solution

that is applied to general videos without specific domain

knowledge. We balance the two conflicting tasks of VCI by

taking human visual characteristics into account and pro-

pose an attention based virtual content insertion solution,

called @ICT. To increase the chance of the inserted con-

tent to be attended, @ICT chooses Higher Attentive Shots

(HAS) as insertion time. It reduces the intrusiveness caused

by insertion through insertion place and insertion content

choosing. However, there is not a measurement to evaluate

intrusiveness. In this paper, we propose a measurement of

intrusiveness from the viewpoint of visual attention. The

measurement covers two aspects, ROI interference and

distraction. ROI interference is caused by occluding the

region of interest (ROI). Distraction usually happens when

the inserted content outstands of the original content. To

decrease the intrusiveness caused by insertion, @ICT

determines insertion place and insertion content interde-

pendently. To avoid ROI interference, it first detects lower

attentive regions (LAR). Then for a particular VC, within

the LAR, it chooses the position which is most consistent

with the VC to decrease distraction.

@ICT includes both overlay and in-scene insertion. To

perform in-scene insertion in general videos, we propose a

new method by using affine rectification and camera

tracking. This method needs only two pairs of parallel

lines, which are relatively easy to be obtained in most

videos of artificial locations, e.g., indoor or urban location.

For in-scene insertion it is necessary to find the homogra-

phy matrix between frames, which usually fails under

fierce camera motion. We tradeoff between insertion effect

and audience attention and choose the shots of little camera

motion as insertion time. For in-scene insertion, we detect

dynamic LAR as insertion place.

Part of our work has been published in [15]. Compared

with our previous work, three major improvements have

been made in this paper:

1. Besides insertion time, place, and method, insertion

content choosing is also investigated. The general

consideration is that the inserted content should change

audience attention as little as possible. So we choose

the insertion content according to visual consistency.

2. We propose a measurement of intrusiveness, which

covers both ROI interference and distraction.

3. The in-scene insertion method is enhanced by using a

more reliable camera motion method. In experiment,

we found that the error of global motion estimation

(GME) accumulates with time and results in virtual

content displacement. In this paper, we detect SIFT

points and calculate the homography matrices using

the matched points to generate better results.

In this paper, we propose a generic virtual content

insertion solution based on visual attention analysis, called

@ICT. It needs little domain knowledge and is applied to

Fig. 1 Examples of virtual content insertion. Overlay insertion and

in-scene insertion belong to in-video insertion
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general videos, such as TV play series and movies, etc.

The basic idea of our overlay insertion method is similar

to the one of AdOn [22]. Compared with AdOn, our work

has the following characteristics:

1. We propose a measurement of intrusiveness, which

covers both ROI interference and distraction. AdOn

considers only ROI interference and calculates intru-

siveness as the average saliency value of the insertion

place.

2. We determine insertion place and insertion content

interdependently. Given an image/video shot, different

VCs should be inserted at different positions. We

choose the position by considering both lower saliency

and visual consistency.

3. @ICT includes an in-scene insertion module, which

embeds the virtual contents into general videos by

using affine transformation and camera tracking.

The rest of the paper is structured as follows: In Sect. 2,

we review the related works and present the overview of

@ICT. In Sects. 3 and 4 we detail the overlay insertion and

in-scene insertion modules, respectively. We report the

evaluation result in Sect. 5 and conclude this paper with

future work in Sect. 6.

2 Related work

The two conflicting tasks of VCI are usually balanced

through insertion time, insertion place, insertion content,

and insertion method. In this section, we review the

existing works from these four aspects and present the

overview of @ICT.

2.1 Insertion time

For time choosing, an important factor to consider is to

make the inserted content noticeable to the audiences.

Therefore, the virtual content is usually inserted into video

highlights as they are usually paid more attention to by the

audiences [30]. Besides highlights, the consecutive frames

with little camera motion are also selected as candidates to

hold the inserted content for a period of time [32]. High-

light extraction usually needs domain knowledge while the

frames with little camera motion cannot ensure the frames

to be attended. AdOn chooses attractive shots, through

motion intensity and shot length, as insertion time. In this

paper, @ICT performs temporal attention analysis and

chooses higher attentive shots as insertion time for overlay

insertion to increase the opportunity of the inserted con-

tents to be noticed. For in-scene insertion, it detects the

shots of little camera motion as insertion time to ensure the

insertion effect.

