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Extreme Support Vector Machine (ESVM) is a nonlinear robust SVM algorithm based on regularized least
squares optimization for binary-class classification. In this paper, a novel algorithm for regression tasks,
Extreme Support Vector Regression (ESVR), is proposed based on ESVM. Moreover, kernel ESVR is
suggested as well. Experiments show that, ESVR has a better generalization than some other traditional
single hidden layer feedforward neural networks, such as Extreme Learning Machine (ELM), Support
Vector Regression (SVR) and Least Squares-Support Vector Regression (LS-SVR). Furthermore, ESVR has
much faster learning speed than SVR and LS-SVR. Stabilities and robustnesses of these algorithms are also
studied in the paper, which shows that the ESVR is more robust and stable.
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1. Introduction

Regression is an important topic for machine learning.
Classification is the special case of regression, in which the outputs
are in the set of {0,1}. Many regression approaches have been
proposed, such as Support Vector Regression (SVR) [18] and least
squares regression. However, these methods have some
drawbacks, e.g., slow learning speed, poor generalization and low
robustness [11].

Extreme Learning Machine (ELM) is a successful single hidden
layer feedforward neural network for both classification and
regression [11]. It has a good generalization with an extremely fast
learning speed. Some desirable advantages can be found in ELM,
such as extremely fast learning speed and good computational sca-
lability. The essence of ELM is that the hidden layer parameters
need not be tuned iteratively and the hidden layer’s output con-
nection weights can be simply calculated by least squares optimi-
zation [10]. ELM has attracted a great number of researchers and
engineers recently for their theoretical and application works
[13,12,22]. However, the traditional ELM may encounter ill-posed
problems and it is difficult to choose appropriate hidden parame-
ters to avoid such problems [14].

Extreme Support Vector Machine (ESVM) [15] is a kind of single
hidden layer feed forward network developed from ELM and
Support Vector Machine (SVM). It has not only the same
advantages as ELM, such as extremely fast learning speed and that
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hidden layer parameters can be randomly generated, but also a
better generalization than traditional ELM on classification tasks
due to its output bias term and regularization scheme. It is a spe-
cial form of regularization networks [5] derived from SVM. ESVM
can be also viewed as an approximation method of SVM. Such
approximation leads to fast learning speed. Due to these
properties, a lot of researches have been conducted on ESVM
[8,6,19,17]. However, ESVM model cannot be applied to multi-class
classification and regression tasks directly.

In this paper, the Extreme Support Vector Regression (ESVR)
model, a novel single hidden layer feedforward neural network,
is proposed for regression tasks based on ESVM. Inspired by ESVM,
our ESVR model is a fast approximation method of €-SV regression
[18]. Some experimental results show that the ESVR model has a
quite good generalization with a high learning speed. Moreover,
the proposed ESVR model is quite robust and stable for regression.

This paper is organized as follows. The ESVM algorithm is
briefly reviewed in Section 2. Basic ESVR and kernel ESVR are
proposed in Section 3. Performances of ESVR compared with
ELM, Support Vector Regression (SVR) and Least Squares-Support
Vector Regression (LS-SVR) are verified in Section 4. The
experiments about the stabilities and robustnesses of such
methods are studied in Section 4 as well.

2. Extreme Support Vector Machine

We here briefly review the model of Extreme Support Vector
Machine (ESVM). Similar to ELM, ESVM [15] is a kind of single
hidden layer feedforward neural network as illustrated in Fig. 1.
The input x € R™ is transformed to a feature space by the activation
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Fig. 1. The structure of ESVM network.

function ®(W’,x), which the hidden layer parameters W' from
input layer can be generated randomly. Then the output layer
solves a regularized least squares problem in the feature space,
where the regularizations are put on both w and b.

