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Strip Features for Fast Object Detection
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Abstract—This paper presents a set of effective and efficient
features, namely strip features, for detecting objects in real-scene
images. Although shapes of a specific class usually have large
intraclass variance, some basic local shape elements are relatively
stable. Based on this observation, we propose a set of strip features
to describe the appearances of those shape elements. Strip features
capture object shapes with edgelike and ridgelike strip patterns,
which significantly enrich the efficient features such as Haar-like
and edgelet features. The proposed features can be efficiently
calculated via two kinds of approaches. Moreover, the proposed
features can be extended to a perturbed version (namely, per-
turbed strip features) to alleviate the misalignment caused by de-
formations. We utilize strip features for object detection under an
improved boosting framework, which adopts a complexity-aware
criterion to balance the discriminability and efficiency for feature
selection. We evaluate the proposed approach for object detection
on the public data sets, and the experimental results show the
effectiveness and efficiency of the proposed approach.

Index Terms—Complexity-aware criterion, object detection,
strip features.

I. INTRODUCTION

BJECT detection is a fundamental problem in computer

vision and pattern recognition, and it is an indispensable
technology in emerging applications such as video surveillance,
driver assistance, and content-based image retrieval. Lots of re-
searchers have paid much attention to object detection and pro-
posed many powerful features and discriminative algorithms.
Although great advances have been made for object detection,
it is still a challenging problem to design a reliable object
detector in images. One of the most important reasons is that
the appearances of different objects change dramatically due
to viewpoints, illuminations, deformations and occlusions. To
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Fig. 1. Car structures versus strip features. (a) Shapes of cars have large
intraclass variance. (b) Components of cars consist of stable shape elements,
such as line and arc strips.

overcome the large variance in appearance, all kinds of cues,
such as shape, color and texture, are extracted from images
for object detection. Among these cues, shape is considered as
one of the most discriminative and reliable one. Therefore, lots
of features are proposed to describe shape characteristics for
object detection. For example, edgelet [28], contour fragments
[24], and active basis [31] explicitly describe shapes based
on shape templates, whereas histogram of oriented gradients
(HOGs) [4], adaptive contours [14], and cooccurrence HOG
(CoHOG) [21] implicitly describe shapes based on the statis-
tical information of oriented gradients in local regions. These
shape-guided features have achieved impressive performance
on object detection for some specific classes, such as faces [26],
[29], cars [7], [8], [35] and persons [4], [32], [34].

Designing efficient features based on shape cue faces two
challenging problems. First, the shapes of one object class
have large intraclass variance due to many factors, such as
translation variance, scale variance, and deformation. We
intuitively show the consequence caused by these factors in
Fig. 1(a). We extract the edge maps of the side-view cars
and average the edge magnitudes. Apparently, the edge maps
cannot be well aligned since there are different structures and
different translations and scales for different car images. As a
result, it is difficult to find a shape-guided feature that is well
aligned with the edges of all the cars. Second, there seems to be
a contradiction between discriminability and computation cost
of features. Powerful shape features or descriptors (e.g., HOG
[4] and CoHOG [21]) usually have high computation costs,
which will slow down the detection process. On the contrary,
most of the fast features may be not robust or discriminative for
describing objects with complex shapes. For example, edgelet
features [28] are susceptible to shape variance as they are
based on pointwise matching, and Haar-like features [26] are
short of discriminability as they describe shapes with simple
contrast patterns in rectangular regions. Therefore, it is a
formidable problem to design such a feature that has powerful
discriminability and low computation cost.

Although the shapes of a specific class have large intraclass
variance, some basic shape elements are relatively stable. As
shown in Fig. 1(b), we take the side-view cars as an example.
We can find many consistent shape elements on the wheels,
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pillars, bumpers, roofs, and chassis of different cars. We high-
light some of these car structures using blue—yellow strips.
There are strong intensity contrasts between the yellow strips
and the associated blue strips. The widths of the strips reflect
the scales of the car structure, and the shapes of the strips reflect
the patterns of the associated structures. Obviously, the shapes
of the strips consist of some basic geometric elements, such
as lines and arcs. There are such strip patterns on other object
classes, such as persons, cows, and bicycles. These strips are
informative to describe the shape characteristics in different
scales and thus provide us with crucial cues for distinguishing
the target objects from background.

Based on this observation, we propose a novel set of shape
features, namely strip features, to explicitly describe the
shape characteristics for object detection in still images. The
proposed feature set consists of lines and arcs with edgelike
and ridgelike strip patterns of different widths. Strip features
have three merits for object detection. First, the proposed
features describe shape characteristics based on local regions
rather than single-pixel-width shape templates; thus, they
may be robust to translation and scale variance. Second, the
proposed features can be efficiently calculated via two kinds of
approaches, one of which is based on integral images. Third,
the proposed features can be easily extended to a perturbed
version (namely, perturbed strip features) to alleviate the
misalignment caused by shape variances. We utilize strip
features for object detection under an improved boosting
framework. The boosting algorithm assembles many features
into a discriminative classifier according to a complexity-aware
criterion, which balances the discriminability and efficiency of
the features. Experimental results on the University of Illinois
at Urbana-Champaign (UIUC) car data set [1] and the Visual
Object Classes 2006 (VOC 2006) data set [6] show that our
approach achieves impressive performance and a fast speed.

The main contributions of this paper are in three folds:
1) a novel set of strip features and its perturbed version for ob-
ject detection; 2) two efficient approaches for calculating strip
features; and 3) a new complexity-aware criterion in boosting
framework to balance the discriminability and efficiency.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III describes strip features.
Section IV elaborates the complexity-aware criterion in a boost-
ing framework. Section V shows our experimental results. The
last section draws our conclusions.

II. RELATED WORKS

There has been extensive literature on object detection. Most
of these approaches address the detection problem from two
aspects, i.e., designing features or descriptors and developing
generative models or discriminative algorithms. Therefore, we
review the related works from the above two aspects.

