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a b s t r a c t

Automatically driving based on computer vision has attracted more and more attentions from both
research and industrial fields. It has two main challenges, high road and vehicle detection accuracy and
real-time performance. To study the two problems, we developed a driving simulation platform in a
virtual scene. In this paper, as the first step of final solution, the Extreme Learning Machine (ELM)
has been used to detect the virtual roads and vehicles. The Support Vector Machine (SVM) and Back
Propagation (BP) network have been used as benchmark. Our experimental results show that the ELM
has the fastest performance on road segmentation and vehicle detection with the similar accuracy
compared with other techniques.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Long hour driving usually causes drivers loosing focus on
recognizing roads and vehicles. Automatically driving has been a
goal that researchers are working on in recent years. Google
announced its research of auto-driving to prevent accidents
in its official blog on October 10th, 2010. Its automatic-driving
technique has been tested for 320,000 km, and has no single
accident until April 9th, 2012. Google's automatically driving
technique uses video camera, radar and laser to detect traffic
information and navigate the vehicle through a detailed map. Not
only Google, Volvo and German computer expert, Raul Rojas, the
Free University of Berlin team (MIG, Germany) have developed
their own automatic-driving techniques. Automatic-driving has
two main challenges: the accuracy and real-time performance on
highway detection and vehicle detection. To study these two
problems from computer vision direction, we have developed a
driving simulation platform with a virtual camera in a virtual
scene. In this paper, as our first step to tackle the challenges, the
Extreme Learning Machine (ELM) [1] technique has been used to
detect the virtual road and vehicle.

ELM was first proposed in [2], which has overcome some
challenging issues, such as slow learning speed, trivial human
intervening and poor computational scalability. The essence of the
ELM is that hidden layer need not be tuned iteratively. ELM has

attracted more and more researchers and engineers, because of
its better generalization performance with a much faster learning
speed and less human intervening. Taking into account of real-
time performance and high accuracy requirements in automati-
cally driving, we use ELM to detect vehicles in our driving
simulation.

In a driving simulation system, road segmentation and vehicle
detection are required. There are many approaches to detect road.
Radar, laser, stereovision [3], Hough transform [4], spline model
[5] and steerable filters [6] are used to find road borders or road
signs. But these methods can only be applied on structured roads
with salient borders and signs. Alon et al. [7] combined region
segmentation based on Adaboost with border recognition based
on geometric projection to segment drivable road. But it requires
many kinds of road images to train classifier for the similar region.
Reverse optical flow technique [8] provides an adaptive road
region segmentation method. But the estimation of optical flow
is not robust to chaotic road when the camera is not fixed. Some
methods [9,10] managed to segment drivable road area based on
texture information. They detect the vanish point through a voting
scheme according to the texture orientation of each pixel. These
methods usually fail because of the inaccurate estimation of vanish
point. Kong et al. [9] introduced a confidence level method to
find vanishing point more accurately. However, this method is not
suitable for winding road, and it is fatal to automatically drive
when a vehicle is on a turn of the road.

There are also many approaches to detect vehicles. Some vehicle
detection methods are based on stereo vision [11], where the
disparity map [12] or inverse perspective mapping [3] is utilized.
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These methods are relying on special instruments and they are not
suitable for the virtual scene that is obtained by just using a single
camera. In methods [13], partial least squares were used to select
features, which concatenated histogram of oriented gradients
(HOG) [14], color probability maps and pairs of pixels features.
Many features were extracted. Feature dimension reducing is a
time-consuming process in practice. Some vehicle detection meth-
ods are based on constructed vehicle models [15], such as active
basis model [16,17]. It is time-consuming on a driving simulation
case. The ELM has been used in [18] to detect vehicle based on
singular value decompositions. In their work, the camera was fixed,
which is not the case in our simulation system.

Inspired by the good performance of ELM, we used ELM
method to detect roads and vehicles by using small window
sliding technique. In the small window, the corresponding features
were extracted.