2.2 Insertion place

Several approaches have been proposed to detect proper

places for VCI to avoid damaging the original content of

the image/video. For sports video, domain knowledge can

be exploited to determine the insertion place. For instance,

static region, goalmouth, central circle, and boundary line

in soccer video are detected to identify suitable locations

for insertion [32]. More generic approaches include visual

relevance measure [30] and lower informative region [11],

which do not need any domain knowledge and can be

extended to all types of videos. Other methods tackle this

problem from the viewpoint of visual attention. Image-

Sense [20], AdOn [22], and GameSence [12] insert the

advertisements at the non-salient corner or side regions to

avoid occluding the informative content of the image. In

our previous work [16], a notation of lower attentive region

is proposed and defined, from the cognitive point of view,

as a region of the video frame which attracts less audience

attention. For @ICT, to reduce intrusiveness, we detect

lower attentive region as candidate insertion place, then

choose the final position by taking into account the visual

consistency with the VC to be inserted.

2.3 Insertion content

Virtual content itself also plays a role in the effect of

VCI. It should be coherent with its spatial and temporal

context to maintain the visual effect and to reduce the

intrusiveness. Under this principle, ImageSense chooses

the advertisements according to local textual relevance,

global textual relevance, and local content relevance [20].

Besides VC choosing, another way is to adjust the

appearance of the insertion content. For example, ViSA

re-colors the VC by using computational esthetics to

ensure visual harmony [1]. In our approach, we maintain

the appearance of the virtual content and choose virtual

content according to visual consistency to avoid annoying

the audiences.

2.4 Insertion method

Insertion method can be overlay or in-scene insertion.

Overlay insertion is relatively simple, while in-scene

insertion utilizes the camera parameters to embed the vir-

tual content into the real circumstance. VC embedding can

be performed by using predetermined landmarks [26]. If

the model of the scene is available, it can be used to esti-

mate camera parameters [33] and to distort the inserted VC

[10, 27]. In this paper, @ICT performs in-scene insertion

through affine rectification and camera motion estimation.

This method needs weak condition and is applied to most

videos of indoor or outdoor urban scenes.
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2.4.1 Our approach

Figure 2 illustrates the overview of @ICT. It has an

overlay module and an in-scene insertion module. The two

modules share five parts, including video preprocessing,

insertion time detection, insertion place detection, virtual

content selection, and virtual content insertion. But they are

slightly different at the shaded contents in the figure, i.e.,

insertion time detection, insertion place detection, and

virtual content insertion. In the video preprocessing part,

the input video is segmented into shots by using the method

of [13]. Within a shot, the content is of spatially and

temporally continuum. Thus taking shot as basic unit of

VCI makes the insertion result visually influent. The

insertion time module detects HAS for overlay VCI and

static shots for in-scene insertion. The insertion place

module chooses LAR and then the VC selection module

determines the virtual content according to visual consis-

tency. Finally, the VCI module inserts the chosen content

into the chosen shot, at the chosen place, through overlay

or in-scene insertion. The details of the two modules will

be presented in the following two sections.

3 Overlay VCI

For overlay VCI, the insertion method is relatively simple.

Therefore, we focus on insertion time choosing, insertion

place, and insertion content determination.

3.1 Insertion time choosing

While watching a video, audiences pay different amount of

attention to the video content at different time. The virtual

content inserted at the time when the video attracts more

audience attention is more probable to be noticed and

remembered by audiences. So we detect the shots more

attentive as insertion time.

Generally speaking, the shots different from the preceding

ones attract more attention. Here we adopt the notation of

novelty to evaluate the attention of each shot. In our work, a

shot’s novelty is evaluated through its difference to its pre-

ceding ones. Let St be a shot of the video, its novelty is

Nov(StÞ ¼
Xt�1

k¼t�N

diff(Sk; StÞwðkÞ ð1Þ

where the length of context window N is the number of

shots included, which is set as 5 in our work. w(k) is the

weight of shot k for the consideration that the nearer shots

have more influence on the current one. In our work, we

adopt linear weight wðkÞ ¼ ðt � kÞ=ð1þ 2þ � � � þ NÞ,
which is the relative distance between the two shots. diff

(Sk, St) is the dissimilarity between the two shots. The

feature used here is the normalized color histogram of the

shot, calculated by averaging the normalized frame

histograms. For each shot, an 8 9 8 9 8 RGB histogram

is calculated and the dissimilarity is calculated using

histogram intersection:

diff(Sk; StÞ ¼ 1� Ht \ Hk ð2Þ

Besides novelty, shot length also determines a shot’s

attention value. The longer a shot is, the more probable it is

to be attended. In this regard, the attention value of a shot is

calculated as Lt � NovðStÞ, where Lt is its length.

Finally, it should be noted that too frequent insertion

will annoy the audiences. So the insertion time is chosen

under the restriction of minimum time interval.

3.2 Insertion place and insertion content determination

The objective of insertion place and insertion content

choosing is to decrease the intrusiveness caused by insertion.

In this section, we first present a quantitative measure of

intrusiveness from the viewpoint of visual attention. Then we

present how we determine the insertion place and the

insertion content interdependently to reduce intrusiveness.