Efficiency and discriminability are two major considerations
for designing features or image descriptors. On one side, the
efficiency of features is critical for fast detectors. Lots of de-
tection approaches adopt simple features with low computation
costs. Two kinds of fast features are widely used for object de-
tection, i.e., edge template features and binary pattern features.
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For edge template features, they describe shapes with single-
pixel-edge template, such as edgelet [28] and contour fragments
[24]. The feature responses can be efficiently calculated via
a lookup table [28] or a fast shape-matching algorithm [24].
For binary pattern features, they describe object patterns with
intensity contrast patterns, such as Haar-like [26], local binary
pattern (LBP) [2], and local assembled binary [33]. These
features can be rapidly calculated via integral images [26]. On
the other side, the discriminability of features decides the final
accuracy of the object detectors. Thus, a variety of complex
features or descriptors is designed to capture useful informa-
tion from images. We review these complex features from
two aspects, i.e., statistical descriptors and shape descriptors.
Statistical descriptors describe object patterns based on various
statistics of images rather than explicit describe patterns, such
as covariance descriptors [20], scale-invariant feature transform
descriptors [16], HOG features [4], and adaptive contours [14].
These features may be unsuitable for fast object detection due
to the high computation costs. Unlike statistical descriptors,
shape descriptors [19], [25] encode the contours, which consist
of boundaries and meaningful inner edges [24], to explicitly
represent object shapes. This kind of approaches is based on
a powerful contour representation and an effective matching
algorithm. Since the contour maps are generated by edge
detection algorithms [3], [17], the detection results of such
approaches severely rely on the edge detection algorithms.
Similar to statistical descriptors, most of shape descriptors are
unsuitable for fast object detection due to high computation cost
in the matching process. Different from the above features, strip
features explicitly describe shape cues without relying on the
edge detection algorithms. All the above features are manually
designed, whereas some other features are autogenerated by
generative algorithms, such as principal component analysis
[38], independent component analysis [40], and nonnegative
matrix factorization [39]. These features are widely used for
object recognition but seldom used for object detection. One of
the reasons is that the autogenerated features are less efficient in
both training and testing processes than the manually designed
features (e.g., Haar-like [26], edgelet [28], HOG [4] and LBP
[2]). Moreover, the autogenerated features cannot outperform
the manually designed ones in object detection [37], [41].
Therefore, we prefer designing strip features with the fast
calculation algorithm rather than autogenerating the features.
Various generative models and discriminative algorithms
have been proposed for object detection. Generative approaches
represent objects in a probabilistic framework, such as a part-
based generative model [11] and an implicit shape model [8],
[12]. Unlike generative models, discriminative algorithms (e.g.,
SVM [4] and boosting [26]) treat object detection as a binary
classification problem and output a binary label (positive or
negative) for each sample. Among these algorithms, boosting
is widely used for object detection [20], [26], [28] as it is
capable of assembling a large amount of simple features into
a discriminative classifier. Most of the boosting algorithms
greedily select the features according to the discriminability
criterion. Since different features have different computation
costs, the complex features may slow down the detection
process if they are selected according to the discriminability.
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Fig. 2. Relationship between strip features and typical structures on cars.
(a) Edgelike line. (b) Ridgelike line. (c) Edgelike arc. (d) Ridgelike arc.

Recently, several researchers propose new feature selection
criteria in a boosting framework to balance the discriminability
and efficiency of features. They select the heterogeneous
features according to the quotient of the discriminability
and computation cost [22], [27]. Previous works deduce the
complexity-aware criterion for only one classifier, whereas we
deduce the proposed complexity-aware criterion by minimizing
the detection time of the cascaded classifier that consists of a
group of classifiers. Thus, the proposed criterion may be more
suitable for the cascaded object detector.

III. STRIP FEATURES

As mentioned in Section I, there are many challenging prob-
lems for designing effective and efficient shape features, such
as variances in translation or scale and deformation. In this
section, we propose strip features and the perturbed version to
address these problems to some extent. Moreover, we elaborate
two kinds of fast calculation approaches for strip features.

A. Definition of Strip Features

Objects of a specific class generally have relatively stable
characteristics in shape. We take side-view cars as an example
in Fig. 2. Apparently, all of the cars have common structural
components such as wheels, pillars, and bumpers. Although
the appearances of these components may look different due to
variations of car models and illumination, they consist of some
basic shape elements, such as lines and arcs with edgelike and
ridgelike contrast patterns. As shown in Fig. 2, the appearance
of a tire can be represented by several arcs with the length of
6-9 pixels and a ridgelike pattern. These characteristics provide
crucial cues for discriminating cars and background. Likewise,
we can also find such common strip patterns on the other object
classes, such as bicycles, cows, and persons. Guided by the
given observations, we propose a set of strip features to describe
these shape elements on objects. A strip feature can be formally
represented by triplet S = (¢, ., p), where ¢z, represents the
curve pattern, with L being the number of pixels; ., represents
the contrast pattern, with w being the width of the strip; and p
represents the position of the feature in the detection window.
All the features with valid ¢y, t,,,, and p form feature set {S}. In
this paper, we suppose that the curve patterns of strip features
contain lines and arcs, and the contrast patterns of strip features
contain edgelike and ridgelike patterns.

As shown in Fig. 2(a) and (c), an edgelike feature can be
described by two back-to-back substrip regions with the same
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curve pattern and width wgr, whereas a ridgelike feature can
be described by three substrip regions. The responses of the
features can be calculated via the averaged intensities of the
substrip regions according to

( Z)) I(z,y) ( X)) I(z,y)
z,y)eR1 z,y)ER2
edge = — , 1
Jfedg | 7l (1)
> I(z,y)
fui _l@yern
ridge — 9 |R1|
(z,y)€R3 _ (z,y)ER2 @
| R3] |R2| ’

where I(x,y) is the intensity at (z,y), | ® | represents the total
number of pixels in a particular region, and R1, R2, and R3 are
the substrip regions, as shown in Fig. 2.

We calculate the feature responses according to (1) and (2).
Such feature responses with absolute value may be more robust
to describe the contrast pattern than that without an absolute
value. Taking cars as an example, the white cars may be brighter
than the background, whereas the black cars may be darker
than the background. Using the absolute values as the feature
responses, strip features can describe the contrast information
that may be robust to the color variances of the objects.

Based on the observation of the object structure, we specif-
ically restrict the curve patterns ¢y, to lines, 1/8 circles, 1/4
circles, and 1/2 circles, which are similar to edgelet [28]. The
substrip regions in one strip feature have the same width, i.e.,
w = 2wg (edgelike) or w = 3wg (ridgelike). Moreover, we
restrict the curve length L to 4-24 pixels and substrip region
width wg to 2-6 pixels in a detection window. The feature set
contains different strip features with different region widths for
each curve pattern. The same curve pattern of different region
widths can be considered as reflecting the same curve pattern in
different scales; thus, strip features are capable of describing
various curve patterns of different scales. We can adopt the
boosting algorithm to select the strip features with the best
curve pattern and scale (i.e., region width).

