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This paper proposes a novel method to improve the accuracy of head pose estimation. Since biologically
inspired features (BIF) have been demonstrated to be both effective and efficient for many visual tasks,
we argue that BIF can be applied to the problem of head pose estimation. By combining the BIF with the
well-known local binary pattern (LBP) feature, we propose a novel feature descriptor named “local
biologically inspired features” (LBIF). Considering that LBIF is extrinsically very high dimensional,
ensemble-based supervised methods are applied to reduce the dimension while at the same time
improving its discriminative ability. Results obtained from the evaluation on two different databases
show that the proposed LBIF feature achieves significant improvements over the state-of-the-art
methods of head pose estimation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As one of the most active research topics, automatic face
recognition has received significant attention in computer vision
and pattern recognition. After more than thirty years of research,
face recognition systems have finally achieved very high perfor-
mance under controlled conditions. However, when variations
due to extrinsic factors like pose, illumination and expression
changes are present, performance degrades dramatically [1]. Pose
change is one of the most important and difficult issues for face
recognition. To achieve the expected robustness to pose variation,
one may expect to process face images differently according to
their pose parameters. In this case, the pose of the input faces
should be estimated as a prerequisite for subsequent processes.

This paper focuses on the problem of estimating the head pose
using 2D images. Pose estimation essentially means the computa-
tion of three types of rotation of a head: yaw (looking left or right),
pitch (looking up or down) and roll (tilting left or right) [2]. Due to
many important applications, estimation of the yaw rotation attracts
more attention than the estimation of the other two rotations [3].

Generally, the methods of head pose estimation can be
categorized into two main groups [4]: model-based methods
[5-8] and appearance-based methods [9-12]. Recently, Murphy-
Chutorian et al. conducted a survey of the existing head pose
estimation schemes [2]. Model-based methods can be divided
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into flexible models and geometric methods: flexible models fit a
non-rigid model to the facial structure of each individual in the
image plane; head pose can then be estimated from the feature-
level comparisons or from the instantiation of the model para-
meters. Flexible models include methods, such as active shape
models (ASM) [5], active appearance models (AAM) [6] and elastic
graph matching (EGM) [7]. On the other hand, geometric methods
use the location of fiducial points, such as the eyes, mouth, and
nose tip to determine pose from their relative configuration.
Using the five fiducial points (the outside corners of each eye,
the outside corners of the mouth, and the tip of the nose), Gee
et al. proposed to find the facial symmetry axis by connecting a
line between the midpoint of the eyes and the midpoint of the
mouth [13]. Nikolaidis et al. proposed a head pose estimation
method based on the distortion of the isosceles triangle formed
by the two eyes and the mouth [8]. In general, the performance of
model-based methods relies on the accuracy of fiducial points
localization. Since robust fiducial points localization is still an
open problem, model-based approaches are limited in practice.
Appearance-based methods typically assume that there exists a
certain relationship between the 3D face pose and some properties
of the 2D facial image. Under the framework of statistical learning
techniques, a large number of training images are used to infer the
relationship. Darrell et al. proposed to use the separated eigenspace
for head pose estimation [9]. In their method, the pose of the input
image is determined by projecting it onto each eigenspace and
selecting the one with the lowest residual error. Gong and his
colleagues studied the trajectories of multi-view faces in the linear
principal component analysis (PCA) feature space and use kernel
support vector machines (KSVM) for pose estimation [10,11]. Li et al.
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exploited independent component analysis (ICA) and its variants for
pose estimation [14]. Chen et al. proposed the kernel-based method
to deal with the non-linearity of head pose estimation [3]. They
chose the face images of two specific head pose angles and utilized
the classification-based non-linear interpolation to estimate the head
poses between the two angles. Wei et al. proposed to select the
optimal orientation of the Gabor filters for each pose to enhance pose
information and eliminate other distractive information like variable
facial appearance or changing environmental illumination [15]. Ma
et al. proposed the method of Gabor-Fourier Fisher features (GFFF)
which is based on the assumption that the asymmetry in the
intensities of each row of the face image is closely relevant to the
yaw rotation of head [16]. Since the set of all facial images with
various poses is intrinsically a 3D manifold in image space, manifold
learning [17-19] for head pose estimation has recently attracted
great interests [12,20,21]. By thinking globally and fitting locally, Fu
et al. proposed using the graph embedded analysis method for head
pose estimation [12].

