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Avoiding the use of complicated pre-processing steps such as accurate face and body part segmentation or image
normalization, this paper proposes a novel face/person image representation which can properly handle back-
ground and illumination variations. Denoted as gBiCov, this representation relies on the combination of Biolog-
ically Inspired Features (BIF) and Covariance descriptors [1]. More precisely, gBiCov is obtained by computing
and encoding the difference between BIF features at different scales. The distance between two persons can
then be efficiently measured by computing the Euclidean distance of their signatures, avoiding some time con-
suming operations in Riemannianmanifold required by the use of Covariance descriptors. In addition, the recent-
ly proposed KISSME framework [2] is adopted to learn a metric adapted to the representation. To show the
effectiveness of gBiCov, experiments are conducted on three person re-identification tasks (VIPeR, i-LIDS and
ETHZ) and one face verification task (LFW), on which competitive results are obtained. As an example, the
matching rate at rank 1 on the VIPeR dataset is of 31.11%, improving the best previously published result by
more than 10.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The task of person re-identification consists in recognizing an indi-
vidual through different cameras in a distributed network or through
the same camera capturing images at different time. This is a challeng-
ing problem that has attracted a lot of attention in recent years. The
key issue of such systems lies in their ability to measure the similarity
between two person-centered bounding boxes, i.e. to predict if they
represent to the same person, despite changes in illumination, pose,
viewpoint, background, partial occlusions and low resolution. In order
to tackle this problem, the dominant strategy is to combine feature
sets into templates, used as person descriptors, and tomeasure the sim-
ilarity between templates to predict persons' identities. Descriptors
adapted to the re-identification of faces are usually different than
those for person re-identification. Indeed, face verification required to
be able to capture smaller details of the input image, as intra-class and
inter-class variations is smaller than that for person re-identification.
It is challenging for a descriptor to handle both tasks at the same time.
Finally, even if such person or face descriptors have received a lot of at-
tention during the last decade, they still need some improvement before
Shishir Shah.
72, University of Caen Basse-

@gmail.com (Y. Su),
they can be used for real applications. This is themotivation for the pre-
sented work.

Extending the work presented in [3], this paper presents a novel
image representation for person re-identification and face verification.
Specifically, the proposed image representation allows to measure effi-
ciently the similarity between two persons/faces without any pre-
processing step (e.g., precise background subtraction or body part seg-
mentation). This paper mainly focuses on person re-identification
which has received less attention than face verification, howeverwe ex-
perimentally demonstrate that the proposed representation also works
well for face verification. In both scenarios, we assume that pedestrians/
faces have been previously detected and cropped.

The proposed method, denoted as gBiCov, includes three steps. In
the first step, Biologically Inspired Features (BIF) [4] are extracted. BIFs
are based on the study of human visual system and have shown excel-
lent performances on several computer vision tasks [5–7]. In particular,
we use the S1 layer (Gabor filters) and C1 layer (MAX operator) of BIF.
While the Gabor filters can improve robustness to illumination varia-
tions, the MAX operator increases the tolerance to scale changes and
image shifts. In the second step, a covariance descriptor is used to
compute the similarity of BIF features taken at neighboring scales. Co-
variance descriptors can capture shape, location and color information,
and their performance have been shown to be better than other
methods in many situations, as rotations and illumination changes are
absorbed by the covariancematrix [1]. Furthermore,we argue thatmea-
suring the similarity of BIF at neighboring scales decreases the influence
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of the background (see Section 3.5 for details). In the third step, BIF and
covariance descriptors are combined into a single representation. Final-
ly, we show that the performance of the proposed representation can be
further enhanced by the use of metric leaning (we use the KISSME
framework of [2]). Since the resulting representation is robust to illumi-
nation, scale and background changes, the performance for person re-
identification and face verification can be significantly improved.

In addition to presenting an approach performing well on real
datasets, one interesting contribution of the paper lies in the use of co-
variance descriptors in a novel way. In traditional covariance-based
method, the similarity of two images can be obtained by comparing
their covariance descriptors [8–10], which is a time-consuming process.
In contrast, in the proposed approach, the similarities of covariance
descriptors between consecutive bands of BIF features in the same
image are measured. These similarities are then concatenated to pro-
duce image signatures, and the similarity between probe and gallery
images is obtained by simply computing the L2 distance between their
signatures. It avoids the expensive computation of the similarity be-
tween covariance descriptors of probe image and each gallery image,
which can be extremely time-consuming when the gallery is large.

The proposed method is experimentally validated on three public
datasets for person re-identification: VIPeR, i-LIDS and ETHZ. They are
among the most challenging ones, since all the above-described issues
such as pose changes, viewpoint and lighting variations, and occlusions,
are present. As an illustration of the performance, the matching rate at
rank 1 (i.e., considering only the most similar image of the gallery) is
of 31.11% on the VIPeR dataset (10% better than best previously
published result). Knowing that the matching rate at low ranks is the
most important criterion for real-life applications, this improvement is
very significant. The proposed method is also validated on a face verifi-
cation dataset, the Labeled Faces in the Wild (LFW) dataset, and com-
pared to recently published state-of-the-art approaches.

The remaining of this paper is organized as follows: Section 2
reviews the related works on person's re-identification and face verifi-
cation. Section 3 describes the proposedmethod in details and discusses
its advantages. Experimental validations are given in Section 4. Finally,
Section 5 concludes the paper.

2. Related work

Person/face re-identification – which is the task of associating the
same person through different cameras or at different time – is a
challenging problem as the association has to be done despite view
point, illumination and pose changes. It has received a lot of attention
in the recent literature, reflecting the interest for the important applica-
tions that can be addressed with these technologies.

More formally, the task of person re-identification can be defined as
finding the correspondences between the images of a probe set
representing a single person and the images of a gallery set. Depending
on the number of available images per individual (size of the probe set),
the scenarios can be defined as: (a) single-shot [11,12], if only one frame
per individual is available both in the probe and gallery sets; and
(b)multiple-shot [11,12], if multiple frames per individual are available
both in the probe and gallery sets.