It deserves to be mentioned that the proposed feature set
is not only a meaningful extension of edgelet feature set [28]
but also a superior set of Haar-like feature set [26]. Compared
with edgelet features, strip features are based on the statistics
of regions rather than the single-pixel-width edges. Thus, strip
features may be more robust to slight misalignment caused
by translation variance, scale variance, and deformation. In
some sense, strip features can be considered as joint Haar-like
features constrained by some curve patterns. Therefore, strip
features can represent typical shapes with basic geometric
elements, such as lines and arcs. Of course, Haar-like features
belong to a subset of strip features, which only contains simple
curve patterns of horizontal and vertical lines. In Fig. 3, we
show three exemplars for edgelet, Haar-like, and strip features
around the wheel of the car. We translate the features around
their initial positions and then calculate the feature responses
at different positions. The feature responses are normalized
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Fig. 3. Feature responses versus translation variances.

into [0, 1] and visualized in Fig. 3. The responses of the
edgelet feature have some sharp peaks. It means that the
edgelet feature is very sensitive to translation variance. On
the contrary, the Haar-like and strip features are robust to the
slight misalignment caused by translation variance. For the
Haar-like feature, the response peak deviates from (0,0) as it
cannot precisely describe the curve pattern of arcs. Compared
with the Haar-like feature, the strip feature captures the wheel
shape more precisely with arc and edgelike patterns. As a
result, the response peak of the strip feature locates at (0,0).
Moreover, the response peak of the strip feature is sharper than
that of the Haar-like feature, which means it is more precise
and discriminative than the Haar-like feature.

B. Fast Feature Extraction

In order to generate a strip feature, we need to specify the
curve pattern, contrast pattern, and position, i.e., cr, t,, and
p. We utilize edgelet [28] to represent c;, and p, and then
dilate the edgelet features along the normal directions to form
the edgelike and ridgelike strip patterns, as shown in Fig. 2.
Obviously, an edgelet can generate multiple strip features by
varying t,,. A straightforward way of extracting the strip fea-
tures is calculating the response according to (1) and (2) by
directly summing all the points, namely the DStrip approach
(or feature). However, the computation cost will be expensive
when the strip regions contain many pixels. Thus, we propose
an alternative method based on integral image to calculate the
features, namely IStrip approach (or feature).

DStrip Approach: We can directly calculate the average in-
tensity of each substrip region point-by-point. The coordinates
of pixels within each substrip region can be easily obtained by
a flood fill algorithm and can be then stored in a list, so that
one edgelike feature has two lists and one ridgelike feature has
three lists. For feature extraction, the feature response can be
calculated according to (1) or (2) using the point lists. This
pointwise method needs a lot of memory and high computation
cost for calculating the average intensities of the substrip re-
gions, particularly when the substrip regions are of large sizes.

IStrip Approach: In order to reduce the memory and com-
putation cost, we propose an approximate algorithm based on
an integral image. Apparently, when the curve patterns only
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(b)

Fig. 4. Line features approximated by associate rectangles. (a) Edgelike.
(b) Ridgelike.

contain horizontal and vertical lines, strip features degrade
to Haar-like features and can be directly extracted using the
integral image approach [26]. The integral image can be com-
puted from an image using a few operations per pixel. Once
computed, the average intensity of a rectangle region can be
computed at any scale or location in a constant time. In this
paper, we focus on the features with oblique line and arc
patterns, as shown in Fig. 4(a) and (b). We employ two series
of small upright rectangles to represent the upper and lower
substrip regions, respectively. More specifically, we assign two
associated rectangles shown as R1; and R2; in Fig. 4(a) for
each point P; along the edgelet. R1; is an upright rectangle that
is determined by the point P; as one vertex and the point A; as
the diagonal vertex, where A; is the intersection of the normal at
P; and the upper boundary of the substrip region. 22; and other
associated rectangles can be determined in a similar way. Then,
the response of the strip feature in Fig. 4(a) can be calculated
according to

L
2 9(RL) 3 g(R2)

fedge = 1_2 - l_é s (3)
; |R1;] ; | R2;]

where function g(e) sums up the intensities of all the points in
a particular region via the integral image approach [26], and L
is the length of the edgelet feature.

Fig. 4(b) illustrates a ridgelike feature with the oblique line
pattern. Similar to the edgelike features, each point on edgelet
specifies four points A;, B;, C;, and D;, which decide the
three associated rectangles R1;, R2;, and R3;. With a series
of associated rectangles, the response of the ridgelike feature
can be calculated according to

L L L
|| 2 9(BL) > g(R3:) 2 > 9(R2;)
fridge = 5 |, += - = L@
Zl |R1| Z |3, Z |R2;]

.
||

7

Likewise, strip features of arc patterns can be calculated
through the associated rectangles according to (3) and (4).

C. Perturbed Strip Features

Strip features only contain the parametric curve patterns,
such as lines and arcs. However, most of the shapes cannot
be represented using lines or arcs precisely due to slight mis-
alignment caused by translation variance, scale variance, and
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Fig. 5. Different calculations of strip features describe different contrast
patterns.

deformation. To alleviate such misalignment, we first improve
the flexibility of IStrip features by modifying calculation of
feature responses and then elaborate perturbed strip features
based on the improved IStrip features.

As discussed in Section III-B, we can calculate responses
of IStrip features according to (3) and (4). In this section, we
modify the calculation of feature responses by summing the
absolute differences of the associated rectangle pairs as follows:

L |g(R1"¥)) g (R2lv)
2 (|R1i| ) (|R2i| ) ©)

i=1

1 L Q(ngmi’yi)) g(RBEIivyi))
fridgc *ilz |R11| + |R31|

=1
- | R2;|

fedge =

(6)

It is worth mentioning that (5) can describe more contrast
patterns than (3). If we calculate the feature response according
to (3), strip features can only reflect simple contrast patterns,
as shown in Fig. 5(a). For such simple patterns, the associated
rectangles should be consistently bright in one substrip region
and dark in the other substrip region. If we calculate the feature
response according to (5), the strip feature can describe the
complex contrast patterns, as shown in Fig. 5(b). The contrast
pattern of an associated rectangle pair can perturb to an inverse
contrast pattern, and the rectangles in one substrip region may
be not consistently bright or dark. Equation (5) can describe the
contrast patterns in Fig. 5(a) and (b). Likewise, (6) can describe
the contrast patterns in Fig. 5(c) and (d). If we calculate the
response of strip features according to (5) and (6), the contrast
patterns of the associated rectangle pairs can be more flexible
to describe some inconsistent edges in real-scene images.

Based on the given improved IStrip features, we perturb the
associated rectangles in a neighborhood to make the features
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Algorithm 1: Calculating perturbed strip features.
1: N is predefined neighborhood, L is length of curve
pattern
2: Supposing szi’yi) is contrast of i*® associated rectangles
with offset (x;,y;).i.e.,

3 §@ow) _ g(RIZV) g(R2TY)
0 = T IRL R2

g 5@ _ LWL | (RN 2g(R2 )
FO0% T VTR TR3| [RZ:]
5: Initialization: f = 0.

6: for t=1:L do

7. find (z},y;) € N that maximize |57%9).

