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Mobile Landmark Search with 3D Models
Weiqing Min, Changsheng Xu, Fellow, IEEE, Min Xu, Xian Xiao, and Bing-Kun Bao

Abstract—Landmark search is crucial to improve the quality
of travel experience. Smart phones make it possible to search
landmarks anytime and anywhere. Most of the existing work
computes image features on smart phones locally after taking a
landmark image. Compared with sending original image to the
remote server, sending computed features saves network band-
width and consequently makes sending process fast. However, this
scheme would be restricted by the limitations of phone battery
power and computational ability. In this paper, we propose to
send compressed (low resolution) images to remote server instead
of computing image features locally for landmark recognition and
search. To this end, a robust 3D model based method is proposed
to recognize query images with corresponding landmarks. Using
the proposed method, images with low resolution can be recog-
nized accurately, even though images only contain a small part of
the landmark or are taken under various conditions of lighting,
zoom, occlusions and different viewpoints. In order to provide an
attractive landmark search result, a 3D texture model is generated
to respond to a landmark query. The proposed search approach,
which opens up a new direction, starts from a 2D compressed
image query input and ends with a 3D model search result.

Index Terms—3D reconstruction, 3D to 2D matching, content-
based image retrieval, mobile landmark search.

I. INTRODUCTION

W ITH the rapid development of smart phones, more and
more people search travel information pervasively.

Landmarks are not only the tour destinations but also used
to find the way to the travel destinations. Especially, mobile
landmark search becomes more crucial to improve the quality
of travel experience, through which users only need to take
a picture of a landmark to know what they are looking at or
download a picture of a landmark from Internet during desti-
nation search or planning.

Manuscript received February 01, 2013; revised June 23, 2013 and September
21, 2013; accepted September 27, 2013. Date of publication January 27, 2014;
date of current version March 13, 2014. This work was supported in part by Na-
tional Basic Research Program of China (No. 2012CB316304), National Nat-
ural Science Foundation of China (No. 61225009), and Beijing Natural Science
Foundation (No. 4131004). This work is also supported by the Singapore Na-
tional Research Foundation under its International Research Centre @ Singa-
pore Funding Initiative and administered by the IDM Programme Office. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Tao Mei.
W. Min and X. Xiao are with the National Lab of Pattern Recognition, In-

stitute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: wqmin@nlpr.ia.ac.cn)
C. Xu and B.-K. Bao are with China-Singapore Institute of Digital Media,

Singapore, 139951, and also with the National Lab of Pattern Recognition, In-
stitute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: csxu@nlpr.ia.ac.cn; bkbao@nlpr.ia.ac.cn).
M. Xu is with iNEXT, School of Computing and Communications, University

of Technology Sydney, Sydney, Australia (e-mail: Min.Xu@uts.edu.au).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2014.2302744

Fig. 1. Examples of various landmark representation styles.

Nowadays, mobile visual search makes a wide range of appli-
cations possible. Meanwhile, replacing text-based search, con-
tent-based visual search becomes one of the major mobile appli-
cations. In these applications, the reference database containing
millions of images is stored in a remote server. In searching
process, an image captured by a smart phone is firstly sent to
the remote server over the mobile network as a query image.
Then, the query image is matched with the reference images.
The best matching one/ones is/are returned as the search result.
Such mobile search functionalities have been shown in several
commercial systems, such as the Point and Find [30], Snaptell
[31] and Goggles [32]. However, transmitting an original query
image occupies much resource of mobile network, which in-
creases the waiting time of mobile visual search.
More recently, with the increasing of mobile computational

ability, mobile visual search locally extracts image features on
the mobile and sends a feature vector as a query to the refer-
ence database [24]–[29]. Compared with sending a query image,
sending a feature vector reduces transmission data size, there-
fore saves network bandwidth and further reduces the trans-
mission cost. However, computing features will consume the
power of battery significantly. Obviously, this challenges the
tolerant attitudes of users to a short battery running time, since
recharging is usually inconvenient for users, especially when
they are travelling.
Mobile visual search requires a comprehensive solution

which can efficiently save the mobile network resource while
effectively decrease the computational cost on mobile side. In
this paper, we intend to use a compressed query image with
low-resolution to replace the original image or a feature vector
extracted from the original image. Compared with the existing
methods, query by a low-resolution image brings difficulty to
mobile visual search. In addition, compared with mobile image
search, mobile landmark search has its own characteristics.
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Fig. 2. Our framework for mobile landmark search.

Landmark can be captured with different presentation styles
(Fig. 1). Images of the same landmark can appear differently
due to various circumstances during picture capturing, in-
cluding lighting, viewpoint, zoom and occlusion as shown in
Fig. 1. The above characteristics make mobile landmark search
a challenging problem. The state-of-the-art content-based
methods of landmark search [1]–[3] can only return images
which are visually similar to the query image. Images of the
same landmark with different presentation styles cannot be
found. Besides, images which only contain a part of a landmark
makes mobile landmark search much more difficult.
To deal with the above difficulties, we propose to utilize 3D