3.3 Measurement of intrusiveness

Intrusiveness is defined as a perception or psychological

consequence that occurs when an audience’s cognitive

processes are interrupted [17]. According to this definition,

Fig. 2 The overview of @ICT. It has two modules, overlay insertion

and in-scene insertion. The two modules share five parts but are

different at the shaded contents
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we have proposed a measurement of intrusiveness from the

perspective of visual attention [14]. This measurement

covers two aspects. First, if the inserted advertisement

covers the main content of the image/video, it is definitely

intrusive. This type of intrusiveness is referred to as ROI

interference in this paper. Second, if the advertisement

visually outstands of the image, it will distract audience

attention from the original attending point. To measure

distraction, we employ the difference between audience

attention distributions, which are represented through

attention maps, before and after content insertion. The

attention maps are normalized to
P
ðx;yÞ AM(x; yÞ ¼ 1; thus

they can be looked as probability density function for con-

venient comparison. Several comparison methods are

available, such as correlation coefficient, Kullback–Leibler

divergence, and intersection etc. In our work, we calculate

the consistency between attention maps as their intersection

because it best discriminates distraction from non-intru-

siveness in experiment. Intersection is calculated as follows:

C ¼
X

ðx;yÞminðAMbeforeðx; yÞ;AMafterðx; yÞÞ ð3Þ

Then we calculate the distance as 1 - C. Finally, we

calculate intrusiveness, taking ROI interference into

account, as follows:

Intr ¼ 1 if the brand covers the ROI

1� C others

�
ð4Þ

According to (4), the intrusiveness locates between 0

and 1. When the virtual content covers the ROI, the

intrusiveness reaches its maximum. This measurement

provides a straightforward objective for in-video VCI.

Given a shot, we first detect its LAR to avoid ROI

interference. Then for a given VC, we traverse all possible

positions of the LAR to find the insertion position of

minimal distraction. Figure 3 illustrates an example of

insertion place choosing, by taking an image as instance.

The details of LAR detection and virtual content

determination will be presented in the rest of this section.

3.4 LAR detection

There are already many works about visual attention

analysis, such as [7, 9, 19, 23, 29]. In this paper, we employ

our previous method proposed in [15]. This method adopts

region as perceptive unit, calculate the attention value of a

region through color contrast, color rarity, motion contrast,

and color novelty, as shown in Fig. 4. Here we present this

method briefly. For details, the readers are referred to [15].

3.4.1 Image segmentation

The perceptive unit can be chosen as pixel [23], image

block [9, 19], region [7], or object [29]. A pixel/block

contains little perceptive information. Comparatively, an

object contains much perceptive information but is difficult

to be obtained for its complexity. In color images, an object

is composed of one or more regions. In other words, a

region is a unit between a pixel/block and an object. It

contains more perceptive information than a pixel/block

and can be obtained by image segmentation, for which

there are already many methods available. Therefore in our

work we adopt region as perceptive unit. This choice also

enables the proposed method to analyze visual attention at

multiple scales for the adaptive size of region. Since our

purpose is to obtain the image patches which can be used as

perceptive unit, image segmentation is simplified by per-

forming color quantization using K-Means. An issue for

K-Means is to determine the cluster number. To avoid over

segmentation, we set the maximum cluster number as 8

empirically. To choose a suitable cluster number for an

image according to image content, we calculate its

8 9 8 9 8 RGB histogram and use the minimum number

of the highest bins which in total cover over 95% of the

pixels as the cluster number. If the number is bigger than 8,

8 is adopted. After color quantization, the neighboring

pixels of the same color are regarded as a region.

3.4.2 Color contrast

It has been verified that human visual system are sensitive to

contrast for the center-surround structure of the receptive field.

Fig. 3 Illustration of insertion place and insertion content

determination Fig. 4 Overview of the attention analysis method
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Receptive field is proved to be an ellipse with its main axis 20�
to the horizon and is modeled with Difference of Gaussian

(DoG) [28]. For simplicity we adopt an isotropic model:

DoG(x; yÞ ¼ 1

2pr2
exp �x2 þ y2

2r2

� �

� 1

2pk2r2
exp �x2 þ y2

2k2r2

� �
ð5Þ

where r2E and k2r2E k[ 1;E is identity matrixð Þ are

the covariance matrices of the two Gaussians. We

experimentally set k � 2:0984 and r ¼ 0:5104R; with R be

the region’s radius. Then a region’s contrast is calculated as

Con(k) ¼
XK

i¼1

dðfk; fiÞ � Gkði; kÞ � Si ð6Þ

where d(fk, fi) is the distance between two features, Gk is

the DoG function of region k, and Si is the area of region i.

