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Currently, Nearest-Neighbor approaches (NN) have been applied to large scale real world image data

mining. However, the following three disadvantages prevent them from wider application compared to

other machine learning methods: (i) the performance is inferior on small datasets; (ii) the performance

will degrade for data with high dimensions; (iii) they are heavily dependent on the chosen feature and

distance measure. In this paper, we try to overcome the three mentioned intrinsic weaknesses by taking

the abundant and diversified content of social media images into account. Firstly, we propose a novel

neighborhood similarity measure which encodes both the local density information and semantic

information, thus it has better generalization power than the original image-to-image similarity.

Secondly, to enhance the scalability, we adopt kernelized Locality Sensitive Hashing (KLSH) to conduct

approximated nearest neighbor search by utilizing a set of kernels calculated on several complemen-

tary image features. Finally, to enhance the robustness on diversified genres of images, we propose to

fuse the discrimination power of different features by combining multiple neighborhood similarities

calculated on different features/kernels with the entire retrieved nearest labeled and unlabeled image

via the hashing systems. Experimental results on visual categorization on the Caltech-256 and two

social media databases show the advantage of our method over traditional NN methods using the

labeled data only.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

During the past decade, social media for social interaction have
developed into a very important media on the web. According to
the statistics in [1], social networking now accounts for 22% of all
time spent online in the USA. For every second, there are millions
of people acquiring and sharing various kinds of information on
web sites such as Flickr [2], YouTube [3] and Twitter [4].

Among all kinds of information carrier, image and video are
believed to convey more vivid life experiences than text. Due to
the popularity of digital camera and the social networking,
photographs and videos can be easily produced by ordinary users
and shared online. However, facing with explosively growing web
images and videos, we cannot effectively retrieve and utilize the
web image database without effective data mining tools, includ-
ing image categorization [9,11,17,28,34,37–39,40,46–48], image
tagging [45], image re-ranking [36] and video enhancement [24].
ll rights reserved.
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As one of the most important image data mining research,
automatic image categorization has drawn considerable attention
during the past few decades. The significant endeavors made in the
research community have resulted in many novel and effective
approaches. For typical dataset such as Caltech-101, the classifica-
tion accuracies of state-of-the-art methods have been improved
from 20% to almost 90% during the past few years [9,38].

Among the existing approaches, a well-studied paradigm for
image classification is offline learning based approaches. The classi-
fication model is generated offline using the whole set of training
data, which requires an intensive training step (for example, SVM
[17], Boosting [46] and distance metric learning [21,45]). Another
is the lazy learning paradigm, which requires no training step on
model parameters, and the prediction is not given until a query is
made into the system. The most common lazy learning approach is
k-Nearest Neighbor Classification (k-NN), which classifies an image
by the class of its most similar images in the database.

Compared with the offline learning approaches, lazy learning
approaches have several advantages: (i) no training and learning
step is required; (ii) no over-fitting issues should be considered;
(iii) they can naturally handle thousands of image classes and
millions of images, which is more suitable for the application of
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social media data mining with billions of data; (iv) the classifica-
tion model can be easily updated by replacing the examples in the
database instead of expensive model re-training. Furthermore,
when the number of labeled images in the database is large
enough, the error rate of Nearest-Neighbor approaches converges
to the optimal Bayes error rate [7], which provides a theoretical
foundation for NN methods. However, Nearest-Neighbor approaches
usually achieve inferior performance than offline learning approaches
in many scenarios [9]. To improve the robustness of NN methods so
as to perform well on large scale real world image categorization, we
address the weakness of them from three aspects in this paper.

Firstly, NN approaches are weak on small size database. When
the data size is small, the true data distribution under certain
feature representation could not be well approximated because of
the sparseness in high dimensional space. In this situation, the
image-to-image distance will be sensitive to various types of
appearance and illumination variation, which would easily influ-
ence the local neighborhood structure. Therefore, given the query,
the ratio of the retrieved nearest neighbor images with consistent
semantic information will be reduced, which is the main issue
that determines the model capacity of NN. Previously, there were
mainly two major solutions for this problem. The first is increas-
ing the ‘‘hit rate’’ of semantically consistent images in the
retrieved subset by enlarging the size of database with labeled
or weakly labeled images [19,9], and the second directly enhances
the semantic consistency of the original feature representation by
learning a new distance metric or space transformation using the
side information in the image data [15,20,21,43,45].

Considering the fact that increasing the number of labeled
image spends a lot more computation and annotation efforts
compared with increasing the number of unlabeled image, we
improve the performance of NN approaches under limited num-
ber of labeled images by designing a more robust similarity
measures in this study. We address the problem from two
aspects. To enhance the semantic consistency of the similarity
measure, an offline distance metric learning is conducted to
obtain a Mahalanobis matrix for calculating the pair-wise simi-
larity. To improve the robustness to appearance variation and
noise, the local data density information is encoded into the
similarity measure by using the large scale unlabeled and
untagged web images, since they could be used to approximate
the distribution in the feature space. Specifically, the proposed
neighborhood similarity between query images and labeled
images in the database is calculated with both the image-to-
image similarity between them and their neighboring unlabeled
data. The neighborhood similarity provides more semantic con-
sistent and noise-free description of the similarity among images
than the original image-to-image similarity, so that the model
capacity will be enhanced.