models to recognize landmarks from the query images and re-
spond to landmark queries. A 3D landmark model is able to
describe a landmark from any scales and any viewpoints. This
makes it possible to handle problems coming from various land-
mark presentation styles, especially when the image only in-
volves a small part of the landmark, in real-world usage sce-
narios. Moreover, different from existing landmark search, we
attempt to return a 3D model to enrich the experience of mobile
landmark search. Compared with text based search and image
based search, a 3D model is vivid and attractive for users.
Fig. 2 illustrates the framework of our proposed mobile land-

mark search approach, which consists of two independent mod-
ules: offline 3D model reconstruction and online search.
In the offline module, we firstly collect landmark images

from Google image and Flickr. Then, an attention based 3D
landmark reconstruction method is employed to construct 3D
model by using a number of selected iconic images from the
landmark image collection. For each landmark, we select a
landmark image which contains all the parts of a landmark to
produce a 3D texture model. Finally, all the 2D SIFT feature
points corresponding to 3D points in a 3D model are extracted
from different iconic images to construct a landmark recog-
nizer. In order to extract more SIFT features for 3D points, we

introduce Affine-SIFT [18]. By using all SIFT features (the
coordinate of each 3D point is given to these SIFT features as
an extra characteristic) corresponding to 3D points, a -dimen-
sional tree (KD-tree) is constructed to achieve fast landmark
image recognition. The KD-tree is actually a 3D landmark
recognizer.
In the online search module, we first deliver a compressed

query image captured by a mobile device to the remote server.
Then, the landmark within the query image is recognized by a
3D landmark recognizer. Finally, a 3D texture model is returned
as the query result. SIFT features are extracted from a query
image and matching points between the query image and each
3D landmark recognizer are obtained with a projection test. We
select a landmark with the largest number of matching points
as the recognition result. Our 3D landmark recognizers are de-
signed to recognize low-resolution images. For each recognized
query image, a 3D model and a 3D texture model corresponding
to the landmark regions in the query image are returned to the
user. Note that our work is geo-tag independent. We would like
not to constrain our approach on the on-site users, but benefit
the users who are not near the landmark. Then, the users, who
are not near the landmark, can send any landmark image either
downloaded from Internet or photocopied from a magazine, to
see the panoramic view of this landmark. This would make our
system more helpful on tour destination decision, tour planning,
and landmark browsing.
Compared with existing approaches, the contributions of our

work are summarized as follows:
1. By offering different compressed rates and sending the
compressed images instead of the original images or image
feature vectors for search, the proposed method provides
users the flexibility to choose on recognition precision vs.
the transmission time based on their preference. It not only
reduces the query transmitting time but also saves the com-
putational cost on mobile side.
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2. A 3D landmark recognizer is generated to recognize var-
ious landmark images with different representation styles.
With 3D models, images captured under different circum-
stances, from different viewpoints, containing different
parts of landmarks, can be accurately recognized as the
corresponding landmark.

3. The proposed method enriches the experience of landmark
search by returning the 3D texture model corresponding
to the landmark region in the query image. A 3D texture
model is vivid and attractive to users, which is able to
present a landmark in various viewpoints and scales.

The rest of the paper is organized as follows. The related work
is reviewed in Section II. The details of 3D landmark reconstruc-
tion, landmark recognizer construction and query image recog-
nition are described in Section III, IV and V respectively. Ex-
perimental results are reported in Section VI. We conclude the
paper with future work in Section VII.

II. RELATED WORK

A. Mobile Visual Search

With the growing wireless Internet services, mobile visual
search has provided a wide range of applications. Meanwhile,
compared with text-based search, content based-search in mo-
bile is becoming one of the major mobile applications in mo-
bile visual search. Such mobile search functionalities have been
shown in several commercial systems, such as the Point and
Find [30], Snaptell [31] and Goggles [32].
A lot of recent work on mobile visual search focused on

location recognition [35], landmark retrieval [43], [45], [46],
[47], [49] and CD/book cover search [28], [36], [38]. As the
computational power onmobiles is growing, several recentwork
[24]–[29] proposed to directly extract image features on the
mobile and represent a query image as a vector, and then send the
vector to the remote server over the wireless network. In several
mobile visual search systems, approximate similarity matching
techniques such as bag-of-words models [36], [39], [40] were
utilized to generate vectors to represent the query image. In order
to significantly reduce the delay in computation and communica-
tion, several compact descriptors were proposed [25], [26], [28],
[29], [38], [40]. For instance, Tsai et al. [28] proposed to transmit
the spatial layouts of descriptors. From each image, about 1,000
points were extracted by local feature detectors and the overall
transmission was about 8 KB. Compared with sending the query
image (typically over 50 KB) to the remote server, the network
flow consumption in [28] was much less. Meanwhile, local fea-
tures such as SpeededUpRobust Feature (SURF) [33],MPEG-7
image signature, and Scale-Invariant Feature Transform (SIFT)
feature [15] were devised to handle luminance and geometry
variances. However, although these methods can save much
network flow, the power of battery is consumed quickly. In the
real-world usage scenarios, users cannot stand an application
consuming too much battery power, since it is inconvenient to
charge the battery outside.
As the 3G network and freeWi-Fi network become pervasive,

in our opinion, most of the computation on the query image in
mobile visual search can be done on the remote server.

