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ABSTRACT

Usually, the low-level representation of images is unsatisfied for image classification due to the
well-known semantic gap, and further hinders its application for high-level visual applications. To deal
with these problems, in this paper, we propose a simple but effective image representation for image
classification, which is denoted as the responses to a set of exemplar image classifiers. Each exemplar
classifier corresponding to a training image is learned using SVM algorithm to distinguish the image from
others in different classes, and hence exhibits some discriminative information, which can also be
regarded as a kind of weak semantic meaning. In such a one-vs-all manner, we can obtain the exemplar
classifiers for all training images. We then train a linear classifier with structured sparsity constraints for
each image category by taking advantages of the weak semantic image representation. Experiments on

Structured sparsity

several public datasets demonstrate the effectiveness of the proposed method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Automatically classifying image based on its semantic content
remains a very challenging problem in computer vision. Recently,
the use of local features for image classification has become very
popular and has been shown very effective. Typically, local
features are first encoded with visual words by nearest neighbor
assignment [1] or sparse coding [2]. Images are then represented
by the occurrence histogram of visual words. The bag-of-visual-
words (BoW) representation is inspired by the bag-of-words
approach to text categorization [3]. However, due to the semantic
gap, there are no explicit semantic correspondences between
visual words and human perception which hinders its discrimina-
tive power for high-level visual applications.

To attack this drawback, researchers have done a lot of work
which dramatically improves the image classification perfor-
mance. On one hand, more discriminative and sophisticated
models [4-10] are proposed. These models combine different
types of visual information (e.g., spatial and contextual informa-
tion) for better classification. With constant updating of computa-
tion capabilities, the design of more sophisticated models will still
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be an important and potential solution in future, but it is beyond
the scope of this paper.

On the other hand, the use of semantically meaningful space
for image classification has attracted the attention of researchers
[11-21], which is our focus in this paper. The semantic spaces can
be generated by psychophysical experiments [11,12], latent space
learning [13-15] or using the training image concepts as well as
generic objects [16-21]. The use of semantic space makes image
representation more interpretable than using visual features. This
is often achieved by using a set of pre-learnt classifiers or object
detectors. However, due to the semantic gap, except for a few
objects (e.g., “face”), it is still very hard to learn effective classifiers
or detectors for generic image classes. Furthermore, some objects
often exhibit visual polysemy (e.g., a functional object like “con-
tainer”) or view-dependent (e.g., a side-view or a frontal-view car).
Thus, it is hard or even impossible to learn a single object classifier
competent for various functional objects and different views.

To address above problems, we present a weak semantic image
representation using the responses of some learnt exemplar
classifiers. The exemplar classifier is specific to each exemplar
image in a training set, and it is trained to distinguish the
exemplar image from the others in different image classes.
Although an exemplar image may offer a local reflection of its
corresponding class, many ones in the class are mutually com-
plementary and jointly present a comprehensive description. The
response to each exemplar classifier can be deemed as an explicit
representation about the image class, namely a kind of weak
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Fig. 1. Flowchart of the proposed image classification using weak semantic representation using exemplar classifiers with sparsity constraints.

semantic characteristics. We believe that the use of exemplar
images offers a promising way to enhance the performance of
image classification, because it presents a higher-level representa-
tion than traditional visual words. Specifically, we perform as
follows. First, we explore the linear SVM algorithm to train the
exemplar classifiers corresponding to each image in training set,
while the spatial pyramid matching (SPM) approach for image
representation [5] is used to leverage the spatial and scale
information. Second, with the learnt exemplar classifiers, each
image can be described as a vector of classifiers' outputs, i.e., a so-
called weak semantic representation in this paper. In the follow-
ing, we train a linear classifier with structured sparsity constraints
to choose the most discriminative components of the weak
semantic representation for efficient image classification. We per-
form experiments on several public datasets, and the results
demonstrate the encouraging performance of the proposed
method over the state-of-the-arts. Fig. 1 shows the flowchart of
the proposed method.