3.4.3 Color rarity

While watching the scene, our purpose is to pursue infor-

mation. So the informative content usually attracts our

attention. According to Shannon’s information theory, the

rarer an event is, the more informative it is. The rarity of

each region is calculated, by using the color quantization

result, as follows:

RarðkÞ ¼ log pðfkÞ ð7Þ

where fk is the feature of region k and p(fk) is its probability

calculated from the color quantization result.

3.4.4 Motion contrast

Motion vector can be obtained by several methods such as

optical flow [6]. However, a critical issue is that motion

estimation under moving camera is still a challenging

problem and the motion vector obtained is not so reliable.

In this paper, a cone-shaped motion vector space (MVS) is

adopted to alleviate the negative impact caused by camera

motion [4]. This method presents the MVS through HSV

color space as follows:

Angle! H

Magnitude! S

Texture! V

ð8Þ

where the motion magnitude and the texture are normalized

to [0, 255]. The choosing of texture as value, which fol-

lows the intuition that a high-textured region produces a

more reliable motion vector, provides this method a sig-

nificant advantage that when the motion vector is not

reliable for the existence of camera motion, the V com-

ponent can still provide a good presentation of the frame.

Finally, by using the HSV presentation, motion contrast is

calculated through (6).

3.4.5 Color novelty

Besides motion saliency, novelty, an event’s standing out of

its temporal background, also affects audience attention. Itti

[8] measured novelty by using information theory. The

information carried by data is measured as the difference

between prior and posterior distributions over the set of all

models. KL divergence is used to calculate the difference.

We also adopt an information theory-based method to

evaluate novelty in videos. Similar to Itti’s work, we cal-

culate the distance between the prior and the posterior

distributions as the novelty of each event. Different from

Itti’s work, we model the original feature of the video

instead of the center-surround feature maps. The novelty of

each pixel at each time is calculated as the distance between

the prior and the posterior distributions. Supposing that

Mt-1 and Mt are data models at t - 1 and t, respectively, the

novelty at t is calculated by using KL distance:

NolðtÞ ¼ KL Mt�1;Mtð Þ ¼
Z

X

MtðxÞ log
MtðxÞ

Mt�1ðxÞ
dx ð9Þ

We adopt Gaussian distribution to model the data at

each position. At time t the data is presented as

Mt�N lt; r
2
t

� �
ð10Þ

where lt ¼
Pt

i¼1 xi=t; r2
t ¼

Pt
i¼1 ðxi � ltÞ2=ðt � 1Þ:

There is a problem that the data accumulation with time

may decrease the model’s sensitivity to data change. To

avoid this problem, the model is reset at the beginning of

each shot.

3.4.6 LAR detection

After attention analysis, we obtain four maps, including

color contrast map (Mc), color rarity map (Mr), motion

contrast map (Mm), and color novelty map (Mn). Suitable

fusion of the maps produces the final attention map. In our

work we adopt linear method for simplicity and with

adaptive coefficients to fit different types of videos.

Considering that our goal is to detect ROI or LAR from

the saliency/novelty maps, we model this progress as bin-

ary classification. We use the maximum inter-class vari-

ance to determine the fusion coefficients for the reason that

the higher a map’s inter-class variance is, the more pow-

erful the map’s discriminability is [24]. The maximum

inter-class variance of map Mc is

Varc ¼ max
k

n1ðkÞðl1ðkÞ � lÞ2 þ n2ðkÞðl2 kð Þ � lÞ2
� �.

n

ð11Þ
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where n1(k), n2(k), l1(k), and l2(k) are the number of

samples and the means of the two classes when using

threshold k, n is the total number of samples, l is the mean

of all the samples. Let Varr, Varm, and Varn be the

maximum inter-class variance of Mr, Mm, and Mn. Then the

fusion weight for color contrast map is

wc ¼ Varc= Varc þ Varr þ Varm þ Varnð Þ ð12Þ

The weights for color rarity map, motion contrast map,

and color novelty map are similarly calculated. The final

attention map is

AM ¼ wcMc þ wrMr þ wmMm þ wnMn ð13Þ

Then the attention map is binarized to obtain the ROI

and the LAR. In the binary attention map in Fig. 3, the

white region is ROI and the black region is LAR.

3.5 Insertion place detection

After LAR detection, for a given VC, we first exclude the

marginal regions and the positions which may lead to ROI

interference, as shown in the intrusiveness map in Fig. 3.

Then we traverse all the possible positions to find the

optimal one for a given VC. Instead of repeating attention

analysis on the insertion results, which is straightforward

but time consuming, visual consistency is utilized as the

criterion for position choosing. Visual consistency is cal-

culated through color histogram. At position (x, y), the

visual consistency between the virtual content and the shot

is

Cx;y S;VCð Þ ¼ 1

L

XL

t¼1

Hx;y;t \ HVC

� �
ð14Þ

where Hx,y,t and HVC are the normalized color histograms

of the insertion position of frame t and the virtual content,

L is the shot length. Then we get the optimal insertion

position and the visual consistency between the VC and the

shot:

ðx�; y�Þ ¼ arg max
ðx;yÞ2LAR

Cx;yðS;VCÞ

CðS;VCÞ ¼ Cx�;y�ðS;VCÞ
ð15Þ

Here (x*, y*) is the optimal insertion position and C(S, VC)

is the consistency between the VC and the shot.