B. Landmark Image Recognition

Landmark image recognition is very challenging due to
various presentation styles of the same landmark. The ex-
isting work on landmark image recognition can be summarized
into three categories: 1) threshold based method [7], [8], [48]
2) classifier based method [6], [9], [13] and 3) Geo-tag based
method [12]. Threshold based method builds a recognizer by
selecting the most representative features from landmark im-
ages and measures the similarity between the recognizer and
the query image. The similarity is compared with a pre-defined
threshold to determine whether the query image contains the
landmark. In [8], the authors used a visual graph clustering to
discover different views of each landmark and then built their
recognizers. Besides the visual clustering, in [7] the authors
introduced 3D geometric constraints to construct the iconic
scene graph of the landmark as its recognizer. The difficulty
of threshold based methods is to decide pre-defined thresholds.
Classifier based method trains a recognizer for each landmark
and recognizes the query image using the trained recognizers.
In [9] and [13], the authors detected popular locations and then
mined landmark names from tags in these locations. Relevant
images were used for training a classifier. The performance of
[9] was limited due to the involved noise in the non-landmark
region of landmark images. In [6], a 3D point cloud projection
was applied to select landmark regions of each image as the
training data for improving the performance. However, classi-
fier based method may result in wrong classification result, if
the query image, which is actually none of the trained classes,
has to be classified to one of the other classes. Geo-tag based
method estimates location of an image using training images
with location information. For example, Chen et al. incorpo-
rated GPS information to improve the precision of landmark
identification [12]. It is difficult to use geo-tag base method to
recognize landmarks from those images without geo-tags. Ex-
isting work mainly utilized information on 2D images. In our
work, we will make use of 3D information in landmark image
recognition to improve recognition accuracy.

III. 3D LANDMARK RECONSTRUCTION

Utilizing all the images of a landmark to reconstruct the
3D model is time-consuming and not necessary. Generally
speaking, the images taken from the same viewpoints are
always very similar. On the other hand, the work in [14] found
that 3D reconstruction using several representative images is
able to provide a better approximation to a 3D reconstruction
than using all the images. Therefore, for each landmark, we
select a group of representative landmark images from different
viewpoints to reconstruct a 3D model. These representative
images are called as iconic images in our paper. Then, the
attention based 3D reconstruction method [5] is utilized to
achieve a quick 3D reconstruction. Finally, a whole scene
image is selected from iconic images through projecting the 3D
model to each iconic image using the corresponding projection
matrices. The whole scene image is also utilized to produce
a complete 3D texture model. The details of 3D landmark
reconstruction will be presented in the rest of this section.
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A. Iconic Image Selection

Our goal is to represent each landmark image collection by
identifying a set of iconic views corresponding to dominant
aspects in the 3D scene. For each landmark, we apply k-means
with the global descriptor GIST on the landmark images since
GIST is widely used for grouping images using the perceptual
similarity [17]. Different clusters indicate various landmark
presentation styles. Images which are taken from very similar
viewpoints, but different circumstances including illumination,
zoom in/out, occlusion, etc., will be clustered into different
GIST clusters. This will not cause a problem for our approach,
because 3D landmark reconstruction is able to combine dif-
ferent representation styles of the same landmark.
Within each cluster, the most representative landmark image

whose GIST descriptor is the closest to the cluster center
is selected as the iconic image and further utilized for 3D
reconstruction.

B. 3D Model Reconstruction With Static Attention

Different from traditional structure-from-motion (SFM) 3D
reconstruction methods [14], the attention based 3D reconstruc-
tion method [5] analyzes the spatial-temporal attention to obtain
the region of interest (ROI) in video sequence, and then recon-
structs 3D model of ROI. 3D reconstruction on ROI within an
image instead of a whole image can reduce the computational
power. However, compared with the video sequence analyzed
in [5], the landmark images in this work do not have much tem-
poral information. We utilize the static attention instead of the
spatial-temporal attention to obtain the ROI. In our work, the
attention based 3D reconstruction method consists of five steps:
1) analyze attention region of each iconic image; 2) estimate the
camera parameters of an initial pair of images; 3) estimate the
camera parameters of a newly added image; 4) add points to 3D
model; 5) repeat the step 3) and step 4) until the camera param-
eters have been estimated for all iconic images.
Step 1: A static attention analysis method is used to obtain

the attention region. Motivated by [16], we integrate
the contrast and information importance to calculate
the saliency map as follows:

(1)

where Saliency ( ) is the attention analysis result
of point ( ) in the landmark images, Con ( )
and ID ( ) are contrast and information density
of point ( ) respectively and normalized to [0,
1]. Contrast Con ( ) and information density ID
( ) are calculated by the following Eqn. (2) and
Eqn. (3) respectively [16].

(2)

(3)

where denotes one image and denotes
one pixel of this image. is the
distance between two features and .

is the Difference of Gaussian
[50] and used to model the structure of receptive
field. In Eqn. (3), denotes the receptive
field’s center. is the
amount of information contained in pixel ,
where is the normalized color histogram of the
image.
Several static attention analysis results are shown in
Fig. 3.

Step 2: We estimate the camera parameters of an initial pair
of iconic images. In order to obtain an accurate 3D
reconstruction model of the initial two images, we
choose two images with the largest number of cor-
respondence as the initial two images. The camera
parameters for the initial pair are estimated using
the five point algorithm [19]. We then apply a two-
image sparse bundle adjustment [22] to refine esti-
mated camera parameters in order to complete the
reconstruction by the initial pair.