E3

s f =+l

9: end for

10: return f

Fig. 6. Algorithm for calculating perturbed strip features.

well aligned with different images. We utilize such a simple
hypothesis that a strip feature is well aligned with an image
when its response reaches the highest value during perturbation.
As shown in Fig. 3, the feature response should be the local
maxima if it matches the actual boundaries of the wheel. There-
fore, the perturbed strip features can be calculated according to

. = max
e (z1,y1)€N1,...,(zr,yr)ENL
L |g (Rl’gwivyi)) g (RQEM,ZM)) ,
; | R - | R2;] 0
1
ridge — & max
Jria 2 (w1,91)ENT,...,(wL,yL)ENL
L |g (ngmi»yi)> g (R3§$i¢yi))
; |1 ’ | 1234
29 (R2{"*)
) q
72| ; (3)

where Rll(-x“y”’) represents a rectangle generated by perturbing
R1; with the offset (z;,y;), and IN; is the neighborhood. Of
course, the curve pattern will be destroyed if the associated
rectangles move arbitrarily in the neighborhood. To preserve
the curve pattern to some extent, we constrain that the neigh-
borhood contains 9 pixels surrounding the sth edgelet point.
The computation complexity of (7) and (8) is Hle | N;|, where
IN;| is the number of pixels in N;, and L is the number of
the rectangle pairs. It is too expensive for fast object detectors.
Hereby, we constrain that all the neighborhoods have the same
size and simplify (7) and (8) as follows:

I g (R1£L17yb)) g (R2Z(fﬂi7yi))
= - 9
1L g (ngmi’yi)) g (R?)Em”y’))
Jridge =3 ; N T RG] T (B3
T (10)

| 2]
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TABLE 1
COMPUTATION COSTS OF ISTRIP AND DSTRIP
Feature Type IStrip DStrip Perturbed strip
) Haar-like Non-Haar-like . Haar-like Non-Haar-like
Operation Type Edge [ Ridge Edge Ridge Edge Ridge Edge Ridge Edge Ridge
Addition 7 11 8L-1 [ 12L-1 [ 2Lwet1 3Lwpt2 7|N| 11|N| 7IN|L+L-1 I1N|L +L-1
Multiplication 2 5 2 5 2 5 2|N| 4|N|+1 2|N|IL 4|N|L+1
Modulus 1 1 1 1 1 1 IN]| IN| IN|Z IN|L
Total 10 17 | 8L+2 [ 12L+5 [ 2Lwg+4 3Lwept8 LOIN| | 16|N|+1 | 10|N|L+L-{ 16/N|L + L

Input detection windows

Rejected windows

Fig. 7. Cascaded classifier for object detection.

We can see that the maximum value of (9) and (10) can
be solved sequentially, thus the computation complexity be-
comes |N|L that is much smaller than |N|-. The algorithm
of calculating perturbed strip features is shown in Fig. 6. It
is worth mentioning that the proposed perturbation algorithm
is a straightforward method to deform strip features as it may
destroy the curve patterns of strip features. However, the per-
turbation algorithm is effective in our experiment, and detailed
analysis is given in Section V-D.

To this end, we give an analysis on the computation costs of
DStrip and IStrip approaches. We suppose that g(e) consumes
three additions via the integral image approach, and L and wg
are given. According to (1)—(4), and (9)-(10), we list the com-
putation costs in Table I. For simplification, we consider that the
addition, multiplication, and modulus operations have the same
computation cost, and we list the total computation cost in the
last row of Table I. As shown in Table I, the computation costs
of Haar-like features are constant. The computation costs of
the IStrip approach are irrelevant to wg. For the non-Haar-like
features, the IStrip approach is faster than the Dstrip approach
when wg, is larger than a width of 4 pixels, whereas the DStrip
approach is faster than the IStrip approach when wg, is smaller
than a width of 4 pixels.

IV. COMPLEXITY-AWARE REALBOOST

In Table I, we can see that the computation costs of dif-
ferent strip features are greatly different. The simplest IStrip
feature consumes only ten operations, whereas the ridgelike
feature with L = 12 consumes 149 operations. If the earlier
stages of the cascaded classifier use the “cheaper” features,
they can reject a lot of negative detection windows with low
computation cost. In order to obtain an effective and efficient
classifier, we propose a complexity-aware criterion to balance
the discriminability and computation cost for the features under
the boosting framework, i.e.,

Z'=Z7+aT, (11)
where Z is the discriminative criterion, i.e., the measurement of
the discriminability of the weak classifiers; 7" is the complexity

o D

Rejected windows

Candidate windows

e

Rejected windows

criterion that can be obtained by minimizing the expectation of
the runtime for the cascaded classifier; and a is the complexity-
aware factor to balance the discriminability and computation
cost. In a RealBoost framework [23], the discriminability is
measured by the Bhattacharyya coefficient between the distri-
butions of the object and nonobject classes, i.e.,

Z=2) \/WEWE,
k

where Wi(WZ ) is the distribution of the feature response for
positive (negative) samples. As shown in Fig. 7, we adopt
a cascaded classifier [26] for object detection. The cascaded
classifier is sequentially assembled by M strong classifiers.
Each strong classifier consists of several weak classifiers, and
each weak classifier is learned by the boosting algorithm based
on a strip feature. We denote the total runtime of the cas-
caded classifier as T},,s and T}, for the positive and nega-
tive detection windows, respectively, and the number of the
true positive and false positive windows processed via the ¢th
strong classifier by N;" and N, , respectively. Then, the total
runtime is

12)

E(T) = Tpos + Tneg = (13)

M M
S ONSSi+ ) NS,
i=1 i=1

where 5; is the computation cost of the 7th strong classifier, and
M 1is the total number of the strong classifiers.

Since the total number of false positive windows is much
larger than that of the true positive windows, E(7") can be
approximated by Ty,g as follows:

ZNS

E(T) % Theg =

M M
Z Nip; 1)Si=NY fp; 1S,  (14)
i=1 1=1

where N is the total number of the detection windows, and fp;,
is the false positive rate of the ith strong classifier. We use the
computation costs of strip features in Table I to represent the
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TABLE 1I
S1ZES OF DETECTION WINDOWS AND FEATURE SETS
UIUC cars Cars Bicycles Buses Motorbikes Persons Cows Sheep Horses Dogs Cats
Window 100%40 80%40 90%60 80%80 96%60 48%108 90%60 80%48 80%48 80%80 80%80
Haar-like 190,983 186,720 194,850 187,860 160,524 193,023 194,850 121,200 | 121,200 | 187,860 | 187,860
Edgelet 80,331 81,200 72,784 71,897 62,626 78,678 72,784 70,320 70,320 71,897 71,897
Strip 297,271 298,030 294,175 248,117 241,851 297,215 294,175 206,730 | 206,730 | 248,117 | 248,117

computation costs of the strong classifiers, and the expectation
of the total runtime can be represented as