Color histogram features was obtained to detect roads.
Two sets of features have been used to detect vehicles. One is

gray color features, and another is Histogram of Oriented Gradi-
ents (HOG) [14] feature. The performance of the vehicle detection
was measured on a virtual scene. Our proposed method has a high
accuracy and real-time performance on vehicle detection com-
pared with other techniques based on our experimental results.

In this paper, a virtual scene was used for road segmentation
and vehicle detection. ELM was used as a two classes' classifier to
recognize vehicles. Experiments were carried out to verify ELM's
performance on speed and accuracy in the task of road and vehicle
detection.

The rest of the paper is organized as follows. ELM is briefly
introduced in Section 2. Road segmentation which removed the
outlier road patches is introduced in Section 3.1. Vehicle detection
in the extended road area is introduced in Section 3.2. Experi-
ments and performance comparisons among ELM, SVM and BP
network are introduced in Section 4.

2. ELM

ELM [19] is a single hidden layer forward network (SLFNs).
It has many good features, such as fast learning speed, good
generalization performance and automatically tuning hidden layer
parameters [1].

For N arbitrary distinct samples ðxi; tiÞA ðRd � RmÞ, xi is the
extracted feature vector and ti is the target output label. The
mathematical model of ELM with L hidden nodes is

∑
L

i ¼ 1
βigiðxjÞ ¼ ∑

L

i ¼ 1
βiGðai; bi; xjÞ ¼btj; j¼ 1;…;N

If N¼L, ELM can approximate the targets of the distinct N samples
with zero error:

∑
N

j ¼ 1
Jbt j�tj J ¼ 0;

that is, there exist some set of values βi; ai and bi, such that,

∑
L

i ¼ 1
βiGðai; bi;xjÞ ¼ tj; j¼ 1;…;N;

which is equivalent to, Hβ¼ T, where,

H¼
Gða1; b1; x1Þ ⋯ GðaL;bL; x1Þ

⋮ ⋱ ⋮
Gða1; b1; xNÞ ⋯ GðaL; bL; xNÞ

2
64

3
75
N�L

; β¼
βT
1

⋮
βT
L

2
664

3
775
L�m

;

T¼
tT1
⋮
tTN

2
64

3
75
N�m

As Huang et al. proved [20], the parameters of hidden layer,
fai; bigLi ¼ 1, can be randomly generated. There exists LrN, making
training error as small as possible with probability one. Training
process of ELM is equivalent to solve a least squares problem. That
is, bβ ¼H†T, where H† is the Moore–Penrose generalized inverse of
hidden layer output matrix H.

The ELM used by the following sections can be summarized in
three steps:

Step 1: Assign the parameters of hidden nodes ai; bi, i¼1,…,L
with randomly generated values.

Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight β by solving the least

squares problem: β¼H†T.

3. Vehicle detection

Our approach detected the road first, and then detected the
vehicles in an extended road area. The entire detection framework
is illustrated in Fig. 1.

In this section, we first introduce how to segment the road, and
then discuss how to detect vehicles.

3.1. Road segmentation

Given an H �W image I from the video, non-overlapped
patches are drawn from it. The size of the patch is h�w, then
the image I was divided into ⌈H=h⌉� ⌈W=w⌉ patches, denoted as
p11;…; p1;⌈W=w⌉;…;p⌈H=h⌉;⌈W=w⌉.

For the road in the virtual scene, our method segmented the
road by using a h�w window to slide over the image and classify
whether each patch in the window belongs to the road or not.
We extracted color cues in the small window, and use ELM as a
classifier. After comparing different features, we found that color
histogram was an efficient feature to distinguish the road from
other objects in the virtual scene, as illustrated in Fig. 2.

The result of road segmentation is denoted as a matrix of
⌈H=h⌉� ⌈W=w⌉. Dimensions are standing for whether patches
are within a road area or not. However, there were some outliers
mistakenly detected as road patches, as illustrated in Fig. 3.