Step 3: We continually estimate the camera parameters of a
newly added iconic image. A newly added iconic
image is selected as the image with the largest
number of correspondence to the images used for
camera parameter estimation. Camera parameters
are initialized using the direct linear transform
(DLT) [21] inside a RANSAC [20] procedure.
A sparse bundle adjustment [22] is further used
to optimize camera parameters and complete the
reconstruction.

Step 4: We add points observed by the newly added iconic
image into the camera parameter optimization. A
point which is observed by at least one other added
iconic image is added if triangulating it gives a well-
conditioned estimate of its location. Once the new
points have been added, we run a global bundle ad-
justment [22] to refine the entire model and find the
minimum error solution.

Step 5: The 3D reconstruction is completed once all iconic
images have been added and the optimized camera
parameters are obtained. Iconic images with less
than five correspondences are ignored for 3D
reconstruction.

C. 3D Texture Modal Construction

A 3Dmodel consisting of 3D points is obtained for each land-
mark, while a 3D texture model is more vivid and attractive than
a 3D model. In order to select an iconic image to construct a
texture landmark model, we project 3D points to iconic images
and denote the 2D point (in the landmark iconic image) cor-
responding to a 3D point as a 2D projective point. The iconic
image with most of 2D projective points distributed in the image
region is an integrated landmark image. We can select each of
them to construct a 3D texture model.
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Fig. 3. Examples of static attention analysis.

As discussed above, we project 3D points in a 3D model to
2D iconic images by using the following projection matrix with
estimated camera parameters:

(4)

where is the projection matrix, is camera intrinsic
parameter matrix, and are the camera extrinsic parameters,
is the focal length and is a null matrix.
The coordinates of the 2D points in each image are calculated

as follows:

(5)

where is the projection matrix, and are the coordinates in
the image coordinate system, , , are the coordinates in
the world coordinate system, is the scale.
After projection, an iconic image with the most number of 2D

projective points distributed in the image region is selected as
a whole scene as there are many whole scene images among
iconic images. Several examples of 3D to 2D projection are
shown in Fig. 4. The left image of each landmark in Fig. 4 is
a whole scene image. Then, 2D projective points inside the se-
lected whole scene of the iconic image are triangulated. Each
triangle is formed by three 2D projective points and corresponds
to a 2D texture in the whole scene iconic image. The 2D texture
is utilized to texture the region formed by three 3D points whose
2D projective points form the triangle of the 2D texture. By this
way, a 3D texture model is constructed.

IV. 3D LANDMARK RECOGNIZER CONSTRUCTION

We describe the method of 3D landmark recognizer con-
struction through 3D model in this section. Although existing
approaches [7]–[13] have achieved acceptable landmark recog-
nition results, features extracted from non-landmark region
brought noisy and redundant information. The method in [6]
obtained landmark regions through a 3D to 2D projection and
extracted landmark information from the landmark regions.
However, noisy information is also extracted from regions
which are occluded in landmark regions. Furthermore, since
the method in [6] utilized local feature (SIFT) in landmark
image recognition without considering geometric constraints,
the recognition results are trustless. Generally, geometric con-
straint refers to a homography matrix that constrains matching
points of two images in geometry. In order to handle the afore-
mentioned problems, in this section, a 3D landmark recognizer
is built by SIFT features corresponding to 3D points in a 3D
model.

A. 3D Feature Structure Definition

In order to exclude noisy and redundant information, we uti-
lize the 3D models to build landmark recognizers. It is obvious
that each 3D point in a 3D model corresponds to several 2D
points extracted from different iconic images. Each of these 2D
points has a SIFT feature. In our work, we define a 3D feature
structure to store the 3D coordinates and SIFT features of a 3D
point. The 3D feature structure is denoted as follows:

(6)
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Fig. 4. Examples of 3D model to 2D image projection.

where is the 3D feature structure of the -th 3D point,
( ) is the 3D coordinate in the world coordinate system,

is the -th SIFT feature, is the number of 2D
correspondences of the -th 3D point.

B. ASIFT Addition

In the real world images, the landmark may appear with a
viewpoint significantly different from the iconic images used
to generate the 3D models. It is impossible to reconstruct a
3D model by incorporating images of the landmark from all
possible viewpoints. The state-of-the-art method to handle this
problem is Affine-SIFT [18], which extracted features from a
finite set of affine transformations of two original images and
thenmatched all the extracted features. The number of matching
points is significantly increased. Motivated by [18], we incorpo-
rate features extracted from affine warped images into 3D fea-
ture structures. An affine transformation can be decomposed
as follows:

(7)

where , and are rotationmatrices with and
, is a tilt. In the decomposition, corre-

sponds to the zoom and corresponds to the planar rotation
of the camera, is the longitude angle and .
We utilize tilts of corresponding to lat-

itude angles of degrees in our approach. For
each t, we follow and sample the longitude angles by an
arithmetic series for degrees
and . Each pair specifies an affine trans-
formation , which is utilized to transform an iconic image
as follows:

(8)

where is an affine transformed iconic image, is an orig-
inal iconic image and is an affine transformation matrix.
We extract SIFT features from each and compute the lo-

cation of each key point on the original iconic image. We refer
to the new extracted SIFT features as affine features (AF). By
using the estimated camera parameters of each iconic image in
3D landmark reconstruction, we search for correspondence of
each AF along the epipolar lines in iconic images. If an AF
corresponds to a 2D projective point which is obtained by pro-
jecting 3D points to iconic images, the AF is added to the 3D
feature structure corresponding to the 2D projective point.