M
E(T)~N> fp; 15;
=1

M m; M m,;
=N fp, Y Ciy=NY_Y fp, Ci;, (15
i=1 j=1 i=1 j=1

where C; ; is the computation cost of the jth features of the
ith strong classifier, as shown in Table I, and m; is the number
of features in the ith strong classifier. To minimize E(T'), we
greedily select the feature with the minimum value of fp; _;C;_;
in each boosting round. Substituting fp, ;C; ; into (11), we
derive the final complexity-aware criterion for selecting the jth
feature of the ith strong classifier, i.e.,

Z ;=2 \/WJr afp; 1Ci ;.
k

Intuitively, we can explain (16) as follows. When the false
positive rate is large, the proposed criterion tends to select the
features with cheaper computation cost. The computation cost
plays a more important role than discriminability for the first
several stages of strong classifiers since they should efficiently
evaluate a large amount of detection windows and reject most
of the detection windows by simple features. When the false
positive rate becomes smaller, the proposed criterion adaptively
makes the discriminability more important than computation
cost. It will not dramatically slow down the detection process
as there are only a few detection windows to be processed when
the false positive rate is small.

The existing criteria [22], [27] assign a fixed computation
cost for the features, whereas the proposed criterion reevaluates
the computation costs of features and deduces an adaptive com-
putation cost [i.e., fp,_,C;, ; in (15)] according to the cascaded
classifier that consists of many strong classifiers, as shown in
Fig. 7. According to the existing criteria, two different strong
classifiers of the cascaded classifier balance the discriminability
and efficiency of features in the same way. For example, the
criteria of the ¢th and jth strong classifiers are the same.
However, the proposed method can adaptively tune the criteria
for different strong classifiers. Thus, the criteria of the ¢th and
jth strong classifiers are different since the false positive rates
of these two strong classifiers are different. According to the
proposed criterion, the earlier strong classifiers of the cascaded
classifier give larger weights [i.e., larger false positive rate in
(16)] to the computation costs, and the latter strong classifiers
give smaller weights to the computation costs.

(16)

V. EXPERIMENTS

We evaluate the performance of the proposed approach on
the widely used public data sets, including both man-made
objects and natural objects, namely the UIUC car data set [1]
and the VOC 2006 data set [6]. For different object classes, the
sizes of detection windows and feature sets are also different.
We also implement two other related features, namely Haar-
like and edgelet, for comparison. We uniformly sample the
parameters to generate the feature sets. The sizes of detection
windows and the feature sets in our experiments are listed in
Table II. Since the patterns of Haar-like features are simpler
than that of edgelets and strip features, a much more dense
sampling strategy is used in the feature generation process. To
accelerate the training process, we only evaluate 10000 ran-
domly selected features rather than the overall feature set. For
example, the feature set of side-view cars consists of 297271
features, and we only sample 10000 features to evaluate in
each boosting round. It can be guaranteed that at least one
of the top 148 features can be selected with a probability of
99.3%(= 1 — (1 — 0.0005)'0%99) In the training process, we
set the complexity-aware factor a as 0.05.

The object classifiers may generate multiple positive detec-
tion windows around an object, and we adopt the mean-shift
algorithm to merge the multiple detection results of the same
object. For a bounding box, it is considered as a correct detec-
tion when the area of overlap between the predicted bounding
box B, and ground-truth bounding box By exceeds 50% of
their union area, which is indicated by ¢ in the following
formula:

_area(B, N Bgy)

= . 1
area(B), U Bgt) a7

We evaluate the proposed approach according to Equal Preci-
sion and Recall (EPR) rate [8] on the UIUC side-view car data
set and the precision—recall curve [6] on the VOC 2006 data set.
As discussed in [1] and [37], the common receiver operating
characteristic curves are not suitable for evaluating the detectors
since they are designed for evaluating the classification results.
Thus, we adopt the precision—recall curves to evaluate the
object detectors. In addition to the end-to-end comparisons
with other popular approaches, evaluations of the individual
modules show more insights into the proposed approach. All
the approaches are implemented using C++ in Visual Studio
2008 environment without code optimization and tested on a
desktop with an Intel 2.93-GHz CPU.

A. UIUC Car Data Set

First, we evaluate strip features on the UIUC car data set [1].
The data set contains a single-scale test set (170 images with
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TABLE III

EPRs OF DIFFERENT METHODS ON UIUC CAR DATA SET
Method Single scale | Multi-scale
Leibe et al. [8] 97.5% 95%

Fergus et al. [11] ~86.5% -
Mutch & Lowe [18] 99.94% 90.6%
Fritz et al. [9] 88.6% 87.8%

Zhu et al. [36] ~81.0% -

Casalino et. al. [37] ~61.0% -
Felzenszwalb et. al. [10] ~92.0% ~87.8%
Dalal et. al. [4] ~91.0% ~86.2%
DStrip + RealBoost 98.0% 95.0%
DStrip + complexity aware 98.0% 96.0%
IStrip + RealBoost 96.3% 95.7%
IStrip + complexity aware 96.5% 96.0%
perturbed strip + RealBoost 98.5% 96.5%
perturbed strip + complexity aware 97.5% 96.0%

200 side-view cars), a multiscale test set (108 images with 139
side-view cars), and a training set of 550 side-view car images.
The car images in the training set are horizontally flipped, so
that there are 1100 cars in total in the positive training set.
Since the bootstrapping requires a large negative training set,
we collect the negative images from the VOC 2006 data set. The
cars in these images are removed, and the remaining parts are
used as the negative training images. A reduced set of 80331
edgelet features are used for generating strip features, so that
the size of the strip feature set is limited to be acceptable for our
experimental environment. The total number of strip features is
297271, as listed in Table II.

We compare the EPRs of the proposed and other approaches.
The results are listed in Table III. It can be seen that strip
features achieves competitive performance comparing with the
other state-of-the-art methods on both single-scale and multi-
scale test sets. In Table III, we also compare the performance of
different kinds of strip features and different feature selection
criteria, i.e., complexity-aware boosting and RealBoost. We
can see that the DStrip and IStrip approaches have similar
performance. The perturbed strip features can improve the
performance. Furthermore, the performance of the complexity-
aware-criterion-based algorithm is very close to that of the
RealBoost algorithm. In other words, the complexity-aware
criterion does not apparently reduce the accuracy. The first row
in Fig. 15 shows some detection results of the UIUC side-view
car data set.