One of the key ingredient of face/person re-identification approaches
lies in the encoding of images into visual signatures that can be compared
more efficiently than raw pixel intensities. The recent literature abounds
with such image descriptors for person re-identification. They can be
based on (i) color, widely used since the color of clothing constitutes sim-
ple but efficient visual signatures, usually encoded within histograms of
RGB or HSV values [11], (ii) shape, e.g. using HOG based signature [13,
14], (iii) texture, often represented byGaborfilters [15,10,16], differential
filters [15,16], Haar-like representations [17] and co-occurrencematrices
[14], (iv) interest points, e.g. SURF [18] and SIFT [19,20] and (v) image
regions [13,11,12]. Besides these generic representations, there are
some more specialized representations, e.g. Epitomic Analysis [21], Spin
Images [22,23], Bag-of-Word-based description [20], Implicit Shape
Model (ISM) [19] and Panoramic Map [24]. Since different elementary
features capture different and complementary aspects of the image, b-
etter performance is obtained by combining several signatures. We
point this out in the following section.

Among these methods, those based on representing humans by a
collection of parts have attracted more and more attention. Part-based
methods split the human body into different parts and encode each
part separately. In [11,12], the authors use Maximally Stable Color Re-
gions (MSCR) to build a representation of human body. MSCR consists
in grouping pixels having similar colors into maximally stable regions
during a clustering process. The regions are subsequently described by
their area, centroid, second moment matrices and average colors. In-
terestingly, covariance descriptors have also been widely used for
representing regions [8–10]; the pixels within a region are repre-
sented by a feature vector consisting of intensity, texture and shape
statistics, while the regions are represented by the covariance matrix
of these feature vectors.

As mentioned above, since different elementary features (color,
shape, texture, etc.) capture different and complementary characteris-
tics of the image, they are often combined to give a richer signature.
For example, [15] combines 8 color features with 21 texture filters
(Gabor and differential filters). [11,12] combine MSCR descriptors
with weighted color histograms, achieving state-of-the-art results on
several wildly-used person re-identification datasets. The Covariance
descriptor can be generalized to any type of images (three channel
color images, infrared images, etc.), and can be used to combined differ-
ent descriptors. For example, in [10], Gabor features and Local Binary
Patterns (LBP) are combined with a covariance descriptor which han-
dles, to some extent, illumination and viewpoint changes as well as
non-rigid deformations.

Different representations usually require different similarity mea-
sures. For example, representations based on histograms can be com-
pared with the Bhattacharyya distance [11,21,12] or the Earth Movers
Distance (EMD). When the representation includes two or more differ-
ent features/channels, the similarity is usually computed by combining
their respective similarities (late fusion) e.g. using a linear combination
[21,12,11]. Regarding the methods based on the covariance descriptor,
even if the similarity of two regions is computed by estimating the
distance between two covariance matrices in a pairwise manner, the
similarity of human body described themselves by a set of covariance
matrices has to combine several region similarities. This combination
can be based, for example, on the mean covariance distance between
corresponding regions [25] or by the minimum difference between
corresponding body regions [10]. To capture the correlation between
body parts, [17] uses spatial pyramid matching and designs a new sim-
ilarity measure between human signatures. In [9], the authors argue
that the covariancematrices lie in a Riemannianmanifold, and combine
the efficiency of the mean Riemannian covariance descriptor with the
spatial information carried out by a dense grid structure. In [8], the
authors propose a multi-scale covariance descriptor which describes
an image quadrant through its corresponding sub-tree.

In order to improve the performance of these representations in the
context of person re-identification, several papers have proposed to use
discriminative classifiers on top of them: these classifiers can be based
on Adaboost [16,17], Rank SVM [15], Partial Least Squares (PLS),
multi-feature learning [26] or multiple instance learning [27,28].

Different from these classifiers, metric learning can provide a way to
adapt a similarity function to the given task. Simple but efficient are the
metric learningmethods based onMahalanobis-like distance functions.
Approaches such as Large Margin Nearest Neighbors (LMNN) [29], In-
formation Theoretic Metric Learning (ITML) [30], Logistic Discriminant
Metric Learning (LDML) [31], Pairwise Constrained Component Analysis
(PCCA) [32] and Keep It Simple and Straightforward Metric Learning
(KISSME) [2] have been used successfully in the context of face verifica-
tion and person re-identification.
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From the statistical inference perspective, KISSME [2] computes the
covariance matrix of similar and dissimilar pairs respectively, and uses
the difference of the inverse covariance matrix as a projection matrix.
It is very simple and efficient, since it does not involve any iterative
optimization procedure. In this paper, KISSME is used to define ametric
between descriptor pairs.

Face verification is also a challenging topic which has been studied
for several decades. Image representation is, here also, one of the key
steps. Compared with person images, the intra-class variations of face
images are much smaller, explaining why face verification relies more
on smaller details of the input images. Most of the recently proposed
face descriptors are built on local descriptors since they allow to capture
image details and are robust to variations like expression, illumination,
aging, etc. The most widely used face descriptors in the literature
include Gabor wavelets, LBP [33] or SIFT/HOG [34] and their variants.
In addition to these low-level descriptors, the feature pooling methods
allowing to produce a global representation/signature from local fea-
tures were also intensively investigated (such as the Bag-of-Words
[35], Fisher Vectors [36], and Sparse coding [37]). Sparse coding-based
methods have achieved great success in face representation and recog-
nition. A set of over-complete dictionary is first learned from image
patches, allowing to represent images as weighted sums of a small
number of code words. This mechanism is, in some sense, similar to
the human vision system since in the visual cortex only a small number
of neurons are activated at the same time. In parallel, some researchers
also tried to build computational models which directly simulate the
human vision process [4]. On the classifier side, the nearest neighbor
classifier, SVM, Neural Networks are widely used. Recently, the tradi-
tional Bayesian model was also revisited [38] and impressive results
have been obtained on the challenging LFW dataset.