In the real word, a drivable road is a continuous area and the
isolated patch is not likely belonged to the road. Based on this
assumption, those road patch outliers were removed from our
initial road segmentation result.

3.2. Vehicle detection

In an image, normally the patches of a vehicle which appeared
in or above the road area were segmented in the first step.
Therefore, vehicle detection was processed in an extended road
area. Extended road area is shown in Fig. 4. The width of the
extended road area is the same as the width of the image. The

Fig. 1. The framework of vehicle detection.
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height of the extended road area is the height of the road plus the
average height of the vehicles.

For vehicle detection, the ELM was used with two sets of
different color features: grey color value and Histogram of Oriented
Gradients [14].

Small sliding window was used on an extended road area to
detect vehicles patch by patch.

The gray pixel values of these patches were used to determine
whether the patches were the vehicle patches or not.

The rectangular histograms of oriented gradients (R-HOG) for
patches in an extended road area were used to decide whether the
rectangle was a vehicle or not. The comparison results obtained by
using the ELM, kernel SVM and BP network methods based on
R-HOG detectors are listed in Section 4.

These implementations have high accuracy and real-time
performance. Some results are illustrated in Figs. 5 and 6 in the
next section.

4. Experiments

In this section, experimental conditions of the hardware and the
software are first introduced, and then the performance comparison
of ELM, kernel SVM and BP network classifiers are presented.

4.1. Experimental conditions

In all the experiments, the algorithms were run on the environ-
ment: (1) Operating system: Windows XP Professional with service
Pack 3. (2) CPU: Pentium(R) Dual-Core T4300. (3) Memory: 2 GB.
(4) Software: Driving simulation system is developed in Visual Studio
2008 professional edition with OpenCV 2.3.1 kits [21] and compar-
ison experiments are done in Matlab R2009(a) (7.8). (5) Simulation
environment: Virtual driving scenes are shown in the experiment
results section.

C-coded ELM algorithm was developed in driving simulation
system and its accuracy performance was comparable to the Matlab
code from the homepage of ELM's inventor [22]. Matlab coded ELM
was used in comparing experiments. BP algorithm was adopted
from Matlab Neural Network ToolboxTM and the BP network was
trained by the resilient back-propagation (RPROP) algorithm [23] to
avoid the memory problem. C-coded SVM package from LIBSVM
[24] was also used in comparison experiments.

4.2. Experiment results

Classifiers of ELM, SVM and BP networks were constructed
to carry out the comparison experiments. Sigmoidal function
gðxÞ ¼ 1=ð1þexpð�xÞÞ was chosen as the activation function of
ELM. The kernel function of SVM was radical basis function (RBF).
The transfer function of BP network was default tangent sigmoidal
function f ðxÞ ¼ ð1�expð�2xÞÞ=ð1þexpð�2xÞÞ. Here BP network
was designed to have one hidden layer. The input features were
normalized to [�1,1] and the output was 0 or 1, which was a
binary classification for targets. The output denotes that the
current patch is the road/vehicle or not.

There were three main parameters needed to determine: the
number of hidden nodes in ELM, the cost factor in SVM and the
number of hidden nodes in BP network. Parameter selection for
ELM and BP network was done with the scheme of coarse-to-fine.
The initial parameter range and the earlier search step length were
different to those later. For example, after the first best parameter
was obtained from the first search round, the parameter range was
updated to the neighborhood of that obtained parameter and the
search step length was decreased. The range of the number of
hidden nodes in ELM and BP network was from 20 to 330, which

Fig. 2. Color histogram comparison of sky, vehicle, road and buildings. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

Fig. 3. Outlier illustration in road detection.

Fig. 4. Extended road area.
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was decided by our coarse-to-fine search procedure. For para-
meter selection of SVM, the best parameter was obtained from
the candidate sequence 2�24;2�23;…;223;224;225 using the same
experimental principle as in [19].