The second aspect that we consider in this paper is designing a
scalable nearest neighbor search system on large scale real world
image database. Generally, compared with precise nearest neigh-
bor search which usually requires at least O(N log(N)) time in
complexity, conducting approximated nearest neighbor search is
a better choice as it usually requires sub-linear time. Among all
the approximated approaches, locality sensitive hashing (LSH)
[12,14] is believed to perform well on high dimensional data by
using random projection functions to project each data item into
a set of binary codes. However, when doing hashing on data with
tens of thousands of dimensions, like any other approximated
nearest neighbor methods, LSH takes risk to degrade since the
data structure with high dimensional representation is extremely
sparse. Therefore, we adopt a kernelized locality sensitive hashing
(KLSH) [27]. The hash function is constructed using the simila-
rities among data items instead of the original feature, which
avoids the ‘‘curse-of-dimensionality’’ problem by kernel trick.
Another advantage of hashing with kernel endows ability to
improve the approximated nearest neighbor searching by using
arbitrary kernel representation, including those learned by any
state-of-the-art distance metric or kernel learning approaches.
The complexity of KLSH is almost the same as the original LSH,
which implies that KLSH inherits the efficiency of LSH.

Finally, NN approaches are very sensitive to the chosen feature
and distance measure. According to our observation, different
features and distance measures provide different descriptive
ability for different genres of images. For example, color feature
is good at describing sports images, texture feature is descriptive
for object images, and dense bag-of-word feature performs con-
sistently well for discriminating scene images. The limitation of
using one feature only constrains NN approaches to apply on
general image categorization tasks. To overcome this weakness,
we construct KLSH on a set of features and kernel representations
instead of one, and the nearest neighbors returned by the system
using different features are used to calculate the neighborhood
similarity respectively on each feature channel. Then the final
similarity measure between any two images is the weighed
combination of the neighborhood similarity on different features.
This is similar to the Multiple Kernel Learning [5,31,35] in spirit,
where the outputs are formed by using different features/kernels.
Therefore, more generalization power can be obtained, and the
overall error would be reduced by combining the discrimination
power of multiple neighborhood similarities. This statement will
be proved by experimental evaluation and theoretical analysis
in Section 2.7.

In this paper, we propose a new Nearest-Neighbor image
classification method, which is based on the studies in our
previous work [41]. We extend our work by incorporating the
issue of semantic consistence, and provide some theoretic view to
prove that the error rate of our combined method will be lower
than traditional NN approaches with single feature. Moreover, we
conduct experiment on social media image datasets to show the
potential of our method on social media data mining.

In general, the key contributions are presented in four aspects:
(1) we propose a neighborhood similarity measure for Nearest-
Neighbor classification, which encodes the local density informa-
tion by using unlabeled data and semantic consistence by
incorporating distance metric learning; (2) we propose to com-
bine the discrimination power of different features to form the
final decision output of an unknown sample, which enhances the
robustness for processing the real world data; (3) we provide
theoretic analysis to demonstrate how k-NN using multiple
neighborhood similarity outperforms k-NN using on single fea-
ture and image-to-image distance; (4) we construct a practical
system that is able to perform real world social media image
categorization.

The rest of this paper is organized as follows: In Section 2, we
describe every details of our method. In Section 3, we conduct
extensive experiment on three distinguished image database to
evaluate our method. In Section 4, we provide a brief review of
the related works. Section 5 provides conclusions and discussion
on future works.
2. Method

2.1. Overview

The framework proposed in this paper is described in Fig. 1.
Firstly, a set of kernelized LSH systems are constructed both on
labeled and unlabeled data based on the learned kernels for each
feature channel as introduced in Sections 2.3 and 2.5. A query
image is fed into the system and all the nearest neighbors found



Fig. 1. System work flow of our method.
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by different KLSH are returned. Then the similarity between query
image and the returned nearest labeled data is calculated using
the learning method introduced in Sections 2.2, 2.3 and 2.4. The
final decision output is determined by the scheme introduced in
Section 2.6. We describe each part in detail.
2.2. Neighborhood similarity

Generally, a better similarity measure should be able to encode
the local density and manifold information. The motivation of the
neighborhood similarity measure is to use the unlabeled data to
approximate the true data distribution in the unknown kernel
space. Our method is based on the following assumptions:
(a)
 Data points with similar local density are likely to be more
similar than data points with different local density.
(b)
 The similarity among data points on dense manifolds tend to
be larger than data points on sparse manifolds.
These two assumptions are consistent with the manifold
assumption [50,32,33] and cluster assumption [44,50] used in
many semi-supervised literature. Specifically, given a fixed fea-
ture representation which corresponds to a certain kernel K, we
represent a sample x by the linear combination of its own implicit
representation with respect to the kernel K and its average of
neighboring representation as:

FNðxÞ ¼ a0FOðxÞþ
ð1�a0Þ

9NbdðxÞ9

X
x0ANbdðxÞ

FOðx
0Þ ð1Þ

where Nbd(n) denotes the neighborhood unlabeled sample set,
and FOðxÞ denotes the feature representation in the high dimen-
sional Hilbert space given the kernel.