The rest of this paper is organized as follows. The related work
are given in Section 2. Section 3 presents the proposed weak
semantic representation of images using exemplar classifiers. In
Section 4, we classify images using the weak semantic image
representation via structured regularized learning. We give the
experimental results in Section 5 and finally conclude in Section 6.

2. Related work

In recent years, the bag-of-visual-words (BoW) model with
local image features has become popular and been proven very
effective for image classification. However, due to the well-known
semantic gap, the lack of explicit correspondence between visual
features and semantic concepts limits its discriminative power.
Researchers have done a lot of work to alleviate this problem
which can be broadly divided into two perspectives. Some tried to
solve this problem by designing more sophisticated and discrimi-
native models while others used more semantically meaningful
space for image representation.

On one hand, the design of more sophisticated models [4-10]
tried to combine different types of visual information (e.g., spatial
and contextual information) for better visual applications. Grau-
man and Darrell [4] proposed pyramid matching to take advantage
of local feature's information in feature space. Motivated by this,
Lazebnik et al. [5] proposed the spatial pyramid matching (SPM)
method to combine the spatial information of local features and
was widely used since its introduction. Shape context was pro-
posed by Belongie et al. [6] which represents a binary shape as a
discrete set of points sampled from its contour. These points are
mapped into a log-polar coordinate system centered at a reference
point and each bin of the log-polar space is then determined by
the distance and angle intervals. Dalal and Triggs [7] used
histograms of oriented gradients (HOG) for human detection
which can be accelerated by using cell-based interpolation [8]
and integral image [9] techniques. Felzenszwalb et al. [10] pro-
posed a part based model for efficient object detection and was
widely used by researchers. The more sophisticated one model is,
the more computational power it needs. Although the fast

development of computer helps to alleviate this problem, the
careful design of efficient models is still a very challenging
problem.

On the other hand, the use of semantic space for image
representation has also been widely used by researchers [11-20].
Some researchers used semantic space determined through psy-
chophysical experiments [11,12]. Oliva et al. [11] organized images
with three semantic axes which are determined by psychophysical
experiments while Mojsilovic et al. [12] used 20 concepts. Other
researchers tried to learn the latent semantic space by text
analysis methods such as probabilistic Latent Semantic Analysis
[13] (pLSA) and Latent Dirichlet Allocation [14]| (LDA). However,
this latent space modeling is hard to interpret for humans. Pang
et al. [15] extended the pLSA model by extracting both global and
local topics which is then used for tourist destination summariza-
tion. To obtain more explicit semantic space, the training concepts
as well as generic objects are also used [16-21]. Rasiwasia and
Vasconcelos [16] proposed to learn a low dimensional semantic
“theme” from casual image annotations for scene classification.
Hauptmann et al. [17] studied the influence of the number of high-
level concepts for reliable video retrieval. Rasiwasia et al. [18]
represented each image with respect to the response of a set of
visual concept classifiers and applied it for image retrieval. Vogel
and Schiele [19] proposed to use the concept-occurrence vector
(COV) for semantic modeling of natural scenes. Images are first
divided into regions and the categories of these regions are then
predicted. The normalilzed histogram of the concept occurrences
in an image is then used to represent this image. Torresani et al.
[20] used the whole images for generic object classifier training
without considering the location and scale changes of objects. To
model the object detectors more efficiently, Li et al. [21] proposed
the ObjectBank which learnt generic object detectors using the
images as well as the human labeled object bounding boxes using
the LabelMe dataset [22] and the ImageNet dataset [23]. However,
due to the semantic gap, it is often hard and time consuming to
train efficient classifiers or detectors for generic image classes. To
alleviate this problem, the use of exemplar training data is also
used by researchers [24,25]. Malisiewicz and Efros [24] used the
segmented per-exemplar image to learn distances for object
recognition by association. Malisiewicz et al. [25] proposed a
conceptually simple method by combining the effectiveness of a
discriminative object detector with the explicit correspondence
offered by nearest neighbor approach for efficient object detection
with good performance.