This paper extends [3] in two directions: (i) in contrast with [3], the
proposed image representation combines covariance similarity with
Fig. 1. Flowchart of the gBiCov representation. Color images arefirst split into 3 color channels (H
boring scales are grouped into bands. BIF Magnitude Images are obtained by using the max ope
into small regions, represented by covariance descriptors.We compute the difference of covarian
are then concatenated to form the final representation of the image.
biologically inspired features. It results in a significant performance im-
provement, as thematch rate at rank 1 of this new representation is sig-
nificantly improved (+3%). The mean accuracy on LFW is also
improved from 74.03% to 84.48%. (ii) A metric learning stage (relying
on the KISSME algorithm) is used to learn a similarity function adapted
to the gBiCov representation, giving better results (on VIPeR the
matching rate at rank 1 is improved up to more than 31%).

3. Covariance descriptor based on bio-inspired features

This section presents the proposed novel image representation: the
covariance descriptor based on Bio-inspired features (gBiCov for
short). There are three steps in this representation: (i) Biologically In-
spired Features (BIF) are first extracted, (ii) BIF are then encoded by
comparing their covariance descriptors at different scales, and, (iii) BIF
are combined with covariance descriptors. The flowchart of the two
first steps of gBiCov is given in Fig. 1. In the following, we first present
these three steps then introduce some extensions, and, finally outline
the advantages of this representation.

3.1. Low-level biologically inspired features (BIF)

BIF [4], based on the study of the human visual system, have been
proposed to address several computer vision tasks such as object cate-
gory recognition [5], face recognition [6], age estimation [7] and scene
classification [39], on which they have obtained excellent performance.

Our representation builds on these priorworks.More specifically, for
an image I(z) where z = (x, y), we compute its convolution with the
Gabor filter ψ(z) accordingly to the following equation [40]:

G μ;νð Þ ¼ I zð Þ � ψμ;ν zð Þ ð1Þ
SV). These input images are convolvedwith Gabor filters at different scales, and the neigh-
rator within the same band of the Gabor features. BIF Magnitude Images are then divided
ce descriptors between the corresponding regions of thedifferent bands. These differences
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where:

ψμ;ν zð Þ ¼
kμ;ν
��� ���2
σ2 e

−
kμ;ν
��� ���2 zk k2

2σ2

 !
eikμ;νz−e

−σ2
2 �;

h
ð2Þ

kμ;ν ¼ kνe
iϕμ ; kν ¼ 2−νþ2

2 π;ϕμ ¼ μ
π
8
; ð3Þ

and where μ and v are scale and orientation parameters respectively. In
our work, μ is quantized into 24 scales while v is quantized into 8 orien-
tations. Gabor filters are inspired by the human visual system and their
kernels are very similar to the 2-D receptive field profiles of the mam-
malian cortical simple cells.

In practice, we have observed that for the person re-identification
task, the image representations G(μ, ν) for different orientations can
be averaged without significant loss of performance. Thus, we replace
ψμ,ν(z) in Eq. (1) by ψμ(z):

ψμ zð Þ ¼ 1
8

X8
ν¼1

ψμ;ν zð Þ: ð4Þ

This simplification makes the computations of G(μ) – which is the
average of G(μ, ν) overall orientations – more efficient.

In practice, the number of scales is fixed to 24 and two consecutive
scales are grouped into one band (we therefore have 12 different
bands). The size of the Gabor filters for the different bands are shown
in Table 1. We then apply a max-pooling over two consecutive scales
(within the same orientation if the orientations are not merged):

Bi ¼ max G 2i−1ð Þ;G 2ið Þð Þ: ð5Þ

Max-pooling increases the tolerance to small scale changes which
often appears in person and face images since they are only roughly
aligned. We call Bi i ∈ [1, …, 12] as BIF magnitude images. Fig. 2 shows
a pair of images of the same person and its respective BIF magnitude
images. The image in the first column is the input image while the
second column shows its three HSV channels. The images from the
3rd column to the 8th column are BIFmagnitude images corresponding
to the 6 different bands.

3.2. Covariance descriptors in the gBiCov descriptor

During this step, each BIF magnitude image is divided into small
overlapping regions. In this way, the spatial information of the images
is kept. Then, each region is represented by a covariance descriptor
[1]. Covariance descriptors can capture shape, location and color infor-
mation, and their performance have been shown to be better than
othermethods inmany situations, as rotations and illuminations chang-
es are partly absorbed by the covariance matrix [1].

For each pixel of theBIFmagnitude image Bi, a 7-dimensional feature
vector is computed to capture the intensity, texture and shape statistics:

f i x; yð Þ ¼ x; y;Bi;Bix
;Biy

;Bixx
;Biyy

h i
ð6Þ

where x and y are the pixel coordinates, Bi is the raw pixel intensity at
position (x, y), Bix

and Biy
are the derivatives of image Bi with respect

to x and y, Bixx
and Biyy

are the second order derivatives of image Bi
Table 1
Scales of Gabor filters for the different bands.

Band B1 B2 B3 B4 B5 B6

Filter sizes 3 × 3 7 × 7 11 × 11 15 × 15 19 × 19 23 × 23
Filter sizes 5 × 5 9 × 9 13 × 13 17 × 17 21 × 21 25 × 25
with respect to x and y. The input image region ismapped to the covari-
ance region represented by a 7 × 7 matrix.

After that, we compute the covariance descriptor for each one of the
small overlapping regions previously introduced:

Ci;r ¼
1

n−1

X
x;yð Þ∈r

f i x; yð Þ− f ið Þ f i x; yð Þ− f ið ÞT ð7Þ

where fi is themean of fi(x, y) over the region r and n is the size of region
r (in pixels).

In traditional covariance-based methods, covariance matrices com-
puted by Eq. (7) are considered as the image representation. Differently,
in this paper, we compute for each region the difference of covariance
descriptors between two consecutive bands:

di;r ¼ d C2i−1;r ;C2i;r

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
p¼1

ln2λp C2i−1;r ;C2i;r

� �vuut ð8Þ

where λp(C2i − 1,r, C2i,r) is the p-th generalized eigenvalues of C2i − 1,r

and C2i,r, i = 1, …, 6.