Intuitively, appearance-based methods can naturally avoid the
above-mentioned drawbacks of the model-based methods. There-
fore, they have attracted more and more attentions. Appearance-
based methods have been supported by machine learning techni-
ques that use statistical and probabilistic methods. However, it is
becoming increasingly clear that the development of new machine
learning algorithms alone might not be the best approach to solve
the recognition problems.

Recently, the human visual system is demonstrated about the
ability to perform identification tasks with enough accuracy for
most applications. More and more researchers have focused their
attentions on how it represents visual data in order to derive
features that will be useful in computer vision systems. Based on
the human visual system, biologically inspired features (BIF) [22]
have been proposed and shown excellent performance in some
computer vision tasks, such as object category recognition [23],
face recognition [24], age estimation [25] and scene classification
[26]. The motivation of BIF is that the primate visual system uses
a strategy of shared general early level processing that branches
off into more specific higher level representations [24]. Most
visual information that reaches higher levels of the cortex first
passes through center-surround processing in the retina and
lateral geniculate nucleus (LGN), as well as through an early
localized edge/spatial frequency representation in the primary
visual cortex (V1). Later processing, for example recognizing
objects, is performed in different brain regions.

Different researchers proposed the different BIF model.
Riesenhuber et al. [22] proposed the hierarchical “HMAX” model,
which consistent with physiological data from inferotemporal
cortex that accounts for this complex visual task and makes
testable predictions. Their model is based on a MAX-like opera-
tion while contains alternating layers called Simple (S1) and
Complex (C1) cell units. In the S1 layer, the input image is
convolved with the Gabor filters. Two adjacent scales in the same
orientation are then grouped together to form “bands”. In the C1
layer, the maximum value within the adjacent scale with the
same orientation are computed. The MAX operation locally and
automatically select a relevant subsets of inputs which seems
biologically plausible, and increase the tolerate to the small shifts
and scale changes within a small range of position and scale.

Motivated by a quantitative model of visual cortex, Serre et al.
[23] extended the “HMAX” model to include two higher level
layers, called the S2 layer and the C2 layer. In the S2 layer, the
response of S2 unit depends in a Gaussian-like way on the
Euclidean distance between a new input patch and the stored
prototype. This is consistent with well-known neuron response
properties in primate inferotemporal cortex and seems to be the
key property for learning to generalize in the visual and motor

systems. Each stored S2 unit is convolved over an entire image at
all scales. And then, C2 unit are assigned the maximum response
value on S2. Built on Serre’s work for object category recognition,
Mutch et al. [27] proposed some improvements, such as sparsify-
ing S2 inputs, which suppressed S1 and C1 outputs, and feature
selection.

In order to create a new set of features useful for both face
identification and expression recognition, Meyers and Wolf [24]
modified the “HMAX” model by adding center-surround proces-
sing to handle illumination changes. To handle high dimensional
data, they proposed a new method of combining lower level
features based on a kernelized and regularized version of the
relevant component analysis transformation.

Guo et al. [25] investigated how to use BIF to estimate the
human age from the input face images. They set the size of Gabor
filters as small as possible and suggested to determine the
number of bands and orientations in a problem-specific manner,
rather than using a predefined number. More importantly, they
proposed a non-linear operator “STD” on each scale band (two
scales) of S1 units after they are merged into one maximum
map using the “MAX” operation. Dimension reduction is also
performed on the C1 features to make them more efficient.

Given the superior performance of human vision on general
object recognition, it is reasonable to explore for inspiration to
improve the performance of head pose estimation. In this paper,
we explore the relationship between the human vision and head
pose estimation. The first contribution of this paper is the
introduction of BIF to the problem of head pose estimation for
the first time ever. The second contribution is to further improve
the discriminant ability of BIF, based on which a novel feature
extraction method named local biologically inspired features
(LBIF) is proposed in this paper. LBIF is the combination of BIF
and the traditional local binary pattern (LBP) feature. As a texture
descriptor, LBP has gained great successes in many areas. So, in
LBIF, we consider LBP as the complement of BIF. By combining of
the human vision and LBP, LBIF can improve the representation
ability of BIF features. To show the effectiveness of BIF and LBIF in
head pose estimation, we design the experiments on the CAS-
PEAL database and the Multi-PIE database. The obtained accura-
cies show that BIF can be applied in the problem of head pose
estimation, and LBIF can improve the accuracy of BIF further
while at the same time outperforming all the current state-of-the-
art methods.