Based on the expression in Eq. (1), the similarity of query x and
the labeled examples y are calculated by the weighted averaging
of the original kernel value KOðx,yÞ and the neighborhood kernel
values in the following equivalent form:

KNðx,yÞ ¼ aKOðx,yÞþð1�aÞ
P

KOðx0,y0Þ

9NbdðxÞ9d9NbdðyÞ9
,

x0ANbdðxÞ, y0ANbdðyÞ, x0,y0AU ð2Þ

where KOðx,yÞ ¼/FOðxÞ,FOðyÞS, U denotes the unlabeled data. a
is the weight parameter. We set a¼0.5 empirically. The modified
feature representation is similar to the cluster center in the
convex hull formed by the linear combination of feature repre-
sentation from the data itself and the neighborhood unlabeled
samples. Under this representation, different clusters rather than
different samples become better separated from each other.
Compared with the image-to-image similarity, the neighborhood
similarity measure provides better discrimination power for a set
of samples instead of only one sample. Therefore, it is more robust
to noise and small image variations and noise.
2.3. Distance metric learning

To improve the semantic correspondence of the proposed neigh-
borhood similarity measure, we conduct distance metric learning on
each feature representation. The target of distance metric learning is
to learn a matrix A¼LTL for the Mahalanobis distance as:

dAðx,yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�yÞT LT Lðx�yÞ

q
ð3Þ

The learned metric should satisfy that the distance between
any pairs of data from the same class should be nearer than those
pairs from different classes. To this end, we minimize the following
objective function with large margin constraints as proposed in [43]:

min
P

j/i d2
Aðxi,xjÞþm

P
lð1�yilÞxijl

h i
s:t: d2

Aðxi,xlÞ�d2
Aðxi,xjÞZ1�xijl

xijlZ0, Aj0 ð4Þ

The method maximizes the margin between the distance of
local sample from the same class and the distance of samples from
different class. In fact, the LMNN metric learning approach is only
able to achieve acceptable training time on datasets with hundreds
of feature dimension. When learning the distance metric on high
dimensional feature representation, for example, the multi-level
spatial pyramid feature with more than 20 K dimensions, the
training time cost as well as the memory consumption become
prohibitive. Therefore, for features with more than 1 K dimensions,
we first conduct PCA to reduce the dimensions to 300.

Consequently, after we learn the matrix A, the kernel value
(similarity) between x and y is represented by:

KAðx,yÞ ¼ KðLx,LyÞ ð5Þ

where Kðd,dÞ represents any kernel form, such as inner product,
RBF kernel or Gaussian kernel. For notation convenience, we
denote the learned kernel using distance metric learning in (5)
for mth feature channel as K ðmÞL . Consequently, the neighborhood
similarity K ðmÞN of mth feature channel is:

K ðmÞN ðx,yÞ ¼ aK ðmÞL ðx,yÞþð1�aÞ
P

K ðmÞL ðx
0,y0Þ

9NbdðmÞðxÞ9d9NbdðmÞðyÞ9

x0ANbdðmÞðxÞ,y0ANbdðmÞðyÞ,x0,y0AU ð6Þ

2.4. Multiple neighborhood similarity

As discussed in the previous section, the original NN
approaches based on single feature is not capable of dealing with
various genres of images from real world. Recent studies on
machine learning have proved that employing multiple features/
kernels can improve the discrimination power of the model
[5,11,28,31,35,38,47]. Specifically, the multiple neighborhood
similarity is described as the weighted average of the neighbor-
hood similarity on single feature:

KNðx,yÞ ¼
XM

m ¼ 1

wmK ðmÞN ðx,yÞ, s:t: wmZ0,
XM

m ¼ 1

wm ¼ 1 ð7Þ

where wm is a group of pre-calculated weight coefficients. This
similarity measure is similar to the form of kernel in multiple kernel
learning [5,31,35], where the kernel Kðxi,xjÞ and model f ðxÞ are:

Kðxi,xjÞ ¼
XM

m ¼ 1

bmKmðxi,xjÞ, s:t: wmZ0,
XM

m ¼ 1

wm ¼ 1

f ðxÞ ¼
X

i

aiyi

XM
m ¼ 1

bmKmðxi,xÞ

 !
ð8Þ
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Different from [5,31,35], we do not train the model offline to
obtain the model parameter a and b with some optimization
procedure. The most time consuming offline procedure in our
method is to conduct distance metric learning to learn a better
kernel K ðmÞL for each feature channel. Then the final decision
output is calculated directly by the voting scheme, which will
be described in Section 2.6.

2.5. Kernelized locality sensitive hashing

To efficiently conduct approximated nearest neighbor search
based on arbitrary kernel representation, we adopt the recent
developed kernelized locality sensitive hashing method [27]. The
intuitive of kernelized LSH is to perform LSH in an unknown high
dimensional kernel space. With similar theorem used in Kernel PCA
[27], the hashing function for mth feature channel is written as:

hðmÞðfðxÞÞ ¼ sign
XP

i ¼ 1

wðiÞK ðmÞðxi,xÞ

 !
ð9Þ

where fðxÞ denotes the unknown representation in high dimen-
sional space. In the original LSH approaches [12,14], randomized
projection is conducted to project the original feature into a set of
binary codes by using a family of randomized functions. For KLSH,
the randomized projection is simulated approximately by a subset
of data items. Specifically, the weight vector w is calculated as:

w¼ ðK ðmÞÞ�1=2 1

T
es�

1

P
e

� �
,

K ðmÞ ¼ V ðmÞLðmÞðV ðmÞÞT ,ðK ðmÞÞ�1=2
¼ V ðmÞðLðmÞÞ�1=2

ðV ðmÞÞT ð10Þ

where K(m) is the kernel matrix of the randomly chosen P items of
the whole database, and each element can be calculated using (5).
The eigenvector and eigenvalues of K(m) using SVD are represented
by V(m) and LðmÞ, respectively. P is usually very small (we set P¼300
for our experiments unless special statement is given) compared
with the whole data size. e is a vector with P ones and es is an
indicator vector for a subset S from the P items:

esðiÞ ¼
1, if iAS

0 else
, i¼ 1,::P

�
ð11Þ

The size of S is T. In this paper we set T¼30. A set of hash
functions could be obtained by randomly choosing the subset S.