3.3. BIF in the gBiCov descriptor

Though we can take di,r as the representation of gBiCov directly,
considering the success of BIF magnitude features in many areas, we
also combine the BIF magnitude features in the gBiCov descriptor. BIF
magnitude features can be seen as appearance-based features while
the covariance matrices can be seen as a description of feature proper-
ties. To a certain extent, BIFmagnitude features and covariancematrices
are two different levels of the entire representation.

By denoting B2i−1;r and B2i;r the mean of BIF magnitude features of
region r under band 2i− 1 and 2i, respectively, we compute bi,r as the
average of the BIF magnitude features of these two bands:

bi;r ¼
B2i−1;r þ B2i;r

2
: ð9Þ

We simply concatenate BIF features bi,r with covariance feature di,r,
after normalizing them:

d̂i;r ¼
ffiffiffiffiffiffiffiffiffiffi
di;r
�� ��q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼0

XR
r¼0

d2i;r
q ð10Þ

b̂i;r ¼
ffiffiffiffiffiffiffiffiffiffi
bi;r
�� ��q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼0

XR
r¼0

b2i;r
q ð11Þ

where R and M are the number of regions and bands, respectively.
Finally, they are concatenated to form the image representation D:

D ¼ d̂1;1; ⋯; d̂M;R; b̂1;1; ⋯; b̂M;RÞ:
�

ð12Þ

It is worth pointing out that color images are processed by splitting
the image into 3 color channels (HSV), extracting gBiCov descriptors
on each channel separately and finally concatenating the 3 descriptors
into a single signature.
B7 B8 B9 B10 B11 B12

27 × 27 31 × 31 35 × 35 39 × 39 43 × 43 47 × 47
29 × 29 33 × 33 37 × 37 41 × 41 45 × 45 49 × 49



Fig. 2.Apair of images representing the same person, and their BIFmagnitude images. The images in thefirst and second columnare the input images and their three channels inH, S andV
channel, respectively. The images from the 3th column to the 8th column are the BIF Magnitude Images for the different bands.
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The resulting feature D lies in a high dimensional space. Here
we show that simple dimensionality reduction method such as
Principal Component Analysis (PCA) [41] is a good option for
compressing the features. PCA is a linear transform technique,
which reduces the dimensionality of features while preserving
most of their variance. The projection matrix Wpca is made of the
orthogonal eigenvectors of the covariance matrix. The experiment
section shows that the drop in performance is small, even when
the dimensionality reduction is significant. In some cases, the low-
dimensional features even perform better, which can be interpreted
over-fitting reduction.

Finally, the distance between two images Ii and Ij is obtained by com-
puting the Euclideandistance between their low-dimensional represen-
tations Di and Dj:

d Ii; I j
� �

¼ jjWpca � Di−Wpca � D jjj: ð13Þ

3.4. gBiCov extensions

3.4.1. eBiCov: combining gBiCov with additional image features
As mentioned in Section 2, especially in the context of person re-

identification, the performance is usually improved by combining dif-
ferent types of image descriptors. In this paper, we follow the same
methodology and combine the gBiCov descriptor with other two repre-
sentations: (i) Weighted Color Histograms (wHSV) and (ii) MSCR as
defined in [11]. For notational simplicity, we denote this combination
as eBiCov (for enriched gBiCov). While SDALF, which is the current
state-of-the-art approach for unsupervised person re-identification,
uses a combination of wHSV, MSCR and Recurrent High-Structured
Patches (RHSP), [12] has observed that RHSP can be removed without
significant loss in performance. Consequently, eBiCov can be seen as
the combination of SDALF and gBiCov. In eBiCov, the difference between
two image signatures D1′ = (HA1, MSCR1, gBiCov1) and D2′ = (HA2,
MSCR2, gBiCov2) is computed as:

deBiCov D0
1;D

0
2

� � ¼ 1
3
dwHSV HA1;HA2ð Þ þ 1

3
dMSCR

MSCR1;MSCR2ð Þ þ 1
3
dBiCov gBiCov1; gBiCov2ð Þ:

ð14Þ
Improvements might be obtained by optimizing the weights
based on additional information, e.g. class labels, other priors and
cross validation. However, to show the intrinsic quality of the
descriptor, we have simply used this simple fixed-weights combina-
tion. Regarding the definition of dwHSV and dMSCR, we use the ones
given in [11].

3.4.2. kBiCov: comparing gBiCov signatures using learnt metrics
In addition to the simple Euclidean distance (Eq. (13)), we have also

investigated how a learnt metric could improve performance, assuming
a training set is available.

More precisely, we focused our investigations on the class of
Mahalanobis-like distance functions, which has gained considerable
interest in the recent computer vision literature (see Section 2). In this
paper, considering its great success in face recognition and person
re-identification, we build on the KISSME framework [2] as a general
metric learning approach.

As stated by the authors of [2], the main advantage of KISSME is the
simplicity and efficiency of the learning process, as it only requires the
computation of two small-sized covariance matrices, one for the
positive class (pairs of vectors of the same class) and the other for the
negative class (pairs of vectors from different classes). The similarity is
based on a likelihood-ratio test applied to the difference of the two
vectors to be compared, computing plausibility that the difference be-
longs to either the positive or the negative class.

More precisely, thematrixM is computed by the following equations:

M ¼ Σ−1
yij¼1−Σ−1

yij¼0 ð15Þ

where

Σyij¼1 ¼
X
yij¼1

xi−xj

� �
xi−xj

� �T ð16Þ

Σyij¼0 ¼
X
yij¼0

xi−xj

� �
xi−xj

� �T ð17Þ

where yi is the label of sample xi. yij = 1 means similar pairs, i.e., if the
samples share the same class label (yi = yj) and yij = 0 otherwise.