The remaining part of this paper is organized as follows: Section
2 describes the proposed LBIF method in detail and analyzes its
characteristics. Experiments are given in Section 3. Conclusions are
drawn in Section 4 along with some discussions on the future works.

2. Local bio-inspired features

In this section, we first introduce the proposed LBIF descriptor
for face representations. Then, to gain the pose of the input head
image, how LBIF is combined with the classifiers, such as nearest
centroids (NC) classifier or support vector machines (SVMs) [28]
is introduced in details.

The flowchart of the LBIF-based framework is shown in Fig. 1.
Like the traditional BIF, there are four layers in LBIF. In the S1
layer of LBIF, a pyramid of Gabor filters is applied at all positions
of the input image; in the C1 layer, the non-linear “MAX"” operator
is applied to extract the non-linear features; in the S2 layer, local
binary pattern (LBP) is improved and then applied to extract the
texture features; in the C2 layer, the ensemble-based dimension
reduction method is then applied to improve the discriminant-
ability and reduce the dimension of features. In the follows, we
introduce each layer in details.
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Fig. 2. The Gabor representations of a face image. The images in the first and second rows are the Gabor representations of the same image with the neighborhood scales.
The images in the third row are the results of the MAX operator on the images of the first and second row.

2.1. S1 layer

In the first step of LBIF, the input face image is analyzed by an
array of simple S1 units that correspond to the classical simple
cells found in the primary visual cortex (V1). Usually, Gabor
filters, which provide a good model of cortical simple cell
receptive fields, are applied at the S1 layer [22,24,25], motivating
our choice of such features.

For the face image I(x,y) with width w and height h, its
convolutions with Gabor filters can be computed from the
following equation [29]:

G(u,v) =Ixy)p,, ,(2) (1)
where

kal\z (—llky v 1211212 /262) [ piky vz _ a—02 )2
V@)= oz & [e""—e ] 2)
Ky = kye@n, k,=270227, ¢ﬂ=#§ (©)

where pu and v are the scales and orientations parameters,
respectively. The images in the first and second rows of Fig. 2
are the Gabor representations of the same image with variations
in the neighborhood scales.

In the traditional BIF-based methods, each band has a pair of
adjacent filter sizes. Then, the number of scales is often fixed on
16 (8 bands) while the number of orientations is flexible and
often set to 4, 8 or 16. Since Gabor filters with eight orientations
are often applied in face recognition and other related areas, in
LBIF, the orientation number of Gabor filters is also set to 8.

In Section 3.4, we also show the accuracies of head pose estima-
tion while the orientation number is 4, 8 and 16 show the
influence of the orientation numbers.

In LBIF, like the work of Serre [23], the filters in the S1 layer are
also arranged to form a pyramid of scales, spanning a range of
sizes. Since the size of the face image in head pose estimation is
much smaller than that in object category recognition, in LBIF, the
sizes of Gabor filters start from a smaller size, 5 x 5, instead of
7 x 7 in [23]. The sizes of Gabor filters with the different bands are
shown in Table 1.

From the above introduction, in LBIF, we can know that there
are 128 Gabor magnitude pictures (GMPs) with eight bands and
eight orientations. These GMPs can be rewritten as {Gg, i=
0,...,m,j=0,...,n, q=0,1}, where Gg and G}j are the filtered
values at band i and orientation j, m and n are the total number of
bands and orientations, respectively and q is the scale index for
the specifically band. Then, for a 32 x 32 image, the dimension of
each GMP is 1024, and the dimension of the final output of the S1
layer is 131, 072 (=32 x 32 x 16 x 8).

2.2. C1 layer

The C1 layer corresponds to cortical complex cells that tend to
have larger receptive fields [23]. The C1 layer pool over S1 units
with the same orientation and the same band. Since the pooling of
the maximum operation over two consecutive scales (i.e., in the
same band) increases the tolerance to 2D transformations, such as
scale changes [22,23], in LBIF, “MAX” is selected as the non-linear
operator and the pooling filter. The maximum value C; of two
consecutive S1 units at band i and orientation j can be computed
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Table 1
The sizes of Gabor filters.