According to the analysis in [27], the effect of the randomized
projection on unknown feature space can be guaranteed by large
number theory. The larger P and T are, the better the randomized
projection will be. However, for tradeoff of efficiency and effec-
tiveness, we declare that the setting of P¼300 and T¼30 is a
reasonable choice.

In this paper, to improve the recall of the nearest neighbor
search, we construct 3 hash tables for each feature channel. The
candidate nearest neighbor subset is the union of retrieved
images using these 3 hash tables. Then the nearest neighbors
are identified as the top items with largest kernel values from the
sorted list. We describe how to conduct decision on unknown
image in Section 2.6.

2.6. Decision output

Based on KLSH, we firstly identify those nearest neighbor
samples from the database. Given a query x, for each KLSH
system, the candidate nearest neighbor samples are those exam-
ples whose hash codes are in the most similar buckets with the
query samples. Since we must guarantee that both the nearest
labeled and unlabeled data can be chosen, we respectively
retrieve the labeled and unlabeled items in the Top 3 nearest
buckets, considering the distribution difference of the hash code
representation. The fact that the chosen labeled and unlabeled
data are neighboring samples to each other can be guaranteed by
triangle inequality:

dðy,zÞrdðx,zÞþdðx,yÞ ð12Þ

where x denotes the query, y and z denotes any retrieved nearest
sample candidate from the labeled and unlabeled sample,
respectively.

After we have obtained ðN1
L ,:::,NM

L Þ nearest labeled candidate
sample and ðN1

U ,:::,NM
U Þ nearest unlabeled candidate samples given

a query x, the set of the nearest labeled samples are identified as
the top BL items with largest kernel values. Therefore, the final
nearest labeled samples sets are NLC ¼ uniqueðN1

LC ,:::,NM
LCÞ, where

9Nm
LC9¼minð9Nm

L 9,BLÞ. For calculating the neighborhood similarity
measure, we should identify those nearest unlabeled samples for
both the query x and the selected labeled subset NLC. For finding
neighborhood of x, we can easily obtain nearest unlabeled
samples for each feature channel by choosing the top BU items
with largest kernel values. For finding the neighborhood of a
labeled sample y from NLC, the most direct solution is by treating
y as a query to find those unlabeled sample candidates. However,
this is not only time consuming, but also requiring extra memory
to store the retrieved sample subset for each y from NLC, which
usually contains more than one hundred labeled samples and
10 K unlabeled samples. Therefore, we select the top BU items
from Nm

U for each y as the neighborhood instead. The selected
neighborhood can be a good approximation of the real neighbor-
hood, since the triangle inequality ensure that the samples from
Nm

U are similar with those from NLC with high probability.
Since we have identified the neighborhood information for the

given query and the retrieved nearest neighboring labeled images,
we calculate the neighborhood similarities for each feature
channel between query x and the labeled sample set NLC. If all
the returned labeled samples come from the same class, the
decision output is directly assigned with this class index. Other-
wise, the decision output of query x is calculated as follows:

C ¼ argmaxQ
1

9NLCðQ Þ9

X9NLCðQ Þ9

j ¼ 1

KNðx,xj,Q Þ

¼ argmaxQ
1

9NLCðQ Þ9

X9NLCðQ Þ9

j ¼ 1

XM
m ¼ 1

wmK ðmÞN ðx,xj,Q Þ

xj,Q ANLCðQ Þ, Q A ½1,NC �,
XM

m ¼ 1

wm ¼ 1 ð13Þ

where NLC(Q) denotes the set of Qth class samples in NLC. NLC(Q) is
used to reduce the influence of imbalanced number of retrieved
labeled images. The weight wm of mth feature channel deter-
mined by experiment on the validation set, which is a subset of
unlabeled data with human labeled ground truth. The whole
procedure is described in Algorithm 1.

Algorithm 1. The proposed nearest neighbor classification procedure

Settings: A labeled dataset L with Nc classes of images; An
unlabeled dataset U. M features/kernels.

Procedure:
1. Build M kernelized LSH systems on both labeled data and

unlabeled data for each features/kernels.
2. For each test query sample x:

(a) Obtain ðN1
L ,:::,NM

L Þ labeled candidates and ðN1
U ,:::,NM

U Þ

unlabeled candidates from the database.

(b) Obtain the labeled subset ðN1
LC ,:::,NM

LCÞ and identify the

neighborhood of x and ðN1
LC ,:::,NM

LCÞ.
(c) If all the returned labeled samples come from

one class.



Table 1
Experimental setup description.

Dataset 1:
L and T: Caltech-256: image dataset with 256 objects. Size: 30607.

U: Web image data: collected from flickr.com with 256 object categories. The

dataset is downloaded using the same class names as Caltech-256. Size:

251921.

Dataset 2:
L and T: MIR-FLICKR-25 K: image dataset with 23 classes of images. Size: 25 K.

U: MIR-FLICKR-1 M: images which does not include the MIR-FLICKR-25 K

subset. Size: 975000.

Dataset 3:
L: NUS-WIDE: a randomly chosen subset of the training data. Size: 80894

(50%).

U: NUS-WIDE: the rest of the training data. Size: 80895 (50%).

T: NUS-WIDE: test data. Size: 107859.

L: the labeled training data. U: the unlabeled data. T: the test data.

Environment:
OS: Windows XP; Computer: Lenovo Think Center M6000t desktop; CPU:

Intel(R) Core2 Duo E7500 @3.00 GHz; Memory: 4.0 G RAM; Programming

platform: Matlab R2009.