Fig. 3. VIPeR dataset: sample images showing the same subjects from different viewpoints.
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Fig. 4. VIPeR dataset: CMC and SRR curves.
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In practice, using a projection matrix is more convenient than using
M directly. We therefore compute the corresponding projection metric
using Cholesky factorization:

M ¼ WT
kiss �Wkiss: ð18Þ

At this stage, no dimensionality reduction is performed. However,
for the reasons given in the previous section, reducing the dimensional-
ity is generally useful. We here again use PCA, combined with the
KISSME metric, giving the following projection matrix:

DK ¼ Wkiss �Wpca � D: ð19Þ

Finally, the similarity between two vectors is computed by projecting
them using Wkiss × Wpca (the projection matrix combining PCA and
KISSME) and by computing the Euclidean distance between their
projected vectors.

This variant is denoted as kissme-gBiCov (kBiCov for short) in the
experiments.

3.5. Advantages of gBiCoV

First, combining Gabor filters with covariance descriptors makes
gBiCov very robust to illumination variations. On one hand, Gabor filters
are known to be robust to illumination changes; on the other hand the
covariance descriptor also absorbs illuminations changes [1]. As being
the combination of Gabor filters and covariance descriptor, gBiCov can
be shown to be even more robust to illumination variations.
Table 2
VIPeR dataset: top ranked matching rates (%).

Method r = 1 r = 5 r = 10 r = 20 r = 50

wHSV 13.49 27.41 37.36 53.24 76.17
MSCR 9.88 21.46 31.41 43.13 63.36
BiCov 9.01 23.59 33.59 45.95 69.37
gBiCov 17.01 33.67 46.84 58.72 80.24
SDALF 19.87 38.89 49.37 65.73 83.07
eBiCov 24.34 46.75 58.48 71.17 88.18
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Second, gBiCov is also more robust to background variations, i.e., it
can achieve good performance without any accurate foreground/
background segmentation or body parts detection, which are often
even more difficult tasks. Roughly speaking, background regions
are usually less textured, which makes their Gabor features (and
hence their covariance descriptors) at different neighboring scales
very similar. Since the gBiCov descriptor is based on the difference
of covariance descriptors at different scales, the gBiCov descriptors
extracted from background regions are small and do not impact the
similarity between descriptors a lot.

Third, theway of using the covariance descriptor in this paper is very
different than what is usually done. Indeed, to measure the distance
between two images, the traditional way is to compute the difference
between their covariance descriptors. Since finding the eigenvalues
(required for comparing the covariance descriptors) is very time-
consuming, it is computationally prohibitive when the gallery set is
large. In contrast, gBiCov computes the similarity of covariance descrip-
tors of consecutive scales, and these similarities are concatenated to ob-
tain the image signature. In other words, covariance descriptors are
used to capture self-similarities, and not exploited to performmatching
between different signatures. Therefore, the time needed to calculate
distances between covariances are solely used during the building of
the signature. The matching holds in a Euclidean space, which makes
it very fast.

4. Experiments

This section presents the experimental validation of the proposed
gBiCov representation. The validation is done on three datasets for per-
son re-identification (namely VIPeR [42], i-LIDS [20] and ETHZ [43,14])
and one for face verification (namely LFW [34]).

4.1. Pedestrian re-identification on the VIPeR dataset

The Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset – as
indicated by its name – has been designed for viewpoint-invariant pe-
destrian re-identification. It contains 1264 images of 632 pedestrians.
There are exactly two views per pedestrian, taken from two different
viewpoints. All images are resized to 128×128 pixels.Most of the exam-
ples contain a viewpoint change of 90° and strong illumination varia-
tion, as it can be seen in Fig. 3. This dataset has been widely used and
is considered to be one of the benchmarks of reference for pedestrian
re-identification.

Measuring the performance of person re-identification is usually
done with the Cumulative Matching Characteristic (CMC) curve [44]
and the normalized Area Under Curve (nAUC). CMC curves treat re-
identification as a ranking problem by representing the probability of
finding the correct match over the first k ranks. In other words,
CMC(k) can be seen as the recall at k. In contrast, the Synthetic Reacqui-
sition Rate (SRR) curve [42] measures the probability that any of the k
best matches is correct. The nAUC is the area under the CMC curve,
which is the scalar appraisal of CMC curves and can be used to summa-
rize the overall performance. The higher the nAUC is, the better the per-
formance is.
Table 3
VIPeR dataset: nAUCs of gBiCov with different region size and different overlaps.

Region size 4 × 8 4 × 8 8 × 8 8 × 8 8 × 8 8 × 8 8 × 16 8 × 16 8 × 16

Overlapping size 2 × 4 4 × 8 2 × 4 4 × 4 4 × 8 8 × 8 2 × 4 4 × 8 8 × 8
Dim 25,668 6912 23,436 12,276 6336 3456 21,924 5960 3240
nAUC 89.32 88.90 89.87 89.72 89.54 89.04 90.37 90.11 89.68
Region size 8 × 16 16 × 16 16 × 16 16 × 16 16 × 16 12 × 24 12 × 24 12 × 24 12 × 24
Overlapping size 8 × 16 2 × 4 4 × 4 4 × 8 8 × 8 2 × 4 4 × 8 8 × 8 6 × 12
Dim 1728 17,748 9396 4860 2700 18,468 5040 2520 2268
nAUC 89.15 90.68 90.67 90.59 90.38 90.59 90.45 90.36 90.00

Fig. 5. ETHZ dataset: CMC curves.



Fig. 6. Some images in the i-LIDS MCTS dataset. The images in the same column are belonging to the same person.
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4.1.1. Comparing gBicov with other methods
Fig. 4 shows the CMC and SSR curves obtained with the eBicov rep-

resentation (extended gBicov), as well as the one given by the state-of-
the-art person re-identification algorithm, namely SDALF [11]. Since the
matching rates at small ranks are very important in real-life applica-
tions, Table 2 also shows the matching rates at ranks 1, 5, 10, 20 and
50. We follow the same experimental protocol as [11] and report the
average performance over 10 different random sets of 316 pedestrians.
To show the performance of the descriptor alone, we also report
the performance of the 3 components of the eBicov individually
(i.e., gBiCov, wHSV and MSCR, as defined in Section 3). Since the
performance of the third component in SDALF is much worse than
those of wHSV and MSCR, the combination of wHSV and MSCR can be
seen as a good approximation of SDALF. To emphasize the improvement
of gBiCov over BiCov [3], we report both in the aforementioned table
and figure.