Another approach that is related to our work is the use of
attributes [26-29]. Farhadi et al. [26] described object categories
by a set of boolean attributes such as “has ears”, “near water” and
built the attribute classifiers by using the internet resources.
Lampert et al. [27] used the attribute information to detect unseen
object classes with transfer learning. Parikh and Grauman [28]
tried to build a discriminative nameable attributes vocabulary
with humans in the loop. To distinguish the discriminative power
of each attribute for different images, Parikh and Grauman [29]
learnt a ranking function per attribute to predict the relative
strength of each property for images. The use of attributes helps
to boost the performance of visual applications. However, the
attributes have to be pre-defined which limits its efficiency for
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large scale visual applications, besides, it also labor intensive and
requires experiences to define proper attributes for different visual
application tasks.

The nearest neighbor based approach and its generalized form
are also widely used [30-32]. Boiman et al. [30] proposed a Naive-
Bayes Nearest-Neighbor (NBNN) classifier which employs the
nearest neighbor distances of the local feature space without
feature quantization. This simple NBNN method required no
training time and achieved the state-of-the-art performance on
several public datasets. Wright et al. [31] used the sparse repre-
sentation technique for robust face recognition which assigned
images of the class with the lowest reconstruction distances while
Yuan and Yan [32] proposed a multi-task joint sparse representa-
tion to combine the discriminative power of different types of
features. The proposed method shares some similarities with these
nearest neighbor based methods but is fundamentally different.
Since we discriminatively train each exemplar classifier, we can
have more freedom in deciding the decision boundary hence are
able to generalize much better. Besides, instead of directly using
the distances for classification, we use the outputs of these
exemplar classifiers with sparsity constraints for better classifica-
tion via fitting a regularized logistic regression model along with
spatial pyramid matching.

3. Exemplar classifier based weak semantic image
representation

We use the semantic space technique to represent images. Each
image is represented by the response of a set of learnt classifiers.
The histogram of visual word occurrences with spatial pyramid
matching (L=0,1,2) is used as the initial image representation [5].
Instead of learning a single classifier for each class, we try to learn
a set of exemplar classifiers for all the training images. Each
exemplar classifier is trained with the corresponding training
images and all the other images of different classes hence exhibit
weak semantic meanings. Since this is much easier than classify-
ing the full-class images, we can use simpler classifiers such as
linear SVM. Instead of using these exemplar classifiers for classi-
fication directly, we use the response of these exemplar classifiers
for image representation and then train classifiers for final
prediction.

Formally, let X =[xy, ...,xy]J€RP*N be the set of D-dimensional
BoW representation of N images, where x;eRP*! i=1,...,N.
These images are of K classes and let Y:(y],...,yN)e{l,A.A,K}N
denote the corresponding image labels. For each training image
x;, i=1,2,...,N, we try to learn the optimal parameters (w;, b;) to
separate x; from all the other images of different classes by the
largest possible margin, where w;eRP*!. This is achieved by
solving the following optimization problem for all i as

N

minfjwill? + C x WX +bp) + 3 A(-wixj-by) M
wi.b; i=1

VYi#Yi

where C is the weighting parameter which controls the relative
importance of x;. We use the hinge loss which is widely used by
researchers as our loss function. The hinge loss has the form of

#(x) = max(0, 1-x) (2)

We use libsvm [33] to train each exemplar classifier. After all the
exemplar classifiers are trained, we can use it for weak semantic
image representation. Since each exemplar is trained to only give
high predicted values for visual similar samples of the correspond-
ing image, it exhibits weak semantic information that an image
belongs to a particular class. For a given image x, we predict its

semantic meanings for each exemplar classifier and use the output
of these classifiers as the final image representation heRN*!,
where h;=w!x + b;, i=1,2,...,N. The spatial pyramid matching
technique (SPM) with three pyramid levels (L=0,1,2) is also used
to combine the spatial information and scale changes of this weak
semantic representation.

Although the discriminative power of each exemplar classifier
is limited, together they can cope with different inter- and intra-
class variations more efficiently and effectively than the full-class
classifiers, hence is able to represent images better and boost the
final image classification performances. The proposed method
bears some similarities with the bagging technique [34] in
machine learning. By combining a set of weak classifiers, the
bagging technique can produce much more powerful classifier
than training a single classifier.