C. Recognizer Construction

Since SIFT features in each 3D feature structure are utilized
to recognize query images, all the SIFT features in 3D feature
structures are utilized to construct a -dimensional tree (KD-
tree) to achieve fast feature matching between recognizers and
query images. Each KD-tree is a 3D landmark recognizer.
The number of features in each KD-tree can be calculated as

follows:

(9)

where is the number of features in the -th
KD-tree, which is the 3D landmark recognizer of the -th
landmark, is the number of 3D points in the -th 3D
model, is the number of features corresponding to the -th
3D point.

V. IMAGE RECOGNITION USING 3D LANDMARK RECOGNITION

In online module, we compress the query image according to
the quality and resolution. Considering the time cost in network
transmission, we compress the query image taken by mobile
phone to low quality and resolution. Here, we do not care about
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which method is utilized to compress the query image on the
mobile devices. The simpler, the better.
In our work, the number of matching points between a query

image and each 3D landmark recognizer is utilized to recognize
a query image. We obtain the number of matching points by
direct 2D to 3D matching. The initial matching points are ob-
tained by using the approximate nearest neighbor search (ANN)
[23]. Since SIFT feature is shape-based and very ambiguous, the
one-to-one matching is infeasible. Therefore, a projection ma-
trix is estimated to verify whether the matching points are cor-
rect. The landmark with the largest number of correct matching
points is selected as the search result. A 3D model and a 3D tex-
ture model are reconstructed for the search result.
ANN’s priority search algorithm is applied to limit each query

feature for visiting a maximum of 200 bins in the KD-tree. We
estimate a projection matrix by using all the matching points
in ANN. We do not estimate the projection matrix for query
image whose number of matching points to the 3D recognizer
is smaller than the lower bound of the number of matching
points for projection matrix estimation. As described in (2), a
projection matrix is a matrix with 12 unknown num-
bers. Therefore, the lower bound of the number of matching
points is straightforwardly set to 12. Since the projection matrix
is calculated by intrinsic parameter matrix , the focal length
of a camera and extrinsic parameters including camera rotation
( ) and camera translation ( ), the projection matrix estima-
tion process is also a camera calibration process. We initialize
the query image’s camera extrinsic parameters using the direct
linear transform (DLT) [21] inside a RANSAC procedure. We
utilize an outlier threshold of 0.4% of max (image width, image
height) in the RANSAC step. In addition to providing an es-
timate of and , the DLT returns an upper-triangular matrix
’ which can be used as an estimate of the camera intrinsic pa-

rameter matrix . We use ’ to initialize the focal length of
the new camera. Starting from these initial parameters, a sparse
bundle adjustment [22] is used to optimize camera parameters.
In order to test whether the matching points are correctly

matched, we project 3D points of the matching points to the
query image according to the projection matrix estimated
above and set an outlier threshold to 0.4% of maximum image
dimension.
After projection test, we calculate the number of matching

points for each landmark. If there are more than one landmark
having more than a pre-defined number of correct matching
points (denoted as ), we select the landmark with the
biggest number of correct matching points as the category of
the query image. Otherwise, the query image is a non-landmark
image. The pre-defined will influence the precision
and recall of query image recognition. If the number ofmatching
points between a query image and none of 3D landmark recog-
nizers is larger than the lower bound of the matching points, the
query image is a non-landmark image (or the query image may
be a landmark out of our 3Dmodel dataset). For each recognized
query image, in order to obtain the 3D model corresponding to
the landmark region in the query image, we project all the 3D
points of the selected landmark to the query image according to
the estimated projection matrix. Each 3D point has a 2D projec-
tive point. The 3D points with 2D projective points inside the

query image are selected to constitute a new 3D model corre-
sponding to the landmark region in the query image. Finally, the
same method described in Section III-C is utilized to construct a
new 3D texture model corresponding to the landmark region in
the query image. The information about new constructedmodels
is sent to the mobile device as the landmark search result. The
user can also select to receive the integrated 3D texture model
as the landmark search result.

VI. EXPERIMENT

We conduct various experiments to validate the effective-
ness of our proposed approach. The first experiment illustrates
several reconstructed 3D models and 3D texture models. The
second experiment shows comparison on time cost of 3D model
reconstruction by using attention based method and original
SFM method. The third experiment indicates the influence of
ASIFT addition on the number of features utilized to construct
3D landmark recognizers. In the fourth experiment, the power
consumption of our proposed landmark search approach is com-
pared with Google Goggles. In the fifth experiment, the pro-
posed recognition approach is compared with a classifier based
method [6] and a threshold based method [7]. The sixth ex-
periment illustrates several landmark search results using land-
mark images as query. The last experiment gives user experi-
ence comparison between our method and Google Goggles.