From the abovementioned figure and table, we can see that eBiCov
consistently outperforms SDALF. For example, the matching rate at
rank 1 of eBiCov is 24.34% while the one of SDALF is 19.84%. The good
performance of eBiCov is explained by the good performance of gBiCov:
its matching rate at ranks 1, 10 and 50 are of 17.01%, 46.84% and 80.24%
respectively, while those of wHSV are of 13.49%, 37.36% and 76.17% re-
spectively. When comparing the performance of one single component
(MSCR, wHSV) with gBiCov, the advantage of the proposed gBiCov de-
scriptor is even more obvious. For example, the matching rate at rank
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Fig. 7. i-LIDS dataset: CMC curves of the different methods in the single shot scenario.
1 is only of 13.49% and 9.88% for wHSV and MSCR, while that of gBiCov
is of 17.01%. In addition, the performance of gBiCov is much better than
that of BiCov. This demonstrates the advantage of combining BIF fea-
tures with covariance descriptors. This improvement can be attributed
to the different complementary levels that BIF features and covariance
descriptor brings to the image representation.

Compared with wHSV and MSCR, the advantage of gBiCov comes
from two factors: on one hand, most of the false positives are due to
severe lighting changes. In gBiCov, the combination of Gabor filters
and covariance descriptors strongly alleviates this effect. On the other
hand, since many people tend to dress in very similar ways, it is impor-
tant to capture as fine image details as possible to overcome the ambi-
guity introduced by similar clothing. This is where BIF does well. In
addition, it is worth noting that for these experiments the orientation
of Gabor filters is not used (see Section 3), allowing reducing the com-
putational cost.We have experimentally observed that the performance
is almost as good as when including orientations.

4.1.2. Analysis of the parameters (region size and overlap)
In gBiCov, there are two important parameters: the size of the re-

gions and their overlap. To show the influence of these parameters,
we experimentedwith different region sizes andwith different overlaps.
The width of the region is ranged from 4 to 12 pixels while the height is
from 8 to 24 pixels. The overlap is set to 25%, 50% or 100% of the region
size. The nAUCs of gBiCov with different region and overlapping sizes
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Fig. 8. VIPeR dataset: CMC curves with 316 persons.

image of Fig.�7


Table 4
VIPeR dataset: top ranked matching rates (%) with 316 persons.

Method r = 1 r = 5 r = 10 r = 20

PRDC [46] 15.66 38.42 53.86 70.09
MCC [46] 15.19 41.77 57.59 73.39
ITML [46] 11.61 31.39 45.76 63.86
LMNN [46] 6.23 19.65 32.63 52.25
CPS [12] 21.00 45.00 57.00 71.00
PRSVM [15] 13.00 37.00 51.00 68.00
ELF [16] 12.00 31.00 41.00 58.00
PCCA-sqrt [32] 17.28 42.41 56.68 74.53
PCCA-rbf [32] 19.27 48.89 64.91 80.28
KISSME [2] 19.60 – 62.60 –

kBiCov 31.11 58.33 70.71 82.44

Table 6
i-LIDS dataset: top ranked matching rates (%) with 30 persons in the gallery set.

Method r = 1 r = 5 r = 10 r = 20

PRDC [49] 44.05 72.74 84.69 96.29
Adaboost [49] 35.58 66.43 79.88 93.22
LMNN [49] 33.68 63.88 78.17 92.64
ITM [49] 36.37 67.99 83.11 95.55
MCC [49] 40.24 73.64 85.87 96.65
Xing's [49] 31.8 62.62 77.29 90.63
PLS [49] 25.76 57.36 73.57 90.31
L1-norm [49] 35.31 64.62 77.37 91.35
Bhat. [49] 31.77 61.43 74.19 89.53
kBiCov 39.17 68.19 82.10 95.26
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are shown in Table 3. In the table, we also show the dimensionality of the
whole representation since it varies greatly under different region and
overlapping sizes. The main conclusion is that the performance is not in-
fluenced a lot by any of the two parameters. However, one can also see
that the performance is as better as the overlap is important and, in gen-
eral, better for larger regions. However, when the overlap is important,
more regions are necessary to cover the image, increasing the dimension-
ality of the representation. A tradeoff between the performance and the
computational cost has therefore to be made. In practice, we set the re-
gion size to 16 × 16 and the overlap to 4 × 4 in all of our experiments.

4.2. Pedestrian re-identification on the ETHZ dataset

In addition to the previous experiments, we have also experimented
the gBiCov representation on the ETHZ database.

The ETHZ dataset contains three video sequences of crowded street
scenes captured by two moving cameras mounted on a chariot. The
three sequences have: 4857 images of 83 pedestrians for SEQ. #1,
1961 images of 35 pedestrians for SEQ. #2, and 1762 images of 28 pe-
destrians for SEQ. #3. The most challenging aspects of ETHZ are illumi-
nation changes and occlusions. We follow the evaluation framework
proposed by [11] to perform the experiments. Besides the single-shot
case, we also tested gBiCov in the multi-shot case.

Fig. 5 shows the CMC curves for the three sequences, for both single
(N= 1) and multiple shots (N= 2,5,10). In case of single shot, we can
see that the performance of gBiCov alone is already much better than
that of SDALF, for the three sequences. After adding MSCR and wHSV
to gBicov (giving the so called eBiCov representation), the performance
is greatly improved. In particular, on SEQ. #1, eBiCov is 9% better than
SDALF for ranks between 1 and 7. On SEQ. #2, the matching rate at
rank 1 around 76% for eBiCov and 64% for SDALF. Compared with the
improvements observed on the VIPeR dataset, improvements on the
ETHZ dataset are even more obvious. The reason seems to be that the
images of the same person come from video sequences, which makes
the task of person re-identification much easier for all the methods.