Features and similarity measures used for Dataset 1 and 2:

(1) 3 level PHOG-180 with Chi2þGaussian kernel.

(2) 88 Color Moment with RBF kernels.

(3) Gist descriptor with chi2þGaussian kernel.

(4) 3 level spatial pyramid kernel with dense SIFT feature (visual vocabulary

size: 500)

(5) 3 level PHOG-360 with Chi2þGaussian kernel.
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return Class index for x
Else Calculate the similarity between q and the
labeled data using Eq. (13).
End

End For

2.7. Theoretic analysis

In this section, we provide some theoretic analysis on the error
bound of our method. Suppose the k-NN model on each distin-
guished feature f mðxÞ satisfies:

YðxÞ ¼ f mðxÞþem,

em �Nð0,s2
mÞ, m¼ 1,:::,M ð14Þ

where the noise em is independent with each other. Then the error
of each f mðxÞ can be represented by:

Em ¼ Ex½ðf mðxÞ�YðxÞÞ2� ¼ s2
m, m¼ 1,:::,M ð15Þ

The error of the combined k-NN model in our study can be
written as:

E ¼min
w

Ex

X
m

wmf mðxÞ�YðxÞ

 !2

s:t:
X

m

wm ¼ 1 ð16Þ

Since each em is independent, we have:

Ex

X
m

wmf mðxÞ�YðxÞÞ
2

 #
¼
X

m

w2
mExðf mðxÞ�YðxÞÞ2

"

þ2
X

m1 am2

wm1
wm2

Ex½ðf m1
ðxÞ�YðxÞÞðf m2

ðxÞ�YðxÞÞ� ¼
X

m

w2
ms

2
m

ð17Þ

The Lagrange of Eq. (16) is:

L¼
X

m

w2
ms

2
mþl

X
m

wm�1

 !

@L

@wm
¼ 2wms2

mþl¼ 0-wm ¼�
l

2s2
m

ð18Þ

We put wm back to the Lagrange:

L¼
X

m

w2
ms

2
mþl

X
m

wm�1

 !
¼ l2

X
m

1

4s2
m

�l2
X

m

1

2s2
m

�l

¼� l2
X

m

1

4s2
m

þl

 !

And then we have the following unconstrained dual problem:

E ¼min
l
� l2

X
m

1

4s2
m

þl

 !
ð19Þ

We can easily conclude that the optimal value of E can be
obtained as:

l¼�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m1=s2
m

p , E ¼
1P

m1=s2
m

ð20Þ

We show that Eomin
m

Em, because for any Em:

E ¼
1P

m1=s2
m

oEm ¼ s2
m31o

X
m0

1

s2
m0

 !
s2

m ¼ 1þ
X

m0am

s2
m

s2
m0

ð21Þ

From the analysis we can see that, the generalization error of
the combined model in our study is less than the minimal error of
any single model f mðxÞ, if each feature channel is independent
with each other. When more features are involved and their
prediction error sm is small enough, the denominator of E on the
left of the equal sign in Eq. (21) will become larger, and the error E

will be smaller. This also provides the guidance on how we choose
the features for constructing the system. Generally, more features
are desirable when they are able to describe different aspects of
the images so as to make the model f mðxÞ uncorrelated with each
other. Moreover, the generalization error of the combined model
is determined by the generalization error lower bound of each
f mðxÞ. Therefore, it is reasonable to improve the performance
of each f mðxÞ by techniques such as distance metric learning in
this paper.

In real world application scenario, we will show in the
experiment that even when the independence condition cannot
be guaranteed, the performance of the combined model still
outperforms k-NN with single feature.
3. Experiments

We conduct experiments to evaluate the performance of our
method. The details of overall experiment setup are shown in
Table 1. We run all the experiments on a desktop computer,
which does not need a lot of computational resources. We
evaluate our method on three different real world image classi-
fication problems. Dataset 1 is a challenging visual object cate-
gorization dataset with 256 object classes. Dataset 2 is a large
scale image dataset collected from Flickr, which involves classi-
fication or retrieval tasks on dozens of common semantic classes
such as sky, water, building and person. Dataset 3 is a web image
dataset with well labeled ground truth for 81 semantic concepts.

3.1. Experiment on Caltech-256 using social media unlabeled data

In this part of experiment, we use the Caltech-256 as the
labeled dataset, and download more than 250 K unlabeled images
from Flickr [2] as the unlabeled dataset. Five features and kernels
describing different property of images are used, including
texture [10], color, Bag-of-Words [10] and global feature [37] as
described in Table 1.

We randomly select 5, 10, 15, 20, 25 and 30 labeled samples
from each class of Caltech-256 as the labeled data, and randomly



Table 2
Accuracy with 30 images per class.

Methods Performance Methods Performance

NN-1 33.072.1% D-NN-1 37.571.8%

NN-3 36.571.75% D-NN-3 41.571.6%

NN-5 40.171.4% D-NN-5 43.671.31%
UNN-1 35.071.1% D-UNN-1 40.171.0%

UNN-3 38.670.76% D-UNN-3 44.970.9%
UNN-5 44.470.42% D-UNN-5 47.170.37%
Boiman et al. [9] � 42%
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select the other 25 samples for each class as the test data. We
repeatedly choose the training and testing samples for ten times,
and all the results reported in this paper are average and standard
deviation of results on these ten different and independent data
separations. All the web data is used as the unlabeled data.