A. Experimental Setup

To construct our dataset, we download 502,185 images of 217
landmarks to select two subsets, i.e., one is iconic image set for
3D model construction, and the other is the test set to evaluate
the performance of our method. We first extract all the landmark
names fromWiki page of “category: landmark by country”,1 and
manually select 217 famous landmarks. All the images are then
crawled from Google Image and Flickr by querying the land-
mark name. For iconic image set construction, we cluster all
the images of the same landmark into groups,2 and the image
closest to the cluster center is selected as the iconic image. In
this way, we finally collect 10,850 ( ) images for the
iconic image set to construct 3D model. For test set, we first
randomly choose 10,000 landmark images from the rest im-
ages which exclude the iconic images, and then crawl 20,000
non-landmark images from Flickr. Therefore, the whole test
dataset consists of 30,000 images, where the biggest resolution
is . We compress test images to three different res-
olutions ( , and ) with the quality
factor of 70%. Besides the constructed whole test dataset, we
also select two subsets of it for evaluation. For the first subset,
we manually choose 1,000 landmark images which only contain
part of the landmark. This subset is used to evaluate the recog-
nition performance on the images of partial landmarks. For the
second subset, 80 landmark images and 20 non-landmark im-
ages are randomly selected from the test dataset to constitute
a subset named Image100. Image100 is utilized in the experi-
ment of comparing the power consumption and performance of
our method with Google Goggles.

1http://commons.wikimedia.org/wiki/Category:Landmarks_by_country
2In practical, k is set as 50.
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Fig. 5. Examples of 3D models and 3D texture model.

B. 3D Model and 3D Texture Model Reconstruction

Several instances of reconstructed 3D models and 3D texture
models are illustrated in Fig. 5. We can see that the 3D points
of 3D models, referred to the third column in Fig. 5, are located
on the landmark region, and 3D texture models, referred to the
last column in Fig. 5, provide different viewpoints and scales
for users to view landmarks, which are more attractive than 2D
images. This demonstrates that the proposed method of using
SIFT features corresponding to 3D points to build landmark
recognizer is able to avoid noisy and redundant information in
training.

C. Time Cost of 3D Reconstruction

Table I shows the comparison on time cost of 3D landmark
reconstruction by using attention based method and traditional
structure-from-motion (SFM) method. We utilize the tradi-
tional SFM as our baseline, and its process is followed by
[14]. Particularly, the camera parameters are first estimated
by a pair of iconic images using the five point algorithm [19],
and a two-image sparse bundle adjustment [22] is applied to
refine the camera parameters. Then, the camera parameters are
continually estimated by a newly added iconic image. At last,
points observed by the newly added iconic image are added
into the camera parameter optimization to further refine the
entire model and find the minimum error solution. This process
is repeated until the camera parameters have been estimated
for all iconic images. As shown in Table I, the sum time cost
of the two methods is 5,357 minutes (attention based method)
and 7,260 minutes (traditional SFM method), respectively.
From the sum time cost at the last row in Table I, we can see
that our attention based method reduces 35.52% time cost
of the traditional SFM method. This is because the attention
based approach avoids the computational cost from feature
matching for non-landmark regions. The percentage of time

cost reduction might vary for different landmarks. For example,
the time cost reduction for Monument to Vittorio Emanuele
II reaches 56.33% compared with 6.32% for Basilica of St.
Macro. The reason is that the proportions of non-landmark
regions in different landmark images are different.

D. 3D Landmark Features

Numbers of features corresponding to 3D feature structures
are also shown in Table I. The numbers of features before and
after ASIFT addition are provided. It is obvious that the num-
bers of features increase 28.28% by using ASIFT addition. This
is because many SIFT features are extracted from the affine
transformed iconic images and many of them correspond to 3D
points in the 3D model. As shown in Table I, the percentages
of increased features might vary for different landmarks. We
can also see that the percentages of increased features vary with
the number of features before ASIFT addition in most cases.
This is because more features provide more chances for affine
features (AF) to find correspondences. However, the positive
correlation is not strict. For example, Neuschwanstein Castle
has the least percentage of increased features (17.83%), while
its number of features before ASIFT is not the least. The AF,
which can find correspondences, is extracted from the landmark
region. Therefore, one possible reason is that the landmark re-
gions in Neuschwanstein Castle images are too small to be used
for extracting AF.

E. Comparison on Power Consumption

In our experiments, Iphone4 is utilized to run our method and
Goggles on the Image100 dataset. Iphone4 is equipped with an
embedded camera with maximal resolution and
an A4 processor with 1 GHz frequency. Its battery is 3.7 V
with a capacity of mAh ( KJ). The power con-
sumption is measured by the energy measurement application



MIN et al.: MOBILE LANDMARK SEARCH WITH 3D MODELS 631

TABLE I
TIME COST OF 3D LANDMARK RECONSTRUCTION AND NUMBER OF FEATURES UTILIZED IN 3D LANDMARK RECOGNIZER CONSTRUCTION

TABLE II
POWER CONSUMPTION FOR A SINGLE QUERY

in iOS platform.3 A testing process on power consumption for
each query starts from capturing an image and ends at receiving
the returned result from the remote server. Table II shows the
power consumption comparison on our system and Goggle. The
reported power consumption is for a single query and is calcu-
lated from the total power consumption of 200 queries. Among
200 queries, the number of wrongly returned results for Goggle
is 101while 85 for our method. Obviously, the energy consumed
in our method is less than that in Goggles. This is mainly be-
cause compressing images may have a much less computational
cost occurring on the mobile side.