For each candidate parameter, three-fold cross validation was
conducted to select the parameters of these classifiers. In the road
segmentation experiment, test accuracy was used as the perfor-
mance evaluation metric. In the vehicle detection experiment, true
positive rate (TPR) in test procedure was used as the performance
evaluation metric. The average value of each corresponding metric
in the three cross-validation experiments was used as the perfor-
mance evaluation metric to search the optimal parameters.

As a result, we obtained the following parameters in details. In
the road segmentation experiment, ELM had 195 hidden nodes.
The cost factor of SVM was 212. BP network had 220 hidden nodes.
In the first experiment of vehicle detection, ELM was constructed
with 153 hidden nodes. The cost factor of SVM was 214. BP
network had one hidden layer with 170 hidden nodes. In the
second experiment of vehicle detection, ELM had 163 hidden
nodes. The cost factor of SVM was 22. BP network had one hidden
layer with 23 hidden nodes.

Other parameters were set as follows. The size of patches was
30�30 pixels and the average height of vehicles was set as 30
pixels. Color histogram feature had 78 dimensions in RGB color
space and each channel was with 26 dimensions evenly. Other
parameters, like kernel parameter γ, were set as default values in
the experiments.

The first experiment was carried out for the road segmentation
task. Some image frames were randomly snatched from the virtual

driving scenes. We collected 7775 patches and 3874 of them were
road patches. The number of the training set was 2/3 of the total
number of the patches and the rest was the testing set. These
samples were randomly selected from the collected patches. Three
experiments were carried out independently. The average perfor-
mance among ELM, SVM and BP network was shown in the
table below.

Table 1 shows that ELM can reach the higher accuracy and is
the fastest algorithm for training and testing, although the SVM
algorithm is implemented in C. Because the color histogram
feature extracting and the classification speed are very fast, the
method can reach real time performance in our driving simulation
system. The effect of our road segmentation in our driving
simulation system is illustrated in Fig. 5. The green area is labeled
as road.

On vehicle detection, one classifier with two kinds of features
were constructed. One is the ELM classifier with pixels' gray value
feature. The other one is with HOG feature.

Fig. 5. Road segmentation examples in the driving simulation system. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Fig. 6. Vehicle detection examples in the driving simulation system. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Table 1
Performance comparison among ELM, SVM, BP network on road segmentation.

Algorithms Training Testing

Accuracy Time (s) Accuracy Time (s)

ELM 0.9873 0.3646 0.9868 0.0885
SVM 0.9907 1.6120 0.9884 0.1300
BP 0.9821 191.6510 0.9799 0.1302
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Next, we show the performance with the former feature set.
Two benchmark classification algorithms, SVM and BP networks,
were used to compare the performance of ELM in the vehicle
detection. Sample images randomly were obtained from the
simulation scenes and 10,000 patches were produced from these
samples which had 1015 vehicle patches. The number of the
training set was 2/3 of the total number of the patches and the
rest was the testing set. These samples were randomly selected
from the collected patches. Three experiments were done inde-
pendently. True positive rate (TPR) and false positive rate (FPR)
were used to measure the performance of the vehicle detection
methods. TPR was calculated by TP/P, where TP is the number of
samples correctly classified in the positive samples and P is the
number of positive samples. FPR was calculated by FP/N, where FP
is the number of samples classified as positive samples in the
negative samples and N is the number of negative samples. The
average performance is shown in Table 2.

The results in Table 2 show that although the true positive rate
(TPR) of ELM is about 0.17 larger than the result obtained by of the
SVM, the accuracy of ELM is similar to that of SVM for there are
only 1/10 positive samples. See the following equation:

Accuracy¼ TPR� Pþð1�FPRÞ � N
PþN

;

where P and N are the numbers of positive and negative samples
respectively, and P/(PþN) is 1/10. FPR (false positive rate) of SVM
is only about 0.02 larger than that of ELM. Based on the above
equation, we conclude that the accuracy of ELM is similar to
the accuracy provided by the SVM method. The experimental
results show that performance of the classifiers cannot just
be measured based on their accuracy and speed also should be
taken into account. At mean time, the ELM worked well on this
experimental case.