B. VOC 2006 Data Set

In this section, we evaluate the proposed approach on a more
challenging data set, namely the VOC 2006 data set [6]. This
data set consists of 2618 training images and 2686 testing
images. This data set contains ten object classes including man-
made object classes (i.e., bicycles, buses, cars, and motorbikes)
and natural object classes (i.e., cows, sheep, horses, cats, dogs,
and persons). We evaluate the proposed approach on these
object classes. As shown in Table II, we design different object
windows and feature sets for different object classes. In the
training process, we use nonoccluded samples in the given
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training set as positive training samples. We remove the pos-
itive samples and use the remaining parts as negative training
images. We have empirically verified that the complexity-aware
boosting performs similarly with RealBoost in Section V-A;
thus, we use the complexity-aware boosting in this section for
efficiency consideration. For a fair comparison, we implement
Haar-like and edgelet features, and then train the classifiers
using the proposed complexity-aware boosting framework.

We draw the precision—-recall curves in Fig. 8 and list the
Average Precision (AP) rates in Table IV. We also give the re-
sults of the detection competition [6] and HOG-based support-
vector-machine (SVM) linear classifier (HOG + SVM) [5]. It
can be seen that strip features achieve promising results on the
VOC 2006 data sets. To gauge the statistical significance, we
compare the detection performance over the ten object classes
of the VOC 2006 data set. In Table V, we list the AP difference
of two different approaches for each object class and give the
statistical significance in the last column. We can draw sev-
eral conclusions from the comparison of different approaches:
1) The features based on strip regions (DStrip) perform bet-
ter than the features based on single-pixel-width templates
(edgelet) since they are more robust to slight misalignment than
edgelet features; 2) IStrip features perform better than Haar-
like features since they can describe more complex shapes;
3) IStrip and DStrip features achieve similar performance since
they describe the same contrast pattern for the same region;
and 4) the perturbation algorithm improves the performance
of IStrip by 0.015 =+ 0.011 since it makes strip features more
robust to shape misalignment. Some detection results are shown
in Fig. 15.

As discussed in Section III, strip features are initially de-
signed according to the typical shape elements of cars, but they
also achieve promising results on the natural object classes. The
possible reason is that the natural objects, such as persons and
cows, also contain many typical shape elements that can be
described by strip features. Of course, the proposed approach is
not perfect, and it may fail in some situations. In the following,
we present some of the situations that may cause our approach
to fail. First, each object class contains many objects in different
views, and they look very different, such as bicycles and buses.
The proposed approach will fail due to the classifier since
the classifier adopts a bounding box of a fixed aspect ratio
to represent the objects, and it is difficult to detect objects of
multiviews. Second, many of the objects are occluded by the
other objects or truncated by the image boundaries, such as
persons and sheep in crowds, as shown in Fig. 15(d) and (i). The
proposed approach may fail since the boosting classifier cannot
predict the missing parts caused by occlusion or truncation.
Third, some animals have extremely large articulation variance
and nonrigid deformations, such as cats and dogs. Both the strip
features and the classifier may not work well in this situation.
On one hand, strip features may misalign with the animals’
structure due to large deformation. On the other hand, the
window classifier is unsuitable to represent these animals due
to pose and view variances. For example, the shapes of cats
and dogs change greatly, and only the shapes of their heads are
stable. Thus, we train the classifiers using their heads. Although
the classifiers can detect the heads of cats and dogs, as shown in
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Fig. 8. Precision-versus-recall curves on VOC 2006 dataset. (a) Car. (b) Bicycle. (c) Person. (d) Cow. (e) Bus (f) Motorbike. (g) Sheep. (h) Horse. (i) Cat.
(j) Dog.
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TABLE 1V
COMPARING AP RATES OF DIFFERENT APPROACHES ON THE VOC 2006 DATA SET
Car Bicycle Bus Motorbike | Person Cow Sheep Horse Dog Cat
Best in competition [6] 0.444 0.440 0.169 0.390 0.164 0.252 0.251 0.140 0.118 0.160
HOG + SVM [5] 0.411 0.441 0.132 0.366 0.183 0.254 0.294 - - -
Haar-like 0.397 0.348 0.118 0.219 0.140 0.172 0.253 0.130 0.109 0.107
Edgelet 0.413 0.403 0.115 0.245 0.134 0.183 0.151 0.114 0.091 0.099
DStrip 0.447 0.461 0.154 0.309 0.170 0.217 0.282 0.158 0.103 0.109
IStrip 0.470 0.466 0.171 0.340 0.161 0.212 0.301 0.131 0.110 0.111
Perturbed strip 0.493 0.492 0.182 0.352 0.181 0.231 0.309 0.163 0.107 0.112
TABLE V
DIFFERENCES OF AP RATES BETWEEN DIFFERENT APPROACHES ON THE VOC 2006 DATA SET
Car Bicycle Bus Motorbike | Person Cow Sheep Horse Dog Cat Avg. + Std.
DStrip - Edgelet 0.034 0.058 0.039 0.064 0.036 0.034 0.131 0.044 0.012 0.010 0.046+ 0.034
IStrip - Haar 0.073 0.118 0.053 0.121 0.021 0.040 0.048 0.001 0.001 0.004 | 0.048+0.045
IStrip - DStrip 0.023 0.005 0.017 0.031 -0.009 | -0.005 0.019 -0.027 0.007 0.002 0.006+0.017
Perturbed - IStrip 0.023 0.026 0.011 0.012 0.020 0.019 0.008 0.032 -0.003 0.001 0.015+0.011

Fig. 15(j) and (k), the detections are counted as false detections
according to the PASCAL criterion. From the experiments of
previous work [5], [10], we can see that the detection-window-
based approaches may be not suitable for detecting the animal
classes, such as cats and dogs. Fourth, some of the object
classes have similar shapes, such as bicycles versus motorbikes
and sheep versus cows. In this situation, the proposed approach
may fail due to strip features since it is difficult to distinguish
the objects of one class from the objects of the other class based
on shapes. Thus, the bicycle (sheep) classifier based on strip
features may have false detection results on motorbikes (cows)
and vice versa. These problems could be handled by adding tex-
ture and color features, which is beyond the topic of this paper.

It is worth noting that some recent works achieve better
accuracy on this challenging data set. Such works utilize more
complex models (e.g., deformable part models (DPMs) with
different aspect ratio components [10]) or complex features
(e.g., heterogeneous features combining HOG and LBP [30]).
These approaches usually have high computation complexity
and may not be suitable for real-time application. Compared
with these approaches, the proposed approach is much faster
and can achieve similar performance for detecting the objects
of typical shapes (e.g., side-view cars). We will present the
detailed comparison in Section V-E. We can improve the per-
formance of the proposed approach by several possible ways,
such as training multiview classifiers, training part models,
integrating strip features with color or texture features, and
developing more powerful deformation approaches (e.g., active
contour models [15] and TPS-RPM [13]).