The proposed exemplar classifier based image representation is
different from nearest-neighbor based methods because each
classifier is discriminatively trained. Each exemplar classifier has
more freedom to define decision boundaries hence generalizes
much better than nearest-neighbor based methods with less
training data. Besides, we use the response of exemplar classifiers
for image representation and train classifiers for final
classification.

4. Weak semantic image representation for classification
via structure regularized learning

After representing each image with the weak semantic repre-
sentation, we can predict the categories of images by training
classifiers. Let H={[hy,h,,...,hy]JeRP*N be the weak semantic
representation of N training images and Y =(y;,....yy)€E(l, ...,
K}V denote the corresponding image labels, where
hyeRP>1, i=1,...,N. Our aim is to learn K linear functions olh,
ayeRP>1 k=1, ...,K, such that the label of image h is decided by
y =argmax ajh (€)]

ke(1,...K}

We follow the one-versus-all strategy to learn K binary linear
classifiers by solving the following optimization problem as

N
min Y Liafhi,y¥) + AR(@y), vk )
% j=1

where y¥ =1, if y; = k, otherwise y¥ = —1. L() is the loss function
and R(«y) is the regularization term. A is the balancing parameter of
the two terms whose value can be determined by cross validation.
In this paper, we use Log loss which has the form of

L(afh;, y¥) = log(Z/exp(0.5y% x ah;)) 5)

The log loss is widely used by researchers both for its good
performance and differentiability.

A proper regularization term is very important for robust image
classification. Since we train exemplar classifiers for each training
image and as the number of training images increases, it would be
more effective to choose the most discriminative exemplar classi-
fiers instead of using all of them equally. A popular choice is to use
the sparsity constraints as R(ay) = |||l for exemplar classifier
selection.

Besides, although each exemplar classifier is trained separately,
images of the same class are often correlated which means the
corresponding exemplar classifiers should also have some predic-
tion consistency. To take this information into consideration, we
set the regularization term in a structured form by joint 7 /7,
regularization as R(ar) = llaklli2 = Xf_,ll@lla, where aj is the
parameters corresponding to exemplar classifiers of the jth class.
This regularization term encourages parameters corresponding to
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the same class to be jointly zero. Such structured sparsity is more
robust and semantically meaningful than using individual sparsity
constraints whose effectiveness has been proven by many
researchers [21,35]. Moreover, since we use the SPM technique
to alleviate the scale and location changes of objects, it would be
more effective to select the optimal scale and location of objects
instead of treating them equally. We add a #; to the structured
regularization function and the final regularizer used in this paper
has the form of

R(ag) = llewll1.2 + A1 lleells (6)

where 1; is a balancing parameter which can be determined by
cross validation. This makes the final optimization problem still
convex. To solve this problem, we use the coordinate descent
algorithm proposed by Li et al. [21] to learn the optimal para-
meters ay, Vk. After all the parameters are learnt, we can predict
the classes of images using Eq. (3).

5. Experiments

We evaluate the proposed method for image classification on
several public datasets: the Scene-15 dataset [5], the Caltech-256
dataset [36] and the MIT Indoor dataset [37]. We densely extract
SIFT descriptors [38] on overlapping 16 x 16 pixels with an overlap
of 6 pixels. Sparse coding [2] with locality constraints [39] is used
to encode local features as it has been proven more effective than
k-means clustering method for image classification. Max pooling is
then used to extract image representation which is used for
training exemplar classifiers. The codebook size is set to 1024 for
the three datasets. We found our method is robust to a wide range
of Cs. This is because we did not use the outputs of exemplar
classifiers for final prediction but use them as weak semantic

image representation. The final performance is relatively stable as
long as the outputs of exemplar classifiers are consistent.

5.1. Scene-15 dataset

The Scene-15 dataset has 15 categories with a total of 4485
images and ranges from natural scenes like mountains and forest
to man-made environments like store and living room. Each class
of the Scene-15 dataset has 200-400 images. The average image
size is 300 x 250 pixels. For fair comparison, we randomly choose
100 training images per category and use the rest images for test,
as did in [2,5] and repeat this process for six times. We report our
final results by the mean and standard deviation of the average of
per-class classification rates.