The goal of ESVM is to find an approximate decision boundary
of SVM: w'x — b = +1, where w, b are the orientation and the rel-
ative location of the decision boundary respectively. The model of
ESVM is obtained by replacing the inequality constraints in the tra-
ditional SVM model with the equality constraint as
o Con 1wl
(W‘b;glkl?mnn 2 H§”Lz + 2 H [ b } L (1)

s.t. D(O(W',A)w — be) + ¢ =e,

where C is the regularization parameter which controls the tradeoff
between allowable errors and the minimization L, norm of the hid-
den layer’s output weights and bias, ¢ is the slack variable of the
model, and D is the diagonal square matrix with the element of 1
or —1 denoting the labels. In Eq. (1), A is the data sample matrix
of size nxm, where each row is one sample X, and
W, A) = (D(W,X;),..., DW.X,)). ®W,x):R" -R" is the
feature mapping function in the hidden layer, where m is the
dimension of the input data, m is the number of hidden nodes.
The most commonly used mapping function is sigmoid function,
that is, ®(W', x) = sigmoid(W''x), W' is a matrix of size m x i and
can be generated randomly. e is a vector of size n x 1 which is filled
with 1s.

The model is a quadric programming optimization problem.
However, the solution of the model is simply equivalent to calcu-
late the following expression according to [15] as

{‘ﬂ - (% 4 EgE®> "ElDe, 2)

where Eq = [®(W',A), —e] € R,

ESVM reaches a better generalization than ELM in almost all
classification cases and achieve comparable accuracies to SVM
[15]. Due to its simple analytical solution, ESVM learns at a quite
fast speed. Additionally, the activation function can be constructed
explicitly and ESVM has a unified algorithm for both linear and
nonlinear mapping function [15]. However, the diagonal label
matrix D must be constructed in the above ESVM model. Besides,

D must be with the element of 1 or —1 in the above deduction,
which means that the ESVM model cannot be applied to either
multi-class classification or regression tasks directly.

3. Extreme Support Vector Regression

In this section, we extend ESVM from the classification task to
regression task. A novel robust model, Extreme Support Vector
Regression (ESVR), and a kernel ESVR are proposed.

3.1. Basic Extreme Support Vector Regression

Inspired by the ESVM, ESVR replaces the inequality constraints
of the standard €-SV regression with the equality constraint [18,4].
We add the L, norm constraints on both w and b, while Support
Vector Regression (SVR) and Least Squares-Support Vector Regres-
sion (LS-SVR) [20] have such constraints on w only. That is one of
the reasons that SVR and LS-SVR provide suboptimal solutions
compared with that of ESVR [9]. However, different from ESVM,
the diagonal target output matrix need not be constructed. The
model of ESVR is constructed as

. C. .o 1w
316t 5[5

(W‘b‘é)ekmﬂ‘"

s.t. D(W,A)w — be —y = ¢,
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where y is the output vector of the sample data matrix A. If w and b
have been obtained, the testing process is to calculate
¥ =w'®(W' x) — b to get the output of the sample.
The lagrangian formula for the model in Eq. (3) is
C 1|[w ’
Lwb..d) =5 1¢12, + 5 [ ]| - o Aw-be-y-o,

(4)

where 4 € R" is the lagrangian multiplier of the model, and 4 is also
known as support values according to support vector theory. Apply-
ing the KKT condition theory [2] to this problem, the solution of
ESVR model can be obtained by
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From the third expression of Eq. (5), the support value 4 is
proportional to the error & That is to say, almost all support values
are nonzero values in ESVR. Therefore, there is no traditional sup-
port vector concepts in ESVR, or all the data points are support
vectors.

We obtain the following equation by substituting the first three
expressions in the last expression of Eq. (5) as

|
(E i Emﬁg) i=y, (6)

where Eq = [®(W',A), —e] € R,

Whether the expression, %+E®Eg,, is reversible or not may
affect the solution of the above equation. We will discuss them
respectively.

In the case of n < m + 1,% + Eq,Eg, is reversible,

2
Ly

-1
J= (% + E¢Eg> y. (7)
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Substituting 4 in the first two equations of the KKT conditions, we
obtain the analytical solution of w and b as

w I -1
—

If n > m + 1, the above inverse operation of a n x n matrix will have
heavy computational cost. By using Sherman-Morrison-Woodbury
formula [7], we can obtain the following expression as

-1
i=C {1 - E(p(% +ElEo) Eg} y. 9)

Then we obtain the expression for w and b as

-1
m _El - (é + Eg,sq,> Ely. (10)