C. Relationship Between Strip Features and Object Structures

In this section, we conduct experiments to study the relation-
ship between the selected strip features and object structures.
First, we train a cascaded classifier for side-view cars and show
the selected strip features. One hundred side-view car images
from the UIUC training set are used. All the cars in the images
are toward left and are aligned using the tangent points between
the tires and ground. We use the RealBoost algorithm to select

Fig. 9. Top-four selected image strip features versus object structures.
(a) Side-view car. (b) Multiview car. (c) Bicycle. (d) Cow. (e) Person.

IStrip features from the feature set in Table II. We overlay the
first four selected strip features on the average edge map in
Fig. 9(a). It is interesting that all the four features reflect typical
car shape elements. The first feature and the third feature are
perfectly on the tires, the second feature describes the contrast
of the chassis and the ground, and the fourth feature describes
the ridgelike pattern of the front bumper. It shows that strip
features can describe shape characteristics of side-view cars.
The above experiment demonstrates the ideal situation, in
which the pattern of the aligned cars is rather compact. In
practical detection tasks, the relationship between strip features
and object structures may not be so intuitive. For the VOC
2006 object classes, we use the training images in Section V-B
and the RealBoost algorithm to select IStrip features from the
feature set in Table II. We also visualize the top four selected
features for some object classes of the VOC 2006 data set
in Fig. 9(b)—(e). Although the training images are not strictly
aligned, most of the features can still capture the typical object
structures. Obviously, the second feature of multiview cars and
the first feature of cows totally miss the typical structures. The
reason is that the training samples are not well aligned, and the
positive pattern is not compact. Therefore, some features may
capture the negative patterns instead of the positive pattern. For
example, most of the cows do not have high-contrast ridgelike
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Fig. 10. Grouping selected strip features according to curve patterns and
widths of substrips. (a) UIUC side-view car. (b) VOC 2006 car. (c) VOC 2006
bicycle. (d) VOC 2006 person.

structures on the belly; thus, the detection window will be
classified as negative if the response of the first feature is large.

We also group the selected strip features according to the
curve patterns and widths of the substrips. We collect the
IStrip features by the complexity-aware RealBoost algorithm
and count the numbers of different types, including edgelike,
ridgelike, Haar-like, oblique lines, and arcs. We select four
object classes and show the distribution of feature types in
Fig. 10. It can be seen that a large portion of the selected
features is the oblique lines and arcs. Apparently, non-Haar-like
strip features play very important roles in classifying objects
and nonobjects. Another interesting phenomenon is that the
ridges of 2-pixel-width substrip region (wr = 2) tend to be
selected. We take the side-view car in Fig. 9 as an example.
We resize the car images to 100 x 40 pixels and find that a
lot of shape elements, such as tires and bumpers, appear as
line or arc ridges with wgr = 2. Likewise, the structures of
other object classes also contain many patterns of 2-pixel-width
ridgelike strips. We find that many 2-pixel-width edgelike arcs
are selected for the man-made object classes, whereas many
6-pixel-width edgelike arcs are selected for the natural objects.
Since the man-made object samples can be well aligned, the
selected strip features can capture more detailed structures of
fine resolution. However, the natural object classes cannot be
well aligned; thus, most of the selected strip features can only
describe the object structure of coarse resolution.

In Fig. 11, we overlay the curve patterns of all the selected
IStrip features on a detection window. We weight the selected
strip features using the log-likelihood ratio between positive
and negative samples, i.e., the features with positive weights
describe the positive patterns and vice versa. The features with
positive weight are shown in green, whereas the negative ones
are shown in red. We normalize the feature weight to [0, 255]
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Fig. 11. Curve patterns of selected features delineate object structures.
(a) Side-view car. (b) Multiview car. (c) Bicycle. (d) Cow. (e) Person.

Fig. 12. Top-one selected perturbed strip feature and its perturbations on
different samples.

for positive and negative weights, respectively. Obviously, the
green features locate at the typical structures of the objects.
There are also many red features that capture the negative
patterns. For example, the second feature of the car in Fig. 9(b)
and the first feature of the cow in Fig. 9(d) are such negative
features. From the given analysis, we can see that strip features
are capable of describing the shape characteristics of objects
explicitly.

D. Perturbed Strip Features

In this section, we take the UTUC side-view car as an example
to show the effectiveness of the perturbed strip features.

We adopt the RealBoost algorithm to select the perturbed
strip features based on the 550 positive samples and 500
negative samples in the UIUC training set. We show that the
first selected feature in Fig. 12(a) and its different perturbed
version on some samples in Fig. 12(b)—(d). In Fig. 12, the blue
regions correspond to the dark regions, and the yellow regions
correspond to the bright regions. We can see that the contrast
patterns and positions of the associated rectangle pairs may be
different on different samples.

In Fig. 12, we can see that the wheels of different cars
are not well aligned. Although the strip feature locates near
the wheel, it cannot precisely capture the wheel structure.
The associated rectangles can move in a neighborhood; thus,
the perturbed strip features can fit to the precise location of the
wheel according to (9) and (10). As shown in Fig. 12(b) and
(c), the parameters of strip features are finally tuned to optimum
that can capture the wheel structure more precisely. As shown in



ZHENG et al.: STRIP FEATURES FOR FAST OBJECT DETECTION

0.02 0.1
density of positives
O positive responses
0.015 densit.y of negatives
negative

density of positives
O positive responses
density of negatives
negative responses

o
o
153

(=4
o
>

0.01

0.005 /

2

probability density
probability density

o
o
5

)
o

0 50 100 150 200 250 300

perturbed strip response 80100 150" 200 280" 300

IStrip response
(@ (®)

0.035

density of differences on positives
O positive response differences

(=2
=1
=

density of differences on negatives
< negative response differences

o
o
5]
o

e
o
]

probability density

o
o o
o =
2 o

0.005

0 50 100 150 200 250 300
difference between perturbed strip and IStrip

©

Fig. 13. Comparing distributions of feature responses on positive and negative
samples. (a) Distributions of perturbed strip feature responses. (b) Distributions
of IStrip feature responses. (c) Distributions of feature response differences.

Fig. 12(d), the contrast patterns of the associated rectangle pairs
may flip during the perturbation so that the substrip regions may
be inconsistently bright or dark. Therefore, the perturbed strip
features may capture the discontinuous edges in the real-scene
images. We also study the Z value [see (12)] for analyzing the
discriminability of the perturbed strip features. The Z value
is in the range of [0, 2], and a smaller Z value corresponds
to powerful discriminability. We evaluate the Z value for the
feature in Fig. 12. If we calculate the feature response according
to the IStrip approach, the Z value is 1.304. If we calculate
the feature response according to the proposed perturbation
algorithm, the Z value is 0.886. The perturbed strip feature is
more discriminative than the corresponding IStrip feature since
the perturbation algorithm is robust to discontinuous edges and
slight misalignment. Therefore, the perturbed version may be
more robust for describing shapes than the IStrip approach.