When the unlabeled data is not used, our method is equal to
the traditional Nearest-Neighbor approach, which is treated as
the baseline method. We implement the baseline method in
3 versions, where NN-1, NN-3, NN-5 denotes the baseline meth-
ods using 1, 3 and 5 kernels, respectively. For NN-1, the kernel (1)
in Table 1 is used, and for NN-3, the kernels (1)–(3) are used. We
denote our approach with neighborhood similarity but without
distance metric learning by UNN-1, UNN-3, and UNN-5, using the
same 1, 3 and 5 kernels respectively as the baseline methods. The
corresponding traditional NN methods with distance metric
learning are denoted by D-NN-1, D-NN-3, and D-NN-5. And
finally, we denote our methods with both distance metric learn-
ing and neighborhood similarity measure by D-UNN-1, D-UNN-3,
and D-UNN-5, respectively. For all the methods, we use a 64-bit
hash function for each kernel, and set BL¼15 and the unlabeled
neighborhood size BU¼10 for both performance and efficiency
consideration. The performances are demonstrated in Fig. 2 and
Table 2.

The results in Fig. 2 and Table 2 are the average of the
classification accuracy of ten runs. In Fig. 2(a), compared with
NN-1, NN-3, and NN-5, the average classification accuracy is
improved when the unlabeled data is incorporated, as can be
seen from the performance curves of UNN-1, UNN-3, and UNN-5.
In Fig. 2(b), the performance of NN is improved when distance
metric learning is incorporated in D-NN. In Fig. 2(c), D-UNN
significantly outperforms D-NN and UNN since both semantic
consistence and neighborhood information are incorporated.
Finally in Fig. 2(d), we compare the four approaches with
5 kernels, and the result shows great improvement of our method
over other approaches.

From Table 2 we can see that, our methods UNN outperform
the traditional NN approaches on the average accuracy and
Fig. 2. (a) NN vs. UNN, (b) NN vs. D-NN vs. UNN, (c) D-NN vs.
standard deviation, and they are also comparable with D-NN.
Our methods D-UNN outperform other approaches as well as the
state-of-the-art NN approach [9].

In the second experiment, we test how the setting of BL will
affect the performance and time required for testing. The results
are shown in Fig. 3(a) illustrating the performance of 4 methods
with 5 kernels and 30 labeled images per class, where the
neighborhood BU is set to 10 for UNN and D-UNN. Form the curve
we can see that for NN-5 and D-NN-5, the best performance is
achieved when BL¼12, and BL¼15 for UNN-5 and D-UNN-5.
However, we also notice that the performance of NN-5 and
D-NN-5 do not degrade very much when BL¼15. Therefore, we
set BL¼15 for all the experiments in Section 3.1. Next, we conduct
experiment to show how the setting of the unlabeled neighbor-
hood BU affects the performance of UNN-5 and D-UNN-5. The
results are shown in Fig. 3(b). We can see that the highest
accuracy is achieved when the neighboring sample number is
about 10, so we set BU¼10. From the experiment result in Fig. 3
we see that the performance of NN based approaches is sensitive
to the neighborhood size. Therefore, we have to carefully find the
optimal neighborhood size, namely BL and BU in this paper on
each image database.

Table 3 shows the average test time for each test sample for
UNN-5 and D-UNN-5. We notice that the time increases signifi-
cantly when the size of neighbors increases. If the neighborhood
UNN vs. D-UNN and (d) NN vs. D-NN vs. UNN vs. D-UNN.



Fig. 3. (a) Performance on different BL (BU¼10). (b) Performance on different BU (BL¼15).

Table 3
Average time for different neighborhood size (in s).

#Neighbors 1 3 5 10 15 20

UNN-5 1.2 1.8 2.6 3.7 5.3 8.8

D-UNN-5 1.3 2.1 2.8 3.9 5.7 9.2
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size is very large, say 100, the computational cost will be much
larger. Meanwhile, the neighborhood similarity will be over-
smoothed, and it will fail to describe the local data distribution.
Moreover, the average test time for D-UNN-5 is a little bit longer
than UNN-5, because the number of the returned labeled and
unlabeled candidates of D-UNN-5 is usually large than UNN-5.

3.2. Experiment on MIR-FLICKR dataset

In this section, we conduct experiment on the social media data
MIR-FLICKR [25,26]. It contains two datasets, the MIR-FLICKR-25 K
[25] and MIR-FLICKR-1 M [26]. Specifically, MIR-FLICKR-25 K is
included as a subset in MIR-FLICKR-1 M. Since the ground truth is
only provided for images in MIR-FLICKR-25 K, for the experiment
of visual categorization, we use MIRFLICKR-25 K data as the labeled
data and test data by the way introduced in [25], where the first
3 files in each 5 images are labeled data and the rest are test data.
We treat the rest of images in MIR-FLICKR-1 M which contains
975 K as the unlabeled data. We calculate feature (1), (2), (3) and
(5) for each image and construct 4 KLSH systems with respect
to each feature. The setting of BL and BU is set to 21 and 18
respectively using the same tuning method as Section 3.1. The
weight wm for each feature channel is also identified by using a
small random subset from U as the validation set.

We conduct the wide sense visual categorization as described
in [25], where the human annotators provide annotation with 23
classes, such as people, car, tree, and animal. By observing the
images in the dataset, we find that for each image topic there may
be dozens of subtopics. Given a query image, those images of the
same topic with very different appearance are not likely to
provide strong and reliable cues for determining the class of the
query, as demonstrated in Fig. 4, where each row of images come
from the same topic but with very different subtopics. Therefore,
our nearest neighbor system can be a natural choice which can
reduce the risk of predicting error using those images with very
different appearances.