Band 1 2 3 4 5 6 7 8

Filter sizes 5x5 9%9 13x 13 17 x 17 21 x21 25 x 25 29 x 29 33x33

Filter sizes 7x7 11x 11 15x 15 19x19 23 x 23 27 x 27 31x31 35x35
from the following equation: /—\

0 1
C;j = max (Gy;,G;) 4)
In Fig. 2, the images in the third row are the results of MAX 0 1 20 2!
operator between the images in the first and second rows.
Finally, after the C1 layer, the representation of a face image X X
can be wrote as 3 2
3 2 2 2
C=(C1,C12, .- -,C10,C21,Ca2, - . . ,Crnn) 5)
Fig. 3. The neighborhood operator in the S2 layer of LBIF.

2.3. S2 layer

In the S2 layer of LBIF, an improvement based on the well-
known LBP is proposed and then applied to extract the texture
feature. LBP is originally introduced as a texture descriptor by
Ojala [30]. It has been applied successfully in face recognition,
head pose estimation, face expression recognition and other
related areas.

The original LBP operator labels the pixels of an image by
thresholding the pixels f,(p=0,...,7) in a 3 x 3 neighborhood
with a center value f.. The output O(f,—f ) of the LBP operator is a
binary number

1L fp=fe
O(fpfc)={0' f:; <fc (6)

Then, by assigning a binomial factor 2 for each S(f,—f.), the LBP
pattern at the pixel f. is given as

7
LBP= " O(f,—f)2" (7
p=0

which characterizes the spatial structure of the local image
texture. From the above equation, it is known that the histogram
bin of LBP is limited in the region [0, 255] and the bin number is
256. In many applications, the bin number is grouped into 8 or 16
to reduce the dimension of the histogram. In LBIF, we use a four
neighborhood of the center pixel, which can reduce the computa-
tion complexity and the feature dimension greatly. By this way,
the histogram bin is limited from O to 15, while the bin number is
reduced from 256 to 16. In Fig. 3, we show the four neighborhood
operator in LBIF. In Fig. 4, we show the representations with the
operator on the images in the third row of Fig. 2.

In the traditional LBP-based method, the neighborhood repre-
sentations for a given image are generated by dividing the image
into several patches and creating histogram in each patch.
Usually, all the patches are set to the same size and all the
histograms are treated as equivalent. In LBIF, since the sizes of
Gabor filters are varied with the band index in the S1 layer, the
patch sizes in the S2 layer are also varied with the band index of
Gabor filters: for the bands with smaller sizes of Gabor filter, the
patch sizes are smaller as well. In LBIF, the overlap between two
neighbor patches is set to half of the patch size. The variations of
the patch size and overlap influence the histogram number, while
at the same time the histogram number L; is decreased with the
increasing of band i. Since the smaller sizes of Gabor filters mean
that more details are preserved, we argue that by increasing the
weight of the image details, the representation ability of the
feature is increased also. In Table 2, we show the parameters in

the S2 layer: the first and second rows show the patch sizes and
the overlaps for the different bands in LBIF, respectively; the third
and fourth rows show the histogram number L; and the feature
dimension for different bands with the specific orientation,

respectively.
For a histogram h=(by,...,bys), its sum S, is computed as
follows:
15
Sh= bi=wuy x hy ®)
i=0

where w,, and h,, are the width and height of the patch,
respectively, which means that S, is the same as the number of
elements in the patch. In LBIF, with the increase of the band index
i, wy, and h,, are increased, which means S, also increases. In some
senses, S; can be seen as the weight of the patch. The larger the
patch size, the larger the weight of the patch. From the char-
acteristics of Gabor filters, we can know that the smaller the
Gabor filter means more detail of the input image, which is
important for pose estimation. So, in LBIF, to emphasize the
weight of the smaller patch, the histogram h is processed as
follows:

h

h= Wy X hy ®
By this way, for patches with arbitrary sizes, their histograms
have the same weight in the final feature. Since the patch number
in the smaller bands is larger than that of the larger bands, the
number of histogram in the smaller bands is larger than that of
the larger bands. So the weight of the smaller bands is increased
in the output of the S2 layer and the detail of the input image can
be greatly preserved.