3.6 Virtual content determination

For a given shot and a set of candidate VCs, we choose the

VC which has the lowest intrusiveness as insertion content.

For a VCI task includes multiple VCs to be inserted into

the video, without loss of generality, we insert into each

shot no more than one VC, and each VC will not be chosen

for more than one time. Then we search for a best match

between the shots and the VCs according to visual con-

sistency. Let m and n be the numbers of shots and VCs;

then the objective function is defined as

max
fðik ;jkÞg

Xminðm;nÞ

k¼1

C Sik ;VCjk

� �
ð16Þ

Function (16) has a huge solution space. For the task of

70 video shots and 75 brands in our experiment, it has

C70
75 � 70! solutions. We employ genetic algorithm to

search for the optimal solution [31]. Genetic algorithm

mimics the process of natural evolution. Canonical genetic

algorithm produces the next generation from the parents

through crossover and/or mutation. Then a portion of the

existing solutions are chosen as new parents. For our

matching problem, we adopt single-parent genetic

algorithm, which produce the next generation from just

one parent. We first generate a random solution as the

parent. Then we randomly choose two points in the

solution and inverse the part between the two points to

produce the next generation. The more optimal one is

chosen for the next iteration. This progress is repeated until

convergence.

Through (16), the virtual content and the insertion place

are determined interdependently.

4 In-scene VCI

For in-scene VCI, the insertion content choosing method is

similar to the one of overlay VCI. It is different with the

overlay insertion module in insertion time choosing,

insertion place detection, and the insertion method. So we

focus on these three aspects.

4.1 Insertion time choosing

In-scene insertion embeds the virtual content into the vid-

eos according to camera parameters. The current camera

motion estimation methods usually fail under fierce camera

motion. Furthermore, under fierce camera motion, e.g.,

under fast pan, a region may be visible for just a very short

while. To obtain better results, we tradeoff between

attention and insertion effect and perform in-scene inser-

tion on the shots of little camera motion. Scale Invariant

Feature Transformation (SIFT) [18] is performed and the

matched SIFT points are used to obtain the homography

matrix through the RANSAC algorithm. Let Ht,t?1 be the

homography matrix between frames t and t ? 1:

H ¼
h11 h12 h13

h21 h22 h23

h31 h32 h33

0
@

1
A ð17Þ
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Then for a point Pt in frame t, its corresponding point in

frame t ? 1 is Pt?1:

Ptþ1 ¼ P0tþ1

	
w0

P0tþ1 ¼ Ht;tþ1Pt

ð18Þ

w0 is to transform the point to homogeneous coordinate.

Then for the point 0 0 1ð ÞT in frame t, its corre-

sponding point in frame t ? 1 is h13=h33 h23=h33 1ð ÞT.

The displacement of the point,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

13 þ h2
23

p .
h33, is used to

describe the camera motion. The shots of little camera

motion are detected as candidates. For a chosen shot, if

suitable insertion place is detected, it will be chosen for in-

scene VCI.

4.2 Insertion place detection

For the chosen candidate shots, we detect dynamic LAR

as insertion place. Different with a static LAR, which is

a region of the same position on each frame, a dynamic

LAR is a region of the same position in the real cir-

cumstance. It should be kept on the corresponding

position on each frame. For the existence of camera

motion, mosaic image stabilization is adopted to present

the appearance of a locked down camera. Through the

homography matrices, for a point Pt in frame t, we

obtain its corresponding points in each frame. Then for a

point PM in the mosaic attention map, its attention value

is calculated as

AV(PMÞ ¼
XL

t¼1

AV(PtÞ ð19Þ

where Pt is the corresponding point of PM in frame t and L

is the total number of frames of the shot.

Finally, the proposed in-scene insertion method (will

be detailed in the following section) utilizes two pairs of

parallel lines to embed the VC into the video. So we

detect straight lines, through Hough transform, of the

shot. A pair of parallel lines in real world may be not

parallel in the image/video. So we detect nearly parallel

lines. If a region is of lower attention value and is sur-

rounded by two pairs of parallel lines, it is detected as

insertion place.

4.3 In-scene insertion

Compared with overlay insertion, in-scene insertion needs

more techniques. The existing methods perform in-scene

insertion in sports video because the structure of the

playfield can be used to calibrate the camera [33]. How-

ever, in general videos there is too little prior knowledge to

perform camera calibration. In this paper we propose to

insert VC with as little as circumstance information by

using affine transformation. To insert the virtual content

into the videos with reality, affine rectification is first

performed to obtain the front view of the circumstance.