Before evaluating the performance, we first show what kinds of
nearest neighbors are identified by our system given a query image.
Some examples are show in Fig. 5. For each given image query on
the left in Fig. 5, the images on the first rows on the right denotes
the retrieved images using the weighted-combined learned similar-
ity as described in Sections 2.3 and 2.4, and the images on the
second rows on the right denotes the retrieved images using the
original average Euclidean distance. The yellow crosses denote those
images definitely from different classes. It is obvious that prediction
made using the retrieved samples by our method rather than those
images in Fig. 4 will be much more reliable, although there are a
certain number of images from other classes are falsely detected as
the nearest neighbors. It can also be seen that compared with the
original Euclidean distance metric, our proposed weighted-com-
bined learned similarity provides better semantic consistency so
that the prediction made by k-NN using the examples on the first
rows in Fig. 5 will be much more reliable.

For experimental evaluation using Mean Average Precision
(MAP), we calculate the score of one image with respect to the
Qth class as:

Sðx,Q Þ ¼ 1
9NLCðQ Þ9

X9NLCðQ Þ9

j ¼ 1

XM
m ¼ 1

wmK ðmÞN ðx,xj,Q Þ

xj,Q ANLCðQ Þ, Q A ½1,NC �,
XM

m ¼ 1

wm ¼ 1

ð22Þ

where S(x, Q) denotes the score of x for the Qth class. Then for each
class Q, all the test images are ranked by their score S(x, Q). The
Average Precision is calculated based on the ranked list, and finally
the Mean Average Precision is calculated for all the classes. Using
(22) for decision, the confidential scores rather than the class labels
are needed, therefore it is a continuous version of (13). We record
the MAP for NN-4, D-NN-4, UNN-4, and D-UNN-4 in Table 4. We
see that our method achieves promising improvement. Although
the performance gain of D-NN-4 over the baseline NN-4 by using
distance metric learning is larger than the performance gain of
UNN-4, combining both distance metric learning and neighbor-
hood similarity achieves 29.4% improvement in MAP, which shows
that both distance metric learning and neighborhood similarity
play non-substitutable roles in our framework.

3.3. Experiment on NUS-WIDE dataset

To further evaluate the performance of our method on social
media data, we conduct experiments on the web image database
NUS-WIDE [13]. The dataset contains 81 semantic classes. We use
all the six types of features provided by [13], which includes two
color features (CH, CORR and CM55), texture features (EDH and



Fig. 4. Some examples from the same category.

Fig. 5. Examples of retrieved images given the query. Left images are the queries. The first rows and the second rows denote retrieved examples using weighted combined

learned distance and the original average distance. Images marked by yellow cross are irrelevant.

Table 4
Mean average precision on MIR-FLICKR dataset.

Method MAP

NN-4 0.323

D-NN-4 0.361

UNN-4 0.358

D-UNN-4 0.418
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WT) and bag-of-words feature. For evaluation of our method, we
equally divide the training data into two disjoint subsets L and U.
We test three methods on this dataset. The first (DML-half) is
k-NN classification using the distance metric learning by LMNN on
subset L. The second (DML-all) is k-NN classification using LMNN

on both L and U, and we use U as the labeled set. The third (MNS)
is k-NN using our multiple neighborhood similarity trained on L

and U, but we treat L and U as the labeled set and unlabeled set
respectively. For evaluation of our method, we set BL¼25 and
BU¼12. To compute the Mean Average Precision (MAP) for each
semantic concept, we calculate the decision output by (22). We
repeat the training and testing procedure by 10 times, and we
average the results for each semantic concept and the overall
MAP and show them in Fig. 6.

In this part of evaluation, the first method using half of the
training data as the labeled data is treated as the performance
lower bound of our method, and the second method using all the
training data as the labeled data is treated as the performance
upper bound. What is interesting in this experiment is that how
much the performance can be boosted by our multiple neighbor-
hood similarity. From Fig. 6 we see that, the performance lower



Fig. 6. (a) MAP of our MNS using L and U for labeled and unlabeled data respectively. (b) k-NN using DML-half with L and U as labeled training data. (c) k-NN using

DML-all with L as the labeled training data.
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bound and upper bound in MAP is 0.2434 for DML-half and
0.2995 for DML-all respectively, while our approach achieves
0.2797. Our method and the other two significantly outperform
the reported MAP (0.1569) for the baseline k-NN in [13].

Moreover, among all the 81 semantic concepts, our method
outperforms DML-half on 56 concepts, and outperforms DML-all
on 28 concepts. Our method achieves the highest Average Preci-
sion on 25 concepts including scene concepts such as beach and
nighttime, object concepts such as boats, moon, vehicle and zebra,
higher level semantic concepts such as military and event con-
cepts protest and fire. The experiment again provides strong
support for our proposed multiple neighborhood similarity to
show that it is capable of take advantage of the unlabeled data to
improve the performance for k-NN classification. Another inter-
esting issue observed in Fig. 6 is that DML-all does not outper-
forms on all the semantic concepts, as we observe that it only
outperforms others on 50 out of 81. And correspondingly, DML-half
does not underperform on all the semantic concepts, as we observe
that it still outperforms on 6 semantic concepts.
4. Related work

The method we are studying in this paper is closely related to
three different research areas, the nearest-neighbor based method
for image classification, learning with multiple features and
nearest neighbor search. We briefly review some of the recent
developments in these areas because it is hard to cover every piece.