Finally, the output S of the S2 layer can also be computed from

Eq. (5):

S$=(811,S12, - - -,$11.821,822, - - . ,Smn) (10)
and
Sij = (ﬁij,lvﬁij,Zv . ~~,ﬁij,Li) an

where ﬁij', is the histogram of the patch [ for the band i and the
orientation j. The dimension of S is 25,216 (=3152 x 8).

2.4. C2 layer

The S2 features are concatenated to form a feature vector for
each face image. In the C2 layer, the methods of feature dimen-
sionality reduction are applied to reduce the dimension of the
resultant features and enhance the discriminative ability.
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Fig. 4. The representations with the neighborhood operator.

Table 2

Parameters in the S2 layer. The first and second rows show the window’s sizes and overlaps in the different bands, respectively; The third and fourth rows show the
histogram number and the feature dimension for different bands with the specific orientation, respectively.

Band 1 2 3 4 5 6 7 8 Total
Windows size 6x6 8x8 10x10 12x12 14 x 14 16 x 16 18x 18 20 x 20 -
Overlap size 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x 10 -
Histogram number 81 49 25 16 9 9 4 4 197
Dimension 1296 784 400 256 144 144 64 64 3152

Principal component analysis (PCA) is a traditional linear
transformation technique, which can greatly reduce the dimen-
sion of features. In PCA, the projection matrix W is composed by
the orthogonal eigenvectors of the covariance matrix of all the
training samples. Since the feature dimension of S2 layer is very
high, it is difficult to apply PCA directly to the holistic histogram
feature. To address this problem, we turn to ensemble of piece-
wise PCA classifiers by partitioning the entire feature vector.
For example, the output S of the S2 layer can be rewritten as
follows:

S=(H,Hy, ... Hy) (12)

where H, is the p-th feature segment containing a specific
number of spatial histograms. Then, for each feature segment
H,, one PCA model is built in order to transform it to a low-
dimensional representation L, in the subspace

L,=WH, (13)

Thus, in LBIF, by building K subspaces, the input face image is
finally represented as

LBIF = (L;,L,, ..., Ly) (14)

2.5. Supervised local bio-inspired features

The nature of head pose estimation evidently needs discrimi-
nating features rather than a pure representation. Therefore, we
need a discriminant analysis on the spatial histogram representa-
tion of LBIF in order to improve the recognition performance.
Generally speaking, the performance of the supervised method is
much better than that of the unsupervised method. So, we can use
the supervised method, such as linear discriminant analysis
(LDA), marginal Fisher analysis (MFA) [31] or locality sensitive
discriminant analysis (LSDA) [32], to improve the accuracy of
head pose estimation. In this paper, for simplicity, we just use
LDA as the method that improves the discriminative ability of
LBIF and propose the supervised local bio-inspired features
(sLBIF). In fact, LDA can be replaced by other supervised methods
in sLBIF, since it has been proven that the performance of other
supervised methods is much better than that of LDA.

LDA has been recognized as one of the most successful
methods in face recognition [33]. In LDA, the within-class scatter
matrices S,, represents the average scatter of the sample vectors
X of different classes around their respective means m;. Similarly,
the between-class scatter matrices S, represent the scatter
of the conditional mean vectors m; around the overall mean
vector m. Through a linear transformation, the original feature

representation is projected into a new LDA subspace where S, is
maximized while S,, is minimized by maximizing the Fisher
separation criterion. The optimal projection matrix W' can be
obtained by solving a generalized eigenvalue problem.

Replacing W, in Eq. 13 by WX, the projection in LDA subspace
of Hj is computed as

F, = (W{)H, (15)

By this way, LBIF is improved to sLBIF, which can improve the
discriminative ability of the S2 features while reduced the
dimension of features. The final output of sLBIF is represented as

SLBIF = (F;,F,, ..., Fx) (16)

In LBIF and sLBIF, it must be pointed out that the dimension of
H, is the constant for p. Since the dimension of §; varies with the
increase of band index i, the features in H, may come from the
different bands, while at the same time, the features of §; are
partitioned into different Hj.

Note that, in sLBIF, to avoid the singularity of the within-class
scatter matrix, PCA is conducted to reduce the dimensionality of
the histogram vector to be less than N—C, where N is the number
of training examples and C is the number of classes. The PCA
features are then transformed by LDA for the final classification.