The virtual content is inserted into the front view and then

adapted to the following frames using the affine matrix and

the homography matrices. In our work, we obtain the affine

matrix by using two pairs of parallel lines. The method is

briefly presented here. For more details, the readers are

referred to [2].

Suppose l1 and l2 are a pair of lines in the frame, cor-

responding to a pair of spatial parallel lines L1 and L2:

li : aixþ biyþ ci ¼ 0; i ¼ 1; 2 ð20Þ

If l1 and l2 are not parallel in the image plane, we

obtain the vanishing point v1, with aligned coordinate

V1 ¼ x1 y1 fð ÞT: Here f is the focal length of the

camera. It can be calculated through camera calibration

or be set as 1 for simplification. If l1 and l2 are parallel

in the image plane, the vanishing point is infinite and its

aligned coordinate is written as V1 ¼ a1 �b1 0ð ÞT:
The normalized spatial direction of the lines L1 and L2

isr1 ¼ V1= V1j j: From the other pair of parallel lines we

obtain r2 ¼ V2= V2j j: Then the norm of the spatial plane

is r3 ¼ r1 � r2: The three vectors compose the affine

matrixA ¼ r1 r2 r3ð Þ: Then for a point of aligned

coordinate P on the original image, its corresponding

pixel on the affined image is PA ¼ P0 � A�1P0 þ aA�1P:

Here the coefficient a is set to make PA 3ð Þ equal to the

focal length f . P0 is a point keeps unchanged during

affine transformation. It is set as the center of the LAR

to keep the LAR within the scope of the frame after

affine rectification.

After the virtual content is inserted into the first frame,

the homography matrices are utilized to embed it into the

following frames. To improve the precision of region

tracking, we re-estimate the homography by using the SIFT

points of the insertion region. For a point PA on the front

view, its position on frame t is calculated as follows:

Pt ¼
Yt�1

k¼0

Hk;kþ1 � AP0 þ P0 � APAð Þ ð21Þ

where Hk;kþ1 is the homography matrix to track the

insertion region. An example of in-scene insertion is

illustrated in Fig. 5. In the example, the parallelogram in

the frame (Fig. 5a) is detected as insertion place. It is a

rectangle in real circumstance, as shown in the front

view (Fig. 5b). Then the virtual content is inserted into

the frame through affine transform, as shown in the VCI

result (Fig. 5c).
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5 Performance evaluation

In this section, the performance of the proposed VCI

solution will be evaluated. The VCI solution is evaluated

on the videos in Fig. 6. There are three major types of

location, urban, rural, and indoor. As shown in the figure,

the test videos include all the three types of locations. 75

famous brands including car brand such as Benz, nosh-

ery brand such as Mcdonald’s, and other brands which

frequently appear in life are chosen as virtual content.

We adopt these brands for two considerations. One is

that advertising is an important application of VCI. The

other one is that it should be easier for the users to

select the ones he/she has seen in the video. That is to

decrease the noticing difference caused by the brands

themselves.

5.1 Performance of overlay insertion

We first test the HAS detection method and then the

insertion place and content determination method.

5.2 HAS detection

The HAS detection method is tested on two of the testing

videos, ‘‘Adventure to the west’’ and ‘‘Children at home’’.

These two videos are of different types. ‘‘Adventure to the

west’’ is of rural scene and contains many fighting shots.

‘‘Children at home’’ is sitcom and is of indoor scene. From

the beginning of each of the two videos, excluding the

prolog, two consecutive video clips, each of which includes

50 shots, are chosen for test. The clips are test in experi-

ment independently. To study to what degree each shot is

Fig. 5 Example of in-scene

insertion. In the original frame

(a) two pairs of parallel lines are

detected. Then the front view

(b) of the frame is obtained

through affine rectification.

Finally, the VCI result (c) is

obtained by using the affine

matrix

Fig. 6 The representative frames and details of the test videos

@ICT: attention based virtual content insertion 209

123



attended by audiences, each shot is inserted with a unique

VC randomly chosen from the VC database. 16 users, aged

between 22 and 30 years, are invited to watch the result

videos for one time. After watching, the users are shown to

a set of brands, which include the ones inserted into the

videos. The users are required to choose the brands he/she

has seen in the videos. The users’ feedback for each clip is

then averaged to obtain the noticing rate of each brand, i.e.,

each shot. The attention curve and the noticing curve are

compared by using consistency and correlation coefficient

(cc). Consistency is calculated similarly with formulation

(3). The attention curve and the noticing rate are first

normalized to have sum 1; then the intersection of them is

calculated as consistency. The higher the consistency is,

the more precise the result is. cc between two variables, x1

and x2, is calculated as cc x1; x2ð Þ ¼ cov x1; x2ð Þ=r1r2. Here

cov x1; x2ð Þ are the two variables’ co-variance; r1 and r2

are the standard deviations of the two variables. The value

of cc locates between -1 and 1. The larger the absolute

value of cc is, the stronger the linear relationship between

the two variables is. A value of 1/-1 indicates a perfect

positive/negative linear relationship. A value of 0 means

totally irrelative.