In case ofmulti-shots, as in [11],N is set to 2, 5, 1 and 10. From Fig. 5, it
can be seen that on SEQs. #1 and #3, the proposed eBiCoV obtains much
better results than SDALF. It is even more obvious on SEQ. #3 for which
our method's CMC is 100% for N=5, 10, which experimentally validates
the effectiveness of our descriptor for person re-identification.

4.3. Person re-identification on the i-LIDS dataset

The i-LIDS MCTS dataset has been captured by multiple non-
overlapping cameras at a busy airport arrival hall. There are 119
Table 5
VIPeR dataset: nAUCs with different dimensions.

Dimension 10 20 30 40 50

nAUC 92.40 94.89 95.82 96.25 96
pedestrians with total 476 images. All the images are normalized to
the size of 128 × 64 pixels. Many of these images undergo quite large il-
lumination changes and occlusions (see Fig. 6).

We tested the proposed descriptors in the single-shot scenario. We
follow the same experimental settings of [11,12]. Considering there
are 4 images on average for each pedestrian, we randomly select one
image for each pedestrian to build the gallery set, while the rest (357
images) form the probe set. We repeat this procedure 10 times and
compute the average CMC and nAUC. On the i-LIDS dataset, the best
single-shot published performance is obtained by a covariance-based
technique (SCR) [45]. Fig. 7 shows the CMC curves given by gBiCov,
SCR [45], Custom Pictorial Structures (PS) [12] and SDALF [11].

Fig. 7 shows that gBiCov outperforms SDALF on this dataset,
obtaining results which are comparable to the PS and SCR approaches.
However, contrarily to PS and SCR, gBiCov does not need any body de-
tection stage nor any background elimination pre-processing algorithm.
This is significant advantage, knowing that body segmentation is still an
open problem under real conditions.

4.4. Person re-identification using metric learning

In this section we experimentally validate the combination of the
proposed descriptor with the metric learning approach described in
Section 3.4.2. We compare our kBiCov (kBiCov = gBiCov + metric
learning) approach with recent approaches based on metric learning,
on the VIPeR and i-LIDS datasets.

4.4.1. kBiCov on VIPeR
To make comparisons fair, we follow the standard protocol for this

dataset. We randomly take 316 persons out of the 632 for the test set,
the remaining persons being in the train set. Like in [32], one negative
pair is produced for each person, by randomly selecting one image of
another person.We produce 10 timesmore negative pairs than positive
ones. The process is repeated 100 times and the results are reported as
the mean/std values over the 100 runs.

To face the increase of computational complexity due to the metric
learning stage, MSCR is discarded andwHSV is replaced by a simple his-
togram. We use color histograms extracted from 8 × 24 rectangular re-
gions to represent images. The rectangular regions are densely collected
from a regular grid with 4 pixel spacing in vertical direction and
12 pixel spacing in horizontal direction. This step size is equal to half
the width and length of the rectangles.

We compare kBiCov with four different approaches using metric
learning: PRDC [46], LMNN [46], PCCA [32] and KISSME [2]. For PRDC
and LMNN, the image representation is the combination of RGB, YCbCr
and HSV color features and two texture features extracted by local
60 70 80 90 100

.42 96.48 96.50 96.57 96.46 96.39



Fig. 9. Example images of LFW dataset. The two images on the same column belong to the same subject.
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derivatives andGabor filters on 6 horizontal strips. For PCCA, the feature
descriptor is a 16-bin color histograms in 3 different color spaces (RGB,
HSV and YCrCb) as well as texture histograms based on Local Binary
Patterns (LBP) computed on 6 non-overlapping horizontal strips. PCCA
[32] reports the state-of-the-art results for person re-identification, im-
proving over Maximally Collapsing Classes [47], ITML [30] or LMNN-R
[48]. For KISSME, the representation includes two components: HSV
and Lab histograms on overlapping blocks of size 8 × 16 and stride of
8 s 8, and texture information captured by LBPs. The concatenated de-
scriptors are projected into a 34-dimensional subspace by PCA.

Fig. 8 shows CMC curves of the different methods while Table 4
shows the nAUCs at ranks 1, 5, 10 and 20. The results of PRDC, LMNN
and PCCA are taken from their original papers. From the figure and
the table, we can see that kBiCov performs much better than any of
the other approaches. For example, the matching rates for ranks 1, 10
and 20 are of 31.11%, 70.71% and 82.44% for kBiCov while those of
PCCA are of 19.27%, 64.91% and 80.28%. Compared with the results of
KISSME [2], the 1-rank matching rate is improved from 19.60% to
31.11%, validating the proposed representation. Indeed, the only differ-
ence between kBiCov and [2] is the image representation.

Interestingly, the advantage of kBiCov over other approaches is obvi-
ous at low ranks. For example, the best matching rate at rank 1 among
state of the art methods is of 21.00% while for kBiCov the matching
rate is of 31.11%, which means that the improvement is nearly of 50%.
This improvement is very significant for real world applications where
it can effectively decrease the need of human intervention and make
the search of a specific person easier.

In kBiCov, one important parameter is the dimensionality of the
projected space (after PCA). The nAUCs for different dimensionalities
are given Table 5. It can be seen from this table that the nAUCs are
Table 7
Mean classification accuracy (%) and standard deviation on the LFW dataset, unrestricted
setting.

Method m ± σ

SD-MATCHES, 125 × 12512 [51], aligned 64.10 ± 0.62
H-XS-40, 81 × 15012 [51], aligned 69.45 ± 0.48
GJD-BC-100, 122 × 22512 [51], aligned 68.47 ± 0.65
LARK unsupervised20 [52], aligned 72.23 ± 0.49
POEM [53], aligned 82.71 ± 0.59
G-LQP [50], aligned 82.10 ± 0.26
I-LQP [50], aligned 86.20 ± 0.46
gBiCov, aligned 84.48 ± 0.70
almost the same, until it reaches 80. For higher dimensionalities, the
performance drops, probably because of over-fitting. In practice and in
all of our experiments, the size of the low-dimensional space is set to
60, which is a good tradeoff between accuracy and efficiency.

