Partial Least Squares Regression on Grassmannian
Manifold for Emotion Recognition

Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan, Xilin Chen
Key Lab of Intelligence Information Processing
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
{mengyi.liu, ruiping.wang, zhiwu.huang, shiguang.shan, xilin.chen}@vipl.ict.ac.cn

ABSTRACT

In this paper, we propose a method for video-based human
emotion recognition. For each video clip, all frames are rep-
resented as an image set, which can be modeled as a linear
subspace to be embedded in Grassmannian manifold. After
feature extraction, Class-specific One-to-Rest Partial Least
Squares (PLS) is learned on video and audio data respective-
ly to distinguish each class from the other confusing ones.
Finally, an optimal fusion of classifiers learned from both
modalities (video and audio) is conducted at decision lev-
el. Our method is evaluated on the Emotion Recognition
In The Wild Challenge (EmotiW 2013). The experimental
results on both validation set and blind test set are present-
ed for comparison. The final accuracy achieved on test set
outperforms the baseline by 26%.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition]: Applications—computer vi-
ston, signal processing; 1.4.m [IMAGE PROCESSING
AND COMPUTER VISION]: Miscellaneous

General Terms

Experimentation; Performance; Algorithms

Keywords

Emotion Recognition; Grassmannian Manifolds; Partial Least
Squares Regression; EmotiW 2013 Challenge

1. INTRODUCTION

In the recent years, automatic emotion recognition has
become a popular and challenging problem due to its broad
applications, such as Human-Computer Interaction (HCI),
multimedia analysis, surveillance, and so on. Early stage re-
search mostly focused on emotion analysis from single static
facial images [11]. The investigated approaches can be cate-
gorized into two classes: feature-based and template-based.
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However, As human emotions appear to be temporally dy-
namic processes, some recent research tend to take use of
the image sequences or video clips for improving the emo-
tion recognition performance [19, 20, 18, 9]. For instance,
Yang et al [18] extracted dynamic features from image se-
quences and adopted boosting to learn the classifier. Zhao
et al [20] encoded spatial-temporal information in each fa-