2.6. Classification or regression

Since the extraction of LBIF (sLBIF) can be regarded as the
pre-processing step for yaw estimation, it should be combined
with the classifier or the regression method to get the yaw of the
input image. In this paper, we take the head pose estimation as a
yaw classification problem, which is the possible way when the
pose angles in the database are not continuous.

In this paper, NC and SVM are selected as the classifier to
evaluate the performance of the proposed features. In head pose
estimation, since the image difference of the same people with
the near angles might be less than the image difference of the
different people with the same angle, there is an error which is
caused by the subjects inevitably when using the traditional
nearest neighbor (NN) classifier. To eliminate this error, we select
NC classifier as the classifier to estimate the head pose. In NC
classifier, for each angle, the k-means method is applied to find k
centroids from the training samples with the same angle. Then we
compare the distance of the input feature to each class centroid
and take the class with the smallest Euclidean distance as the
output label. Besides NC classifier, we also use SVM classifier to
evaluate the performance of LBIF (sLBIF), since SVM has been
applied in head pose estimation triumphantly.
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In fact, head pose estimation can also be considered as a
regression problem when the angles are seen as the regression
values. For example, the NC classifier or SVM can be replaced by
other methods, such as support vector regression or relevance
vector machine [34], to get the continuous poses.

3. Experiments

In this section, the proposed LBIF and sLBIF methods are
evaluated on two different head pose databases. To demonstrate
their effectiveness, we also compare the performance of the pro-
posed methods with other related methods. To show the influence
of the parameters in sLBIF, we also repeat the experiments using the
different block and orientations number.

Two databases are selected as the experimental data to demon-
strate the accuracy of the different methods. The first database is the
CAS-PEAL [35] database, which contains 21 poses combining seven
yaw angles (—45°, —30°, —15°,0° 15°, 30° and 45°) and three pitch
angles (30°, 0° and —30°). We use a subset containing totally 4200
images of 200 subjects whose IDs range from 401 through 600.
In Fig. 5, we show some face images in the CAS-PEAL database.

The second database is the CMU Multi-PIE face database [36].
In the experiment, we only use the images of the first session. This
session contains 3735 images from different subjects. The head
angles varies from —90° to 90° with an interval of 15°. In Fig. 6 we
show some face images in the MultiPIE database.

In the experiments, we take the yaw poses as the class labels.
In this sense, the images with the same yaw pose but different
pitch pose belong to the same class. So, the images in CAS-PEAL
database belong to seven different classes, and the number of
classes for the Multi-PIE database is 13.

For all the input images, the face detector [37] is applied to
locate the face region, and then all the face regions are normalized
to the same size of 32 x 32. Finally, histogram equalization is used
to reduce the influence of lighting variations. From Figs. 5 and 6,
the backgrounds are existed in some images and the head is in the
misalignment.

In all the experiments, three-fold cross-validation is used to
avoid over-training. Specifically, the images are ranked by their
subjects and then divided into three subsets. Two subsets are
taken as the training set and the other subset is taken as the
testing set. In this way, the persons for training and testing are
totally different. Consequently the over-fitting in identity is
avoided. Testing is repeated three times, by taking each subset
as the testing set. The results are the average of all the tests.

We compare the performance of LBIF with the following unsu-
pervised methods: PCA, Gabor Fourier feature (GF), histogram of
oriented gradients (HOG), Local Gabor Binary Patterns (LGBP) and
BIF. As one of the baseline methods in face recognition, PCA [38] is
also the baseline method in appearance-based pose estimation.
GF uses the asymmetry of the head and achieves better results in
head pose estimation [16]. In [39], HOG descriptors have been

employed as the head image representation and perform much
better than the raw Sobel filtered image. LGBP is selected since it can
greatly improve pose estimation with a set of multi-class SVMs [40].
Since one of our contributions is the novelty of using BIF features in
head pose estimation to improve the accuracy of head pose
estimation, we implement the method in [25] by ourselves and
compare its accuracy with those of other methods.

We also compare the performance of sLBIF with the following
supervised methods: LDA, Gabor Fourier Fisher feature (GFFF),
sHOG, sLGBP and sBIF. The LDA-based baseline algorithm, similar
to the Fisherfaces method [33], applies first PCA for dimension-
ality reduction and then LDA for discriminant analysis. GFFF,
sHOG, sLGBP and sBIF are the combination of LDA with GF, HOG,
LGBP and BIF, respectively. For all these methods, PCA is used
after feature extraction to reduce the dimension of features and
95% of the total energy of the eigenvalues is kept.