4.1. Image classification using nearest-neighbor methods

As discussed in the introduction, NN approaches usually show
inferior performances than offline learning approaches because
they are generally dependent on the database size, the features



S. Wang et al. / Neurocomputing 95 (2012) 105–116114
and the distance metric. To bridge the performance gap, a lot of
studies have been conducted, which try to overcome the intrinsic
weakness of NN from different aspects. Firstly, from designing
suitable distance metric aspect, Boiman et al. [9] claimed that the
previously used image-to-image distance will lead to the degra-
dation of NN approaches and proposed an image-to-class distance
measure. Friedman [18] proposed a new local similarity measure
based on kernel methods and recursive partitioning techniques.
Another similarity measure was proposed in [37] to incorporate
the invariance of translations and scaling. As an effective solution
that complements NN approaches, Distance Metric Learning aims
to learn a new distance metric better suited to the specific
classification tasks given the side information of the training
samples. Many state-of-the-art approaches were proposed during
the past few years, such as NCA [20], ITML [15], MLCC [21] and
LMNN [43]. In this paper, we use LMNN which demonstrates good
performances on various classification tasks.

Secondly, from database size aspect, Torralba et al. [37] found
that with extremely large tiny image database, i.e., 80 millions,
NN methods could work well for image annotation, although the
tags of the images are very noisy. Deng et al. [16] constructed a
large scale database with human labeled ground truth on more
than 10 K classes of images. Many efforts have also been devoted
by other researchers to construct large scale image databases
for benchmark testing and performance evaluation, such as
NUS-WIDE [13], and MIR-FLICKR [25,26]. NN approach is more
likely to achieve good performance on these large scale databases.

Next, from image feature aspect, Boiman et al. [9] showed that
feature quantization will reduce the discrimination power of local
features, since NN methods are already very sensitive to the variation
of the local manifold structures. Zhang et al. [49] proposed to
construct a large scale set of visual words and phrases vocabulary
by considering the spatial context information, and good results
were reported by Nearest-Neighbor classification using the histo-
gram intersection based on the descriptive visual words and phrases
representation.

Finally, to enhance to robustness of NN methods, Zhang et al.
[48] combined the efficiency of NN and the effectiveness of SVM.
Local kernel alignment of nearest neighbors was proposed by Lin
et al. [28] to combine the discrimination power of multiple kernel
representation of the neighboring samples given the query
images. Promising performance was achieved by [48,28] on some
small and medium scale image dataset with significant reduction
of computation cost compared with the traditional global learning
approaches.

4.2. Learning with multiple features

A lot of studies have been conducted on efficiently combining
the discrimination power of different features. Two simple schemes
are early fusion where the model is learned on a concatenated
feature representation and late fusion where the decision outputs of
individual classifier are ensemble to form the final output [34].
A canonical semi-supervised learning model for using multiple
feature representation is co-training [8], or multi-view learning
[32,33]. Wang et al. [42] proposed a semi-supervised learning
approach for real world image applications.

As one of the most promising feature fusion methods, Multiple
Kernel Learning (MKL) [5,31,35] combines multiple features in
the way of linear combination of kernels. It has also been used for
object recognition [38], and promising results have been reported
on many challenging datasets. Later, several MKL approaches
[11,22,47,51] modeling the nonlinear combination of kernels
were developed, and better results are achieved especially on image
classification task compared with the original MKL approaches
[5,31,35].
The method in this paper is inspired by the idea of MKL. We
learn the kernel coefficients by minimizing the empirical loss
instead of the structural risk minimization and max-margin
framework in MKL which calls for complicated convex program-
ming procedures.

4.3. Nearest neighbor search

Nearest neighbor search is one of the key components in
modern information retrieval on large scale database. Among
the relevant researches, the most naı̈ve approach is the precise
linear search which could not scale well on large scale data.
Instead, many methods were developed to conduct approximated
nearest neighbor search by the idea of space partitioning, such as
KD-Tree [6], R-Tree [23], BSP-Tree [30], and Ball-Tree [29]. How-
ever, these approaches are likely to fall prey to the ‘‘curse of
dimensionality’’ problem. Locality Sensitive Hashing [12,14] is
one well-known method which performs probabilistic dimension
reduction and approximated nearest neighbor search for high-
dimensional data. The basic idea is to hash the input items so that
similar items are mapped to the same buckets with high prob-
ability. Compared with the space partitioning methods, the
robustness and efficiency of LSH on high dimensional data has
been proved in many studies such as [12,14]. Since LSH is only
able to perform in Euclidean space, Kulis et al. [27] proposed to
perform LSH in the unknown high dimensional space with respect
to any given kernel, which endows LSH with the power of using
many of the existing image kernels as well as learned distance
metric/similarity. We use KLSH in this paper because of its
advantage over space partition methods and traditional LSH.
5. Conclusion

We propose a new Nearest-Neighbor classification method in
this paper. Our contribution includes four aspects: (1) we propose
a neighborhood similarity measure which encodes the local
density information by using unlabeled data and semantic con-
sistence by incorporating distance metric learning; (2) we pro-
pose a method to combine the discrimination power of different
features to form the final decision output of an unknown sample,
which enhances the robustness for processing the real world
data; (3) we provide theoretic analysis to demonstrate how k-NN
using multiple neighborhood similarity outperforms k-NN using
single feature and image-to-image distance; (4) we construct a
practical system that is able to perform real world social media
image categorization. Our method provides promising classifica-
tion result on benchmark dataset Caltech-256 as well as social
media image database MIR-FLICKR and NUS-WIDE compared
with the traditional Nearest-Neighbor approaches. Future study
will be focused on studying and developing more robust local
learning model that can boost the performance of our proposed
approximated nearest neighbor search system on multiple feature
representation.
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