We calculate the top selected feature (see Fig. 12) according
to the IStrip approach and the proposed perturbation algorithm,
respectively. Then, we use kernel density estimation to estimate
the distribution of the feature responses and show the distri-
butions in Fig. 13. In Fig. 13(b), we can see that the feature
responses of many positive samples (cars) are smaller than 50
for the IStrip approach. The reason may be that the feature is
misaligned with the actual contours. The perturbation algorithm
can alleviate the misalignment to some extent; thus, most of
the responses in Fig. 13(a) are larger than 50. We calculate
the response difference between the IStrip approach and the
perturbation algorithm for each sample. The distribution of
the response difference is shown in Fig. 13(c). It can be seen
that the differences of positive samples are larger than that of
negative samples. It means that the perturbation algorithm plays
a more important role for the positive samples compared with
the negative samples. For the positive samples, the strip feature
is close to the actual boundaries, and the perturbed version is
likely to match the actual boundaries. For the negative samples,
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the strip feature is far from the actual boundaries, and the
perturbed version may not match boundaries. From the end-
to-end comparison in Fig. 8, we can see that the perturbed
strip features can improve the final performance of the object
detectors.

E. Complexity-Aware Criterion and Runtime

We evaluate the proposed complexity-aware-criterion-based
algorithm using the UIUC single-scale data set described in
Section V-A. Haar-like and edgelet features are used for com-
parison. The detectors perform the exhaustive search with a 1-
pixel step on images. In this case, the detector processes overall
1354427 sliding windows on the 170 images.

We take the IStrip approach as an example and examine the
feature selection criterion in the training process. We visualize
the selected features in Fig. 14(a), in which all the Haar-like fea-
tures are under the black line.! It shows that the first 18 features
selected by the complexity-aware-criterion-based algorithm are
all Haar-like features. On the contrary, the first 18 features
selected by the RealBoost contain many non-Haar-like features.
The result shows that the complex-aware RealBoost tends to
select simple features in the earlier stages of the cascaded
classifier, and such earlier stages dominate the total runtime.
Considering the performance presented in Table III, we can see
that our approach is more efficient than the RealBoost algorithm
while preserving the accuracy.

We compare the proposed criterion with the criterion defined
as the quotient of the discrimination ability and computation
cost [22]. The selected features are shown in Fig. 14(a). It can
be seen that the selected features by the quotient criterion are
all Haar-like features, whereas the proposed criterion selects
many complex features in addition to Haar-like features since
it gives very small weights to the computation costs for the
latter strong classifiers. We also compare these two classifiers in
Fig. 14(b), and it can be seen that both of the two classifiers are
very fast. Then, we test the classifiers on the UIUC single-scale
data set. We find that the detection EPR (96.5%) of the proposed
criterion is higher than the detection EPR (93%) of the quotient
criterion. Compared with the quotient criterion, the proposed
approach is more suitable for balancing the discriminability and
efficiency for the cascaded object detector.

Fig. 14(b) shows the average runtime of the first n strong
classifiers of each cascaded classifier. It can be seen that the
DStrip-and-RealBoost-based approach is slower than the other
fast approaches, because some features with large wpr appear in
the first several stages of the cascaded classifier and slow down
the speed. The IStrip-and-complexity-aware-based approach is
as efficient as the Haar-like-based one, and is about 20% faster
than the edgelet-based one. The total runtime of all the 170
test images is 1.26 s (about 7.4 ms per image). Although the
perturbed strip features are theoretically nine times slower than
the corresponding strip features, the detection systems based
on perturbed strip features are about 2-3 times slower than
that based on IStrip features. The reason is that the perturbed

'Each feature is represented by its computation cost, i.e., parameter C'
described in Table I. Since Haar-like features have C' < 17 and the complex
strip features have C' > 17, we can easily distinguish them by the black line.
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strip features are more discriminative than strip features; thus,
there are fewer perturbed features in the cascaded classifier.
In practice, the detection system based on the perturbed strip
features and complexity-aware criterion costs about 19.7 ms per
image.

In addition, we compare the proposed approach with two
other approaches, namely HOG + SVM [4] and DPM [10],
on the UIUC single-scale car data set. For these two methods,
we use the source codes published by the authors. The total
runtimes of the 170 test images are 482 s for HOG + SVM,
153 s for DPM,and 1.26 s for the proposed approach. Although
we do not use any code optimization, the proposed approach is
still much faster than the other two methods. We also compare
the EPR rates in Table III. It can be seen that the proposed ap-
proach achieves higher accuracy than the other two approaches.
Therefore, the proposed approach may be more effective and
efficient than the complex approaches when the target (e.g.,
side-view cars) have typical and stable shapes. Finally, we give
some detection results of our approach on the public datasets in
Fig. 15.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a set of strip features for
object detection. We propose two efficient approaches, namely
IStrip and DStrip, to calculate the responses of strip features.
Furthermore, we propose a deformable version based on the
IStrip approach, namely perturbed strip feature, to improve
the robustness and discriminability to shape variance. The
complexity-aware criterion can reevaluate the computation cost
of features according to the cascaded classifier and adaptively
balances the discriminability and computation cost for feature
selection. Experimental results have shown the effectiveness
and efficiency of the proposed approach on the public data sets.

Strip features represent higher level semantic information
than Haar-like features. In some sense, the IStrip features
can be considered as a subset of the joint Haar-like features
constrained by some curve patterns. Therefore, the proposed
features have more powerful discriminability than Haar-like
features. Furthermore, by designing different curve patterns,

Fig. 15. Example detection results of public data sets. (a) Side-view car.
(b) Car. (c) Bus. (d) Person. (e) Motorbike. (f) Bicycle. (g) Horse. (h) Cow.
(i) Sheep. (j) Cat. (k) Dog.

strip features can be tuned to describe various shape char-
acteristics of different objects. Compared with the complex
local descriptors such as HOG [4] and covariance descriptors
[20], strip features can explicitly capture the shape information
shown in Fig. 11. Many complex features are based on the
statistics of regions; thus, they may be robust to slight variance
of translation, scale, and rotation. Strip features discard some
statistical information, which weakens their discriminability.
However, it seems the inevitable cost of fast features. Compared
with those complex features, strip features are more effective
and efficient for detecting the objects with simple and typical
shapes, such as side-view cars.
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The proposed perturbed version of strip features is a simple
trial for deforming strip features, and other effective deforma-
tion approaches [13], [15] may be utilized to improve the defor-
mation capability of strip features. Moreover, the performance
can be further improved by incorporating with other powerful
features [27], [30]. As a kind of local features, strip features are
also promising in designing part-based object detection systems
for handling the occlusion problem. These topics will be studied
in the future.
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