The results are illustrated in Fig. 7. The first row shows

the attention curves and the noticing rates of the four test

video clips, together with the consistency. The consisten-

cies are about 0.8. The second row plots the noticing rate

versus attention value, with the correlation coefficient. The

cc values are all higher than 0, but regretfully, less than 0.5.

Generally speaking, the consistency and correlation coef-

ficient indicate that the proposed HAS detection method is

effective and inserting virtual content into higher attentive

shots does increase the opportunity of the contents to be

noticed. However, low-level features, without semantic

content, can describe just a part of human cognition. This

limitation can also be seen in the experimental result. The

results of ‘‘Adventure to the west’’ are better than the ones

of ‘‘Children at home’’. This is because the latter one is

indoor sitcom, so the visual scene changes just slightly and

audience attention is more affected by semantic content,

which is out of the scale of the low-level features adopted

in our experiment.

5.3 Overlay insertion evaluation

Then we evaluate the intrusiveness caused by overlay

insertion. In the proposed solution, the lower attentive

region is chosen as insertion place to avoid covering the

ROI. What we need to do is to evaluate the intrusiveness

caused by distraction. We choose ten attentive shots, under

the minimum time interval of 2 min, from each of the

testing videos in Table 1 to construct a testing set of 70

shots. Then the task is formulated as inserting the 75 logos

into the 70 shots. In experiment, the area of the insertion

region is set as 1% of the video frame. The following three

sets of results are compared:

Fig. 7 Results of HAS detection. The first row shows the attention

curves and the noticing rates of the four test video clips, together with

the consistency. The second row plots the noticing rate versus

attention value, with the correlation coefficient. In the figure, Ad-1
and Ad-2 are the two clips from ‘‘Adventure to the west’’. Ch-1 and

Ch-2 are the two clips from ‘‘Children at home’’
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1. This set is like Mei’s method and is adopted as

baseline to evaluate our approach. Mei chooses the

advertisement according to textual relevance, user

preference, and global visual consistency. The inser-

tion place is chosen among the upper fifth and the

bottom fifth of the frame. To make the comparison as

fair as possible, we choose insertion content according

to only global visual consistency and drop the textual

relevance and user preference. Moreover, we choose

the insertion place among the upper tenth and the

bottom tenth of the frame to make the insertion region

1% of the video frame, the same with our setting.

2. The logos are randomly matched with the shots and are

inserted into the videos at the position determined by

lower attention and visual consistency.

3. The logo and insertion place are determined by using

the proposed solution.

Figure 8 displays the consistencies of the above three

methods. To keep the figure neat, the shots are sorted in

descending order according to the consistencies of the

baseline. The second set outperforms the baseline on 54

(77%) shots. This result indicates that our insertion place

determination method is more rational than the one of the

baseline. The third set outperforms the second one on 54

(77%) shots, meaning that choosing the logos through

visual consistency further reduces the intrusiveness. The

third set outperforms the baseline on 59 (84%) shots. The

average consistencies of the three methods are 0.93, 0.95,

and 0.96. Figure 9 shows two examples of overlay inser-

tion, including the shot saliency maps, the baseline method,

random VC at LAR, and the final result. Figure 9a shows a

shot on which our approach failed. Figure 9b shows a

result that virtual content choosing reduces the intrusive-

ness. In this result, global visual consistency and local

visual consistency give the similar results. The above

comparison result verifies the effectiveness of @ICT.

5.4 In-scene insertion evaluation

In this section, we test the proposed in-scene insertion

method both quantitatively and qualitatively. In-scene

insertion should be performed on videos of indoor or out-

door of urban scenes. Therefore, ‘‘Friends’’, ‘‘Children at

home’’, ‘‘ROB-B-HOOD’’, and ‘‘Full house’’ are chosen

for in-scene insertion. The insertion time and insertion

place detection result is shown in Table 1, which shows the

total shot number, the number of the manually chosen

insertion shots, and the number of the detected insertion

shots. Among the four videos, ‘‘ROB-B-HOOD’’ contains

smaller ratio of insertion shots because it is an action movie

and many shots are of fierce camera motion. The result

verifies that our insertion time and place detection methods

for in-scene insertion are effective.