The results in Table 2 show that the SVM is the slowest
algorithm. Experiment reveals that there were more than 1000
support vectors in the model, which leaded the SVM to be the
slowest algorithm in this case.

ELM has a comprehensive advantage over other two algorithms.
The vehicle detection method based on ELM can reach real-time in
driving simulation system and the performance is illustrated in
Fig. 6. The red bounding boxes are the detected vehicles.

In the second experiment, vehicle detection method with HOG
feature was implemented. We used OpenCV software kits to
extract HOG feature and collected 747 frames from the simulation
scenes. There were 371 positive samples and 376 negative samples

obtained from these frames. The number of the training set was
2/3 of the total number of the patches and the rest was the testing
set. These samples were randomly selected from the collected
patches. Three experiments were done independently. Because of
the imbalance between the number of samples and the number of
HOG feature dimensions, PCA was applied to reduce the dimen-
sions of HOG feature from 3780 to 100. The average performance is
shown in Table 3.

The results in Table 3 show that the ELM method has the
highest true positive value and a much high speed. High true
positive rate means high accuracy in the vehicle sample classifica-
tion. If the vehicle is wrongly classified into non-vehicle patch,
there will be great danger to the safety. And if non-vehicle patch is
wrongly classified into vehicle patch, there will be less danger
than the opposite case above. So ELM has a comprehensive
advantage over other two classifiers when it is used for vehicle
detection task. Moreover, ELM is a faster algorithm than SVM
although the SVM is C-coded.

5. Conclusions

This paper studied ELM for road segmentation and vehicle
detection in a virtual scene served for driving simulation. On road
segmentation, one ELM classifier with color histogram features
was constructed. Outlier road patches were removed to improve
performance. On vehicle detection, one ELM classifier with gray
value and HOG feature was conducted. They were compared with
the classifiers of SVM and BP Network on time and accuracy.
Experimental results indicate that the ELM classifiers have similar
accuracy to that of SVM, and have higher accuracy than that of BP.
ELM is comprehensively the fastest algorithm in the experiments.
They were implemented in the driving simulation system and
show a very good performance on vehicle detection. ELM can meet
real-time requirement in the simulation system.

Currently, road segmentation results are not very accurate for
its rectangular segmentation pattern. Because of the real-time
requirement for driving simulation, scale transformation is not
conducted for detecting vehicles using a single bounding box.
Besides, the virtual scene is ideal and not taken into account for
some situations in the real world, like a cloudy weather, gray cars,
non-gray road, different lighting conditions and shadows on the
road in our simulation system. These will be seriously taken into
consideration in our future work.

Table 2
Performance comparison among ELM, SVM, BP network with gray value feature on vehicle detection.

Algorithms Training Testing

Accuracy TPR FPR Time (s) Accuracy TPR FPR Time (s)

ELM 0.9385 0.8547 0.0518 0.9531 0.9235 0.8352 0.0615 0.3229
SVM 0.9931 0.9946 0.0070 78.6817 0.9276 0.6671 0.0433 14.1129
BP 0.9291 0.6146 0.0354 195.5729 0.8679 0.3092 0.0691 0.4115

Table 3
Performance comparison among ELM, SVM, BP network with HOG feature on vehicle detection.

Algorithms Training Testing

Accuracy TPR FPR Time (s) Accuracy TPR FPR Time (s)

ELM 0.9908 0.9987 0.0119 0.0313 0.9598 0.9843 0.0366 0.0156
SVM 1 1 0 0.0934 0.9879 0.9814 0.0055 0.0313
BP 0.9993 1 0 0.5885 0.9183 0.9168 0.0856 0.0104
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