Fig. 2 shows some example images with the top five images
whose corresponding exemplar classifiers output the largest
responses (in descending order). Each exemplar classifier only
needs to classy visually similar images and we use the joint
representation of the outputs of these exemplar classifiers for
better image classification. We give the performance comparison
of the proposed method with [2,5,16,21,40] in Table 1. We give the
results of the proposed method with no regularization on the
classifier parameters, using k-means clustering and sparse coding
for local feature encoding respectively. Note that the WSR-EC(no
regularization) result is achieved by using k-means clustering and
nearest neighbor based local feature quantization. We also give the
re-implemented results of KSPM by Yang et al. [2]. We can see
from Table 1 that the proposed method achieves good perfor-
mance which clearly demonstrates the effectiveness of the pro-
posed method. The use of exemplar classifier for image
representation makes it robust to inter and intra class variation
than LSS [16] which used all the training samples, besides, we

Fig. 2. Example images with the top five images whose corresponding exemplar classifiers output the largest responses (in descending order for each row).
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jointly choose the most discriminative parameters for final classi-
fication using structured sparsity constraints which helps to
further improve the final classification performance.

Table 1

Performance comparison on the Scene-15 dataset. (ScSPM, sparse coding along
with spatial pyramid matching; KSPM, spatial pyramid matching and kernel SVM
classifier; LSS, low-dimensional semantic spaces with weak supervision; OB, object
bank; KCSPM, kernel codebook and spatial pyramid matching; WSR-EC (no
regularization/k-means/sparse coding): the proposed weak semantic image repre-
sentation using exemplar classifiers with no regularization on classifier para-
meters/k-means clustering/sparse coding).

Algorithm Performance
KSPM [2] 76.73 + 0.65
ScSPM [2] 80.28 +0.93
KSPM [5] 81.40 + 0.50
LSS [16] 72.20 +0.20
OB [21] 80.9

KCSPM [40] 76.70 + 0.40
WSR-EC(no regularization) 7419+ 047

WSR-EC(k-means) 77.82 +0.63

WSR-EC(sparse coding) 81.54 + 0.59

Table 2

Performance comparison on the Caltech-256 dataset. (Classemes: classification
with weakly trained object classifiers based descriptor; NBNN, Naive-Bayes
nearest-neighbor; LLC, locality-constrained linear coding.)

Algorithm 15 training 30 training 45 training
KSPM [2] 23.34 +042 29.51 +0.52 -

ScSPM [2] 27.73 £0.51 34.02 +£0.35 3746 +0.55
Classemes [20] - 36.00 -

OB [21] - 39.00 -

NBNN(1 Desc) [30] 30.45 38.18 -

KSPM [36] - 34.10 -

LLC [39] 34.36 41.19 4531
KCSPM [40] - 2717 +0.46 -

WSR-EC 35.28 + 0.65 42.01 + 047 45.82 +0.54

We can see from Table 1 that the proposed WSR-EC (with
sparse coding) has comparable performance with KSPM [5]. We
believe this is because images of the Scene-15 dataset are
relatively easy to be separated. However, with the increase of
image classes, it becomes more difficult for KSPM to separate
images correctly. The proposed WSR-EC method uses the discri-
minative power of each exemplar classifier and organized them
more efficiently, hence improves image classification performance.
We can see from Table 2 that the KSPM does not work as well as
WSR-EC on the Caltech-256 dataset which has 256 classes.

Our method performs not as good as OB [21] with k-means
clustering and nearest-neighbor assignment based feature quanti-
zation. This is because the OB algorithm also used human labeled
images from other sources for efficient object detector training
while we only make use of the training samples. However, by
using sparse coding instead of k-means for local feature encoding,
we are able to improve the performance. This also demonstrates
the effectiveness of using sparse coding for image classification [2].

5.2. Caltech-256 dataset

The Caltech-256 dataset contains 256 categories of 29,780
images with high intra-class variability and object location varia-
bility. Each class of the Caltech-256 dataset has at least 80 images.
We follow the experimental setting as [2,39] did and randomly
choose 15, 30 and 45 images per class for training and use the rest
of images for testing.