From the above discussion, the proposed ESVR model takes advanta-
ges of SVR, LS-SVR and ELM. First, ESVR utilizes random projection to
increase the dimensions of the original data samples as in ELM. High
dimensions may help the following regression task. The random pro-
jection also makes the ESVR not over rely on some dimensions of the
data, which makes ESVR more robust. Second, ESVR adds the output
layer bias, which gets a more flexible model. Third, ridge regression
scheme in ESVR provides a more robust solution than traditional
ELM. Besides, according to [9], structure risk minimization con-
straints are added on both w and b in ESVR, which makes that the
solutions of SVR and LS-SVR are just suboptimal solutions of ESVR.
Finally, the analytical solution of ESVR is to compute some matrix
multiplications, which leads to fast learning speed.

The architecture of ESVR is a typical structure of single hidden
layer feedforward regularization network with a biased output.
According to single hidden layer feedforward neural network the-
ory [10], the hidden layer parameters can be generated randomly.
Such randomness will be utilized to choose the nonlinear feature
mapping function parameters. Then the algorithm of ESVR can be
explicitly concluded as Algorithm 1.

Algorithm 1. Training Process of Extreme Support Vector Regres-
sion (ESVR)

Input: The training set {(x;,y;)X; € R",y; € R,i=1,...,n};
The feature mapping function g(x); the dimension m after
feature mapping; the regularization parameter C;

Output: The parameters w and b of the regression model;

1: Randomly generate a hidden layer parameter matrix
W e R™™D  and obtain the sample matrix
A=[X,...,X,], target vector y = [y;,...,y,]” from the
training set. The expression of ®(W’,A) can be calcu-
lated as

oW x)" ] [g(wii)-g(w;'x)

O(W,A) = : = ; (11

_(D(W’A,x,,)T g(w’lrxn) ,..g(w;"Tx,,)

2: Generate E,, by calculating [®(W',A), —e|, where e is a
n x 1 vector full of element 1;

by expression (8) or (10) with the regu-

3: Compute V[”

larization parameter C;

3.2. Kernel ESVR

We can easily extend ESVR to kernel ESVR. The kernel matrix for
ESVM can be defined by Mercer’s rule if the feature mapping func-

tion ®(W', x) is not given. We define a kernel matrix for ESVM sim-
ilar to other kernels as

T
QESVM = ECDE(I)

, LT (12)
QESVMi_j = CD(W 7X,‘)‘:D(W ,Xj) +1= K(X,‘,Xj) + ],

where K(x;,X;) is the user defined kernel function.
The decision function of kernel ESVR can be obtained by the fol-
lowing analytical equation as

; K(x,x;)+1]" ;
o0~ [0 3.~ 1JE (E+EEY ) y=| | (g 0ew) .
K(X,Xm)+1
(13)

If the kernel function K(u,v) is given, we need not to choose the
feature mapping function ®(W’ x), the hidden node number m
and hidden parameters W'. Basic ESVR is can also been considered
as a special form of kernel ESVR as K(x;,X;) = CD(W’,xi)T(D(W’,xj).

4. Experiments

In this section, the performances of ESVR are compared with
ELM, SVR and LS-SVR on some benchmark regression datasets.
Robustnesses of these methods are studied as well.

4.1. Experimental environments

All the simulations for ESVR, ELM, SVR and LS-SVR were carried
out in MATLAB R2010a environment running on a Xeon E7520,
1.87 GHZ CPU. The codes used for ELM, SVR and LS-SVR were from
[11,3,21] respectively.

In order to extensively verify the performance of ESVR, ELM,
SVR and LS-SVR, twelve datasets of different sizes and dimensions
were downloaded from UCI Machine Learning Repository [1] and
StatLib library [16]. These datasets can be divided into three cate-
gories according to different sizes and feature dimensions. Bask-
ball, Strike, Cloud, and Autoprice are of small sizes and low
dimensions. Pyrim, Housing, Bodyfat, and Cleveland are of small
sizes and medium dimensions. Balloon, Quake, Space-ga, and Aba-
lone are of large sizes and low dimensions.