F. Landmark Recognition

We compared the proposed recognition approach with a clas-
sifier based method [6] and a threshold based method [7] on the
whole test dataset and the subset respectively. The method in
[6] detected landmark regions of training images and extracted
local features from landmark regions to train classifiers. This
method only utilized SIFT features extracted from landmark re-
gion and avoided noisy and redundant information in training
classifiers. The method in [6] did not give additional consider-
ation to geometric constraints when landmark image classifica-
tion results are obtained by matching test images with classi-
fiers. The method in [7] constructed an iconic graph to recog-

3http://developer.apple.com/library/ios/#recipes/instruments_help-en-
ergy-measurement-help/Logging_Energy_Usage_in_an_iOS_Device/
10_Logging_Energy_Usage_in_an_iOS_Device.html#//apple_ref/doc/uid/
TP40011372-CH17-SW1

nize query images with global features GIST. Therefore, com-
parisons with the methods in [6] and [7] also reflect comparisons
with the local feature based methods and global feature based
methods.
We also compared the recognition performance of the pro-

posed method with Goggles on the Image100 dataset.
1) Experiments on the Whole Test Dataset: The performance

of landmark recognition is evaluated by plotting a recall/preci-
sion curve of the test images ordered from the highest to lowest
score. The recall of our proposed method is decreasing when

(defined in Section VI) is increasing. Comparisons on
the performance of five different landmark recognition methods
are shown in Fig. 6, Fig. 7 and Fig. 8 where the query images
(with original resolutions over ) are compressed to
the resolution of , and . The five
methods are: 1) our proposed approach, 2) our proposed 3D rec-
ognizer without ASIFT, 3) our proposed 3D recognizer without
projection test, 4) a classifier based method [6], [5]) a threshold
based method [7].
As shown in Fig. 6, Fig. 7 and Fig. 8, our proposed method

achieves the best performance among all the methods. Com-
parisons on the first three methods demonstrate the effective-
ness of ASIFT addition and projection test. Since the ASIFT
addition adds not only more features to 3D landmark recog-
nizer but also more wrong matching points to landmark image
recognition. In many cases, the projection test has more influen-
tial than ASIFT addition on landmark image recognition. This
also proves that the projection test is necessary. Since ASIFT
adds more matching points between the 3D landmark recog-
nizer and the query image and projection test filters out outliers,
the performance of our method is better than the second and
third methods. Compared with the classifier based method and
threshold based method, our method demonstrates the advan-
tages of the 3D landmark recognizer. Since our method avoids
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Fig. 6. Performance of landmark recognition ( ).

Fig. 7. Performance of landmark recognition ( ).

Fig. 8. Performance of landmark recognition ( ).

the involvement of noisy and redundant information and uti-
lizes ASIFT addition and projection test to find more correct
matching points, the performance of our method is the best.
Besides the evaluation on recognition performances under

different algorithms, we also evaluate recognition precision vs.
transmission time under various resolutions, shown in Table III.
Considering that the upload speed is not good in some areas
such as countryside, we assume this speed as 60kbps as [44]
suggested. We test four kinds of resolutions, that is, the original
one , , , and respec-
tively. The experimental results in Table III showed that when
the original image ( ) is compressed into ,
the precision decreases about 0.7% (from 98.7% to 98%) while

TABLE III
COMPARISON ON PERFORMANCE OF OUR METHOD FOR THE TEST
IMAGE UNDER DIFFERENT RESOLUTIONS ( )

Fig. 9. Performance of landmark recognition on the subset ( ).

TABLE IV
COMPARISON ON PERFORMANCE OF OUR METHOD AND GOGGLES

the transmission time decreases to 1/3 (from 24 s to 7.56 s) of the
original one. If the original image is compressed to ,
the transmission time is further reduced to 1/6 (from 24 s to
3.76 s) while there is only 16% loss (from 98.7% to 82%) on
precision. Our method allows user to flexibly choose on recog-
nition precision vs. the transmission time by setting different
compressed rate based on their preference. With small sacrifice
of the recognition precision, the transmission time can be re-
duced significantly. If the user needs higher precision, they can
choose the lower compression, with the cost of longer transmis-
sion time.
2) Experiment on the Subset of the Test Dataset: The per-

formance of our method, the classifier based method [6] and the
threshold based method [7] on the subset are shown in Fig. 9. As
shown in Fig. 9, ourmethod hasmore superiority on recognizing
images that only contain a part of the landmark. This is because
our 3Dmodel basedmethod puts all the features into a whole 3D
recognizer and the similarity between the query image and the
3D recognizer can be found easier than the other two methods.
3) Experiment on the Image100 Dataset: For recognition

task, the terms true positives ( ), true negatives ( ), false
positives ( ), and false negatives ( ) are the statistical data
on the recognition result. The precision , recall

, true negative rate and accu-
racy are usually utilized
to compare the performance of different recognizers.
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TABLE V
THE QUERY TIME COMPARISON UNDER DIFFERENT RESOLUTIONS

The performance of our method and Goggles is shown in
Table IV. Iphone4 is utilized to run our method and Goggles
on the Image100 dataset. The images in Image100 dataset are
compressed to resolution before the experiment.
From Table IV, our method outperforms Goggles, especially
for true negative rate and overall accuracy. The experiment
on the Image100 dataset demonstrates the efficiency of our
proposed method.