3.1. Experimental results with NC classifier

First, we evaluate the performances of different method under
the NC classifier. In Figs. 7 and 8, we show the accuracies of the head
pose estimation with the centroid number k ranging from 1 to 10 on
the CAS-PEAL database and the Multi-PIE database, respectively.
To show the results more clearly, we take the results of the
unsupervised method and the supervised method in different sub-
figure. In Figs. 7 and 8, the top sub-figures and the bottom sub-
figures show the accuracies of the unsupervised methods and the
supervised methods, respectively. In such figures, the x-axis is the
centroid number k of each pose and the y-axis is the accuracy.

From Figs. 7 and 8, we can see the following four points: Firstly,
for the unsupervised methods, the accuracies increase along with
the centroid number k when k is very small and they become robust
when k is large. However, for the supervised methods, the accuracies
are much more robust for different k. This actually implies that the
excellent compactness of each class in the feature space obtained by
LDA and the supervised method can improve the discriminant
ability of the features.

Secondly, the accuracies of LBIF are the best in all the unsuper-
vised methods for nearly all k values on both the databases. These
results prove that LBIF can be applied in head pose estimation and
improve the representation ability of the BIF features. Especially, the
accuracies of LBIF are much better than those of BIF, which proves
that LBP features reinforce the representation of the BIF features, and
the combination of LBP features and BIF features in LBIF is successful.

Thirdly, the accuracies of sLBIF are the best in the supervised
methods for all k values on the two databases, which proves again
the advantage of sLBIF. And the robustness of sLBIF is much better
than other methods. For sBIF, its accuracies are much better than
those of other methods except sLBIF on the two databases, which
shows that BIF can be applied in head pose estimation. Considering
that there are many improvement methods for LDA, the accuracies
of sLBIF can be improved further by replacing the LDA method by its
improvement, such as MFA and LSDA.
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Fig. 5. The face images in the CAS-PEAL database.
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Fig. 7. The accuracy (%) of pose estimation on the CAS-PEAL database. The x-axis is the centroid number of each pose and the y-axis is the accuracy.
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Fig. 8. The accuracy (%) of pose estimation on MultiPIE database. The x-axis is the centroid number of each pose and the y-axis is the accuracy.

Finally, the accuracies of the supervised methods are much 3.2. Experimental results with SVM classifier
better than those of their corresponding unsupervised methods
on both two databases. For example, the accuracies of the Besides the NC classifier, we also show the accuracies of the
supervised sLBIF are much better than those of the unsupervised different methods using SVM classifier. SVM can be seen as the
LBIF. This proves that a supervised method, such as LDA, can baseline classifier in head pose estimation [10]. In the experi-
improve the discriminative ability of the feature. ments, the kernel parameters of the radial basis function kernel
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are obtained by using three-fold cross-validation on the training
dataset [41]. Table 4 shows the accuracies of head pose estima-
tion with SVM classifier on the both databases. To compare with
the accuracies of the NC classifier, we also show the accuracies of
NC classifier when the center number k of each pose is 9 in
Table 3.

From Table 4, we can see that for the supervised methods, the
performances of the SVM classifier are near to the performances
of the NC classifier. But for unsupervised methods, the perfor-
mances of the SVM classifier are much better than the perfor-
mances of the NC classifier. This scene means that the SVM
classifier is much more robust than the NC classifier.

For the SVM classifier, the accuracies of the unsupervised
methods are much better than those of the supervised methods.
For example, the accuracies of sLBIF are less than those of LBIF on
all the three databases, while the accuracies of PCA, GF, HOG,
LGBP, BIF and LBIF are less than those of LDA, GFFF, sHOG, sLGBP,
sBIF and sLBIF, respectively. This differs from the general knowl-
edge of supervised methods performing better than those of
unsupervised methods. Since there is the limitation that the
dimension of LDA is less than C—1, the dimension of these
supervised methods is only 6 and 12 on the CAS-PEAL database
and the Multi-PIE database, respectively. We attribute the
decreasing performance of these supervised methods to the fact
that the low dimension decreases the classification ability of the
SVM classifier.