Among the detected insertion shots, 10 ones are chosen

for evaluation. For the detected insertion place, we manu-

ally label the corresponding region in each frame as ground

truth. The tracking precision is evaluated through the dis-

tance between the centers of the tracked region and the

ground truth region:

x; yð Þ � xGT; yGTð Þk k2

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ H2

p
ð22Þ

where (x, y) and xGT; yGTð Þ are the centers of the tracked

region and the ground truth region, respectively. W and

H are the width and height of the video. Considering that

the tracking method may lose the region, we calculate the

average tracking precision of each shot on the tracked

frame and we also calculate the losing ratio for each shot.

The method of this paper is compared with the GME based

method [5], which is adopted in our previous paper [15].

The result is illustrated in Table 2. It can be seen that the

SIFT method performs better than the GME method. The

SIFT method obtains much more precise region tracking

result and does not lose any region.

Then the insertion results are evaluated by users. In this

experiment, our major purpose is to evaluate the in-scene

insertion method, including deforming the VC through affine

rectification and tracking the camera. Therefore, in the

results, we did not match the VC and the shot through visual

Table 1 Insertion shot detection result

Video Shot Insertion shot Detected

Friends 326 8 7

Children at home 253 9 8

ROB-B-HOOD 3228 29 25

Full house 693 27 20

Fig. 8 Consistency of the three sets of results of overlay insertion.

The insertion results of a and b are shown in Fig. 9
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consistency. Instead, to make the result convenient for the

subject to watch, we inserted into the shots with high-con-

trast VCs and kept the images’ background. Thirteen users

take part in the study. The users are requested to give each

result an overall score under the following criteria:

1. Is the result’s deformation consistent with the scene?

2. Does the inserted VC follow the camera motion?

3. To what degree the user is satisfied with the result?

The scores are scaled from 1 to 5 to represent the sat-

isfactory degree with 1 being not satisfying at all and 5

being very satisfying. The mean and variance of the user

scoring result is illustrated in Table 3. The representative

frames of the shots are shown in Fig. 10. Three of the

results, including the 1st, 6th, and the 9th ones, have

multiple frames shown in the figure. The 6th result gets the

lowest score because the camera tracking method causes

the displacement of the brand. The 1st and the 9th results

are satisfying ones. In the 1st one, the proposed method

tracks the camera motion well, even after the person walks

in front of the insertion place. In the 9th shot, the logo of

Nike is embedded into the circumstance with vividness.

From the above evaluation result, it can be concluded that

the overall performance of in-scene insertion is acceptable.

6 Conclusion

In this paper, we propose a generic virtual content

insertion solution, called @ICT. This solution trades off

Fig. 9 Examples of overlay insertion. In each insertion result, the inserted content is enlarged and shown in the red box. The consistencies of the

result can be found in Fig. 8

Table 2 Comparison of the GME based in-scene insertion method

and our new method

No. Center distance Losing ratio

GME SIFT GME SIFT

1 0.14 0.04 0.38 0

2 0.02 0.01 0 0

3 0.21 0.01 0.67 0

4 0.04 0.01 0.83 0

5 0.22 0.01 0 0

6 0.39 0.06 0.37 0

7 0.16 0.01 0 0

8 0.08 0.02 0 0

9 0.11 0.01 0.67 0

10 0.00 0.05 0.89 0

Average 0.14 0.02 0.38 0

Table 3 User study result of in-scene insertion

No. Mean Variance No. Mean Variance

1 4.38 0.92 6 2.92 1.08

2 3.08 1.41 7 3.08 1.08

3 3.69 1.06 8 3.38 1.42

4 3.31 1.40 9 4.23 0.86

5 3.15 1.31 10 3.00 0.83

Average Mean Variance

3.42 1.14
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between the two conflicting tasks of VCI by taking

advantage of audience attention. It ensures the inserted

content to be noticed by audiences through inserting the

contents into the attentive shots. To decrease the intru-

siveness caused by insertion, it detects the lower attentive

region as insertion place and chooses virtual content

according to visual consistency. Furthermore, it includes

an in-scene insertion module. It embeds the virtual con-

tent into the video vividly through affine transformation

and camera tracking.

Although the experiments have verified the effective of

@ICT, there are several possible improvements and

extensions for it. First, visual attention is a far more

complex mechanism. It has two major progresses, bottom–

up attention and top–down attention, corresponding to

stimulus-driven and task-driven, respectively. In our work,

we employed only bottom–up attention, which is incapable

of semantic content of videos. This incapability is shown in

the HAS detection result. Second, textual relevance and

user preference, as used by AdOn, can be employed to

improve the virtual content choosing method furthermore.

Third, for application in broadcasting, the inserted virtual

content can be encoded separately with the original video.

For overlay insertion, it needs only the insertion time,

place, and content. For in-scene insertion, besides insertion

time, place, and content, it needs the affine matrix and the

homography matrices. Separate encoding the virtual con-

tent can facilitate transferring different virtual content

according to user preference.
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