4.4.2. kBiCov on i-LIDS
We also experimented with the supervised setting of the i-LIDS

dataset. For making the comparison fair, we follow the experimental
setting of [49] by randomly selecting the images of 30 persons for the
test set while the remaining ones are attributed to the train set. In the
test set, there is one image of each person which is randomly selected
as a gallery image while other images constitute the probe set. The
training set has 10 times more negative pairs than positive pairs.

Table 6 shows the matching rates of the different methods investi-
gated. From the table, we can see that the matching rates of kBiCov
are significantly better than those of other methods, except PRDC and
MCC.

4.5. Face verification in uncontrolled environments

Besides person re-identification, we also experimented gBiCov for
face verification on the LFWdataset [34]. LFW consists of 13,233 images
of 5749 people which are originally gathered from news articles on the
web. Face verification on the LFW dataset is a challenging problem due
to the variations in facial poses, illumination or expressions. Fig. 9 shows
typical images of the LFW dataset.

We tested the proposed descriptor on the View 2 of the LFW, follow-
ing the protocol described in [34]. In View 2, the dataset is split into 10
disjoint folds. Each fold contains 600 pairs of images: 300 positive pairs
(i.e., two images of the same person) and 300 negative ones (pairs of
different persons). The task is to verify if a test pair represents the
same individual or not. In detail, two images are predicted to be the
same person if the distance between face signatures is smaller than a
threshold. Otherwise the pair is supposed to contain different persons.
The verification performance is reported as the mean recognition rate
and the corresponding standard deviation over 10-folds. The training
and testing splits are defined on the LFW website,2 from which we
also obtained the aligned version of the face images (80 × 150 images).

Experiments on face verification are different from the ones on per-
son re-identification in several ways. First, for person re-identification,
the orientation information of Gabor filters is discarded for improving
2 http://vis-www.cs.umass.edu/lfw/index.html.

http://vis-www.cs.umass.edu/lfw/index.html


389B. Ma et al. / Image and Vision Computing 32 (2014) 379–390
the computational efficiency, without significant loss in accuracy. How-
ever, in face verification, orientations should be taken into account to
preserve fine details. Here, we compute one BIF image per orientation.
As we have 8 different orientations, the size of the descriptor is 8
times bigger than the descriptors used for person re-identification.

Second, in this set of experiments, we have evaluated the perfor-
mance of gBiCov and kBiCov, but not the one of eBiCov. Indeed, the in-
formation needed for person re-identification and face verification are
quite different. For example, wHSV and MSCR perform well on person
re-identification, but they are not suitable for face verification. In fact,
it is one of the advantages of the proposed gBiCov that it can be applied
on both person re-identification and face verification.

Finally, the image representation D is projected into a lower space
using whiten PCA. Whitening the data essentially means rotating them
into a space of principal components, dividing each dimension by
square root of variance in that direction, and rotating back to pixel
space. The dimension of the whiten PCA space is set to 60. This normal-
ization has been reported to be very useful in this context [50].

Table 7 reports the performance of gBiCov, as well the performance
of state-of-the-art methods. These results are taken from the LFW
website which keeps track of any published results on this dataset. By
giving a mean classification accuracy of 84.48%, the performance of
the proposed gBiCov descriptor is comparable to that of the state-of-
the-art such as I-LQP. However, compared with I-LQP, gBiCov does not
need any training images, which is a big advantage for real world appli-
cations. In addition, gBiCov ismore computationally efficient than I-LQP,
since I-LQP needs to learn the codebook of 316 = 43 million distinct
codes.

Besides the unrestricted setting, we also tested kBiCov under the
image restricted training setting. In this setting, we just know that a
training pair is either positive or negative pair; we do not know the
identity of the persons. In kBiCov, the feature of gBiCov are reduced to
60 dimensions by PCA first, and thenwe use KISSME to learn the projec-
tion. State-of-the-art under this setting can be also found on the LFW
website. Table 8 shows the accuracy of kBiCov and compare it to the
state-of-the-art results.

Table 8 shows that Fisher vectors perform best on LFW,with a mean
accuracy of 87.47%. However, the mean accuracy obtained by kBiCov is
of 86.80%, which is comparable to the Fisher vectors and much better
than those of any other methods. It must be pointed out that the Fisher
vectors method requires a huge amount of time to learn the GMM
model in the feature extraction stage, while kBiCov does not need any
feature learning stage. On the whole, the results obtained with both
gBiCov and kBiCov show the good performance of the proposed image
representations on the face verification task.

5. Conclusions

This paper proposes a novel image representation – referred as the
gBiCov representation – which combines Biologically Inspired Features
(BIF) and the Covariance descriptor. gBiCov is robust to illumination,
Table 8
Mean classification accuracy (%) and standard deviation on the LFW dataset, restricted
setting.

Method m ± σ

Eigenfaces, original 60.02 ± 0.79
Nowak, original 72.45 ± 0.40
Nowak2, funneled 73.93 ± 0.49
Hybrid descriptor-based, funneled 78.47 ± 0.51
3 × 3 Multi-Region Histograms (1024) 72.95 ± 0.55
Pixels/MKL, funneled 68.22 ± 0.41
V1-like/MKL, funneled 79.35 ± 0.55
APEM (fusion) 84.08 ± 1.20
MRF-MLBP 79.08 ± 0.14
Fisher vector faces 87.47 ± 1.49
kBiCov 86.80 ± 0.79
scale and background variations, which makes it suitable for both
person re-identification and face verification tasks. Furthermore, the
paper shows that the discriminative ability of gBiCov can be improved
by the use of metric learning. Experiments on three pedestrian datasets
(VIPeR, i-LIDS and ETHZ) and one face dataset (LFW) show that the pro-
posed gBiCoV achieves the state-of-the-art performances in both unsu-
pervised setting and supervised setting, while being at the same time
efficient and robust, in the sense that it is fast to compute and quite
insensitive to parameter tuning.
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