Finally, LBIF is the best of all methods on both the databases
while the accuracies of sLBIF are the best of all the supervised
methods on the Multi-PIE database. Compared with the perfor-
mance of BIF (sBIF), the accuracy improvement of LBIF (sSLBIF)

Table 3
The accuracy (%) of pose estimation with NC classifier on
different databases (k=9).

Method CAS-PEAL Multi-PIE
PCA 80.39 83.27
GF 87.63 93.82
HOG 87.82 93.23
LGBP 80.30 94.56
BIF 88.13 92.26
LBIF 89.86 95.48
LDA 84.36 91.83
GFFF 90.97 96.97
sHOG 88.42 97.03
SLGBP 92.74 98.02
sBIF 93.37 97.59
SLBIF 94.55 98.53
Table 4

The accuracy (%) of pose estimation with SVM classifier on
different databases.

Method CAS-PEAL Multi-PIE
PCA 90.97 95.42
GF 92.12 97.75
HOG 92.62 97.27
LGBP 93.06 97.94
BIF 93.73 97.70
LBIF 94.57 98.74
LDA 87.36 92.42
GFFF 90.73 96.68
sHOG 90.65 97.16
SsLGBP 92.53 97.94
SBIF 93.25 97.67
SLBIF 92.72 98.45

shows that the local information of LBP can be combined with BIF
features and improve the accuracy of head pose estimation.

3.3. Experimental results with different number of blocks

In LBIF and sBIF, one important parameter is the number of
blocks. To show the effectiveness of the block number, we also
repeat the experiments with the different block number. In Fig. 9,
we show the accuracies of LBIF and sLBIF when the number of
blocks is 4, 8 and 16 on the CAS-PEAL database.

From the above figure, it is easily seen that for LBIF,
the performance is robust to the block number. But for sLBIF,
the performance decreases with the increase of the block number.
We attribute this to the dimension of the blocks. The smaller the
block number, the higher the feature dimension of the block.
In other words, the smaller number of blocks means the informa-
tion in the block are better adapted to pose estimation. In the
extreme, we can take the full feature of LBIF as one block, and the
performance is maximized since all the information is retained
within the feature. In fact, considering the memory of the
computer, it is difficult for only one block. Based on this scenerio,
we set the block number to 4 in LBIF and sLBIF.

3.4. Experimental results with different number of orientations

Besides the block number, the other parameter in LBIF and
sLBIF is the number of orientations of the Gabor filters. To show
the effectiveness of the number of orientations, we also repeat the
experiments by using the different number of orientations on the
CAS-PEAL database. In Fig. 10, we show the accuracies of head
pose estimation with the orientations number are 4, 8 and 16 on
the CAS-PEAL database.

From the above figure, we can notice that the accuracies of
LBIF are nearly the same for the different orientation numbers.
But for sLBIF, the accuracies are increased with the increasing of
the orientation number. The accuracies of four orientations are
much less than those of 8 and 16 orientations. Though the
accuracy with 16 orientations is better than that of eight orienta-
tions, the difference between them is very little. Considering the
advantage of eight orientations in the computation complexity
and the restoration requirement, we still select eight orientations
in Gabor filters in LBIF and sLBIF.
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Fig. 9. The accuracy (%) of LBIF and sLBIF on the CAS-PEAL database when the
block number is 4, 8 and 16. The x-axis is the centroid number of each pose and
the it y-axis is the accuracy.
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4. Conclusion

Motivated by the successful application of the BIF feature in
many different scenarios, this paper argues that it can also be
applied on the head pose estimation problem for the first time
ever. We proposes the novel LBIF representation for head yaw
estimation. In LBIF, the combination of the local information of
the LBP operator and the visual information of the BIF feature can
improve the accuracy of head pose estimation. In addition, the
ensemble of the dimension reduction method is finally applied to
enhance the discriminant ability and reduce the feature dimen-
sion. Extensive experimental results illustrate the advantages of
the proposed method.

There are several aspects to be further studied in the future
work. First, the dimension of the final feature is still very high
even it has been reduced; therefore, more effort should be put to
further reduce the dimension. Second, it is also worth studying
how to set the optimal parameters of Gabor filters in order to
emphasize some regions and further reduce the dimension of
features. Finally, this paper only uses a simple supervised method
to improve the discriminant ability of LBIF. More work may be
done to find which supervised methods are more adapted to the
LBIF feature and the problem of head pose estimation.
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