In the experiments, the kernel function used was the RBF func-

tion G(a,y,X) = exp (—y||x - a\|f2). Three fold cross validation was

conducted to select parameters. The regularization factor C and
kernel parameter y of SVR, LS-SVR and kernel ESVR were obtained
from the log, space from —25 to 25. All the datasets were normal-
ized into [-1, 1] before the regression process.

4.2. Performances on benchmark datasets

Experiments between basic ESVR and ELM on the above twelve
different benchmarks were carried out. Nonlinear models with sig-

moidal additive feature map function ®(a, b,x) = m were

used. Ten rounds of experiments with the same parameters were
conducted to obtain an average performance evaluation in each
fold due to randomly selected parameters in the hidden layer.
Fig. 2 is the testing Root Mean Square Errors (RMSEs) of ESVR
and ELM with different number of hidden nodes on six of the
twelve real world datasets.

Fig. 2 shows that the testing RMSE of ESVR is lower than that of
ELM. The RMSE results of the experiments reveal that the general-
ization of ESVR is better than that of ELM. The output bias and reg-
ularization scheme in the ESVR model mainly contribute to this.
Moreover, we can observe that the performances of ELM vary
greatly with the number of hidden nodes. ESVR eases such
overfitting problem by exploring regularization. It can also be seen
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Fig. 2. Test RMSEs of basic ESVR and ELM.

that the standard deviations of ESVR are much less, which mainly
because that the regularization term added makes ESVR less sensi-
tive to the different W chosen randomly.

The second experiment was conducted to compare basic ESVR,
kernel ESVR (KESVR), SVR and LS-SVR. Table 1 shows the results of
those methods. Some interested items, including testing RMSE, train-
ing time, testing time and the proportion of support vectors in SVR,
were recorded as the evaluations of generalization, learning speed
and prediction speed respectively. The best testing accuracies and
times results for different datasets were emphasized in bold face.

It can be seen form Table 1 that the testing RMSEs of basic or
kernel ESVR are the best ones in most cases. These two methods
are just different in the different nonlinear kernel functions. These
results reveal that, ESVR has a higher accuracy than that of SVR and
LS-SVR. The experimental results demonstrate that the approxima-
tion method utilized in the ESVR model really works. Furthermore,
the training time of ESVR is much less than that of SVR and LS-SVR.
The advantage of basic ESVR algorithm about learning speed can be
demonstrated explicitly when the sizes of these datasets become
larger. The reason is that the solution of ESVR is an analytical
equation and the learning process is simply to solve a least square
problem. From Table 1, the testing time of SVR is less than that of
LS-SVR and kernel ESVR. This is because that the number of
support vectors in SVR is much less than the number of samples
used by least squares methods in LS-SVR and kernel ESVR.

The testing time of basic ESVR is also less because the number of
hidden nodes used is much less than the number of samples here.
The proportion of support vectors in SVR is recorded as the average
percentage that support vectors comprised in the training samples.
Because LS-SVR, kernel ESVR and ESVR are least squares based
methods, there is no traditional support vector concept, that is,
all the training samples are support vectors. Therefore the testing
time of LS-SVR is longer. As for ESVR, it does not matter as the
prediction is done on the original space rather than the dual
space as y = W ®(W',Xx) — b in testing, which involves only dot
productions in ®(W',x) = (g(w{x),... ,g(ng))T and w'O(W' x).
Therefore the testing time is acceptable.

The third experiment was designed to verify the stability of the
ESVR, kernel ESVR, SVR and LS-SVR. In the experiment, the perfor-
mances of these models with different parameters were compared
on the Housing dataset from UCI datasets.

The parameters (C,?y) of SVR and LS-SVR and kernel ESVR were
selected from —25 to 25 in the log, space where C is the regulari-
zation parameter and ) is the parameter used in kernel function.
The number of hidden nodes, m, in basic ESVR was selected from
50 to 2050 with the step 50. The parameter C of the nonlinear basic
ESVR was selected from —25 to 25 in the log, space.