G. 3D Landmark Recognition

We compare our 3D landmark search approach with the con-
tent-based method on landmark search [1] and Goggles [32].
Some search results using same query images are illustrated in
Fig. 10 and Fig. 11.
In Fig. 10, the search result is very similar to the query image.

Therefore, we have to usemany different query images to search
landmark images if we are interested in various presentation
styles of the landmark.
In Fig. 11, Goggles returns the landmark name and URL (for

quickly search) while our method provides a 3D model and a
3D texture model for each recognized query image. In the of-
fline constructed 3D models, compared with Fig. 10, we can
view the landmark from various viewpoints and different scales
by rotating and zoom in/out the model in the 3D space. The on-
line constructed 3D model is obtained by projecting 3D points
to the query image according to the estimated projection matrix
in Section III-C. The 3D points with 2D projective points inside
the query image are selected to constitute a 3D model corre-
sponding to the landmark region in the query image. Then, a 3D
texture model is obtained by using the same method described
in Section III-C. We compare online query time under different
resolutions in Table V. For the compressed query image, time
cost for constructing 3D models for each query image is at
most 1.08 seconds, which is acceptable for online use. Although
data size of a returned 3D texture model is about 4 times more
than the size of a returned image, the time spending on trans-
mitting a 3D texture model from a server to a mobile phone
is still small because of high download speed. From a mobile
phone point of view, a 3D texture model only occupies rela-
tively small percentage of the memory of a mobile phone. Also,
only 40% of the mobile phone CPU is utilized by the relevant
operations. These are within the tolerance range for a proper
running system. Therefore, users can easily use mobile devices
to interact with a 3D texture model. The online constructed 3D

Fig. 10. Content-based landmark search results [1].

models correspond to the landmark region in the query image,
which shows more detailed and attractive information of the
query image from various viewpoints and scales. Furthermore,
the landmark images with different angles can be also returned
for the query landmark, which are shown at the last two rows
of our method in Fig. 11. This is an attractive landmark search
experience.

H. User Experience: Our System vs. GOGGLES

As the interface design is not the focus of this work, we focus
on the quality of the returned images/3D texture models of our
system and Goggles for user experience study. Note that the res-
olution of query images is 300x300. For comparison, we asked
12 participants to randomly take photos of 3 different landmark
images to test our system and Goggles respectively.
All the participants are asked to evaluate these two systems

from four aspects: 1) effectiveness, namely whether the returned
results are correct; 2) attractiveness, namely whether the re-
turned results are vivid and attractive; 3) time efficiency, namely
whether the time cost on one complete query is accepted for
users; 4) satisfaction, namelywhether users are satisfiedwith the
system. All the evaluations are categorized into five levels, i.e.

, indicating “very bad”, “bad”, “average”, “good”
and “very good”, respectively. The average statistics from 12
participants are shown in Table VI. From the results, we can see
that, overall, our system outperforms Goggles, and the superi-
ority is very obvious in terms of attractiveness while the time
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Fig. 11. Search result of Google Goggles and our method.

TABLE VI
THE USER EXPERIENCE COMPARISON BETWEEN OUR SYSTEM AND GOGGLES

efficiency is a little bit lower than Goggle. Possible explana-
tions include 1) our 3Dmodel basedmethod can robustly handle
query images under various conditions of lighting, zoom, occlu-
sions or ones even containing only a small part of the landmark,
thus the high performance of recognition can be guaranteed;
2) for low time efficiency, this is mainly caused by low con-
figuration of our server and long transmission time for returned
3D texture model; and 3) our system utilizes 3D texture model
to provide users various viewpoints, scales for each landmark,
which are more vivid and attractive than the images provided
by Goggles. In addition, we conduct another user study to com-
pare the following three different aspects of returned results:
(1) 3D texture model (2) 3D model and (3) 2D images. Note
that 2D images are the iconic images used to construct the 3D
model, and 3D texture model is our result. All the evaluations
are also categorized into five levels, i.e. , indicating
“very bad”, “bad”, “average”, “good” and “very good”, respec-
tively. The average statistics from 12 participants are shown in
Table VII. We can see that the attractiveness score of 3D texture
model is the highest. This further verifies that the returned 3D
texture model is more vivid and attractive than other forms.

TABLE VII
THE USER EXPERIENCE COMPARISON ON DIFFERENT FORMS OF RETURNED

RESULTS FROM OUR METHOD

VII. CONCLUSION

In this paper, we have presented a novel approach for robust
landmark search on mobile devices. In our work, 3D models
are obtained offline. In order to achieve high performance of
landmark search, we build 3D landmark recognizers to recog-
nize unlabeled landmark images by a direct 2D to 3D matching.
The ASIFT addition in offline module and the projection test
in online module improve the performance of landmark recog-
nition. In the online module, we compress the query images to
achieve fast image transmission and save network bandwidth.
We construct a 3D model and a 3D texture model corresponding
to the landmark region in query images and return the 3Dmodel
and 3D texture model as landmark search results. This enriches
the user experience of landmark search. Experimental results on
landmark recognition and landmark search have demonstrated
the effectiveness of our method.
In the future, we will investigate landmark rendering and in-

teractively landmark touring in virtual reality to further comple-
ment and enhance the proposed approach.
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