We give the performance comparison of the proposed method
with other methods [2,20,21,30,36,38,40] in Table 2. The combina-
tions of spatial location of objects and exemplar classifier based
image representation make our algorithm perform better than the
Classemes [20] by 6% and OB [21] by 3% for 30 training images per
class. Besides, the use of locality-constrained sparse coding helps
to increase the discriminative power of exemplar classifiers which
also helps for the final performance improvements. The use of
more discriminative exemplar classifiers helps to improve the
final performance than less discriminative exemplar classifiers.

Fig. 3. Some example images of the MIT Indoor dataset.
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Sorted classification performance on the MIT Indoor dataset.

church inside 78.3
concert hall 63.6
computer room 61.4
greenhouse 58.8
cloister 56.6
locker room 49.7
laundromat 47.7
videostore 45.3
hospitalroom 43.7
gameroom 42.2
bookstore 40.8
kitchen 38.4
movietheater 35.8
toystore 33.7

bar 31.9

prison cell 29.3
airport inside 26.3
museum 24.4
bedroom 21.3

mall 20.2
operating room 16.8
children room 14.3

elevator 73.7
classroom 62.3
buffet 61.4
corridor 58.0
studiomusic 52.4
closet 48.9

tv studio 47.5
bathroom 44.5
garage 43.2
stairscase 41.8

deli 39.2
winecellar 37.8
clothingstore 35.0
fastfood restaurant 33.6
dining room 30.7
hairsalon 29.0
waitingroom 25.4
lobby 24.0
laboratorywet 20.8
meeting room 18.4
office 16.1
kindergarden 12.6

auditorium 63.7
bowling 61.9
inside bus 59.5
dentaloffice 57.5
trainstation 51.8
library 48.7
grocerystore 47.5
florist 44.1

pantry 43.2
nursery 41.7
inside subway 39.1
poolinside 36.7
gym 34.1
livingroom 33.0
casino 30.5
artstudio 27.8
subway 24.9
bakery 23.1
restaurant 20.2
warehouse 17.6
restaurant kitchen 15.6
jewelleryshop 12.2

shoeshop 11.9

Moreover, the proposed method also outperforms the NBNN
method which used the nearest-neighbor measurement with no
quantization of local features.

5.3. MIT Indoor dataset

The MIT Indoor dataset has 67 indoor scenes of 15,620 images
of different sources. All images have minimum 200 pixel resolu-
tion in the smaller axis. We follow the same experimental setup as
did in [36] and use 80 images per class for classifier training and
20 images for testing. Fig. 3 shows some example images of the
MIT Indoor dataset.

We achieved 38.6% on the MIT Indoor dataset which outper-
forms the OB (37.6%) algorithm and Classemes (26%) algorithm.
Table 3 gives the detailed performance of WSR-EC. This again
demonstrates the effectiveness of the proposed method. The use of
locality-constrained sparse coding helps to encode local features
more effectively than nearest neighbor assignment hence
improves the discriminative power of exemplar classifiers. Besides,
we also impose structured sparsity constraints on the weak
semantic image representation for efficient classifier training.

6. Conclusions

This paper proposed a novel image classification model using
weak semantic image representation with exemplar classifiers. We
train exemplar classifiers for all the training images and use the
outputs of these learnt exemplar classifiers for image representa-
tion. Since each exemplar classifier only concentrates on similar
objects with this exemplar, the proposed image representation
bears weak semantic information. To take advantages of this weak
semantic representation, we train a logistic regression model with
structured sparsity constraints to jointly choose the most discri-
minative components for efficient image classification. The spatial
pyramid matching technique is also used to combine different
image locations and scale changes. Experimental results on several
public datasets demonstrate the effectiveness of the proposed
method. Since exemplar classifiers are trained separately, it can be
easily extended in a parallel way for large scale visual applications.

Our future work concentrates on the following two aspects.
First, the use of internet resources for efficient exemplar classifier

training will be studied. Second, how to combine different types of
features efficiently to boost the performance will also be
investigated.
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