Fig. 3 shows that the results of SVR, LS-SVR, kernel ESVR with
Gaussian kernel function and basic ESVR with given sigmoidal
additive nodes. We can see that kernel ESVR, SVR and LS-SVR

Table 1
Experimental results of SVR, LS-SVR, kernel ESVR and basic ESVR.
Algorithms SVR LS-SVR KESVR Basic ESVR
Testing  Training Testing % Testing  Training Testing Testing  Training Testing Testing  Training Testing
RMSE time (s) time (s) SVs RMSE time (s) time (s) RMSE time (s) time (s) RMSE time (s) time (s)
Baskball 0.2567 0.1029  0.0009 84  0.2568 0.0049 0.0017 0.2591 0.0007 0.0005 0.2478 0.0172 <0.0001
Cloud 0.1729 0.0774  0.0007 72 0.1810 0.0065 0.0028 0.1827 0.0014 0.0006 0.1458 0.0057 0.0010
Autoprice  0.1381 0.1328  0.0008 61  0.1359 0.0072 0.0040 0.1371 0.0021 0.0007 0.1585 0.0094 0.0016
Strike 0.1443 0.9707  0.0028 44  0.1472 0.0541 0.0098 0.1478 0.0274 0.0081 0.1395 0.0417 0.0130
Pyrim 0.2151 0.0336  0.0005 63  0.2159 0.0051 0.0027 0.2095 0.0015 0.0005 0.1963 0.0104 <0.0001
Bodyfat 0.0514 0.0485  0.0011 15  0.0502 0.0128 0.0055 0.0496 0.0037 0.0014 0.0490 0.0260 0.0063
Cleveland  0.4267 0.2690  0.0026 86  0.4333 0.0147 0.0062 0.4260 0.0052 0.0021 0.4164 0.0130 0.0005
Housing 0.1469 0.7729  0.0035 59  0.1458 0.0455 0.0102 0.1441 0.0162 0.0066 0.1458 0.0422 0.0063
Balloon 0.0242 7.8253  0.0025 2 0.0099 1.0798 0.0977 0.0056 0.4931 0.0971 0.0095 0.1224 0.0297
Quake 0.3438 205.7426  0.0983 83  0.3425 2.4292 0.1202 0.3427 0.5701 0.1058 0.3431 0.0141 0.0073
Space-ga 0.0654 92.1705  0.1039 37  0.0665 2.5293 0.2358 0.0651 1.3030 0.1782 0.0656 0.1573 0.0344
Abalone 0.1519 2504772  0.3357 63  0.1486 9.6423 0.1486 0.1493 4.8523 0.5162 0.1503 0.1630 0.0474
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algorithms are sensitive to their parameters as the performances of
these algorithms vary greatly with their parameters (C,y) from the
figure. ESVR is quite stable over their parameters (C, ). The reason
is probably that ESVR utilizes the randomly generated hidden
parameters. The combination of randomness and regularization
makes the ESVR algorithm much more stable from the view of
experimental results.

At last, experiments of robustness were conducted on Baskball
dataset. One-dimension or two-dimension gaussian noises with 0
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Fig. 3. Performances of SVR, LS-SVR and kernel ESVR with Gaussian kernels are
sensitive to parameters (C,y); performances of basic ESVR with sigmoidal additive
nodes are more stable to parameters (C, m).
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means were added into the first one dimension or the first two
dimensions of samples respectively. Experiments were conducted
with different variances (0.1 and 0.2) and different proportions of
noise (from 0.1 to 0.6). Other experimental settings were the same
as before.

Fig. 4 shows that the testing RMSEs of basic ESVR, kernel ESVR,
LS-SVR and SVR with different datasets. We can see that the perfor-
mances of basic ESVR are much more stable (with the least vari-
ance against the noise) with the best generalization from the
figure. This phenomenon suggests that the ESVR algorithm is more
robust. The reason for the phenomenon is that random projection
can ease over relying on some dimensions of the data.

5. Conclusions

This paper proposes a novel robust regression method with
extreme support vectors-ESVR by taking advantage of ELM and
SVR. Inspired by ESVM, ESVR is a novel approximation e-SV regres-
sion method based on regularized least squares and it is also a var-
iant of ELM algorithm from the point of view of computation.
Moreover, it is easily to incorporate kernel function to ESVR model.
The experimental results show that, ESVR has a better generaliza-
tion performance with much higher learning speed. In addition,
ESVR is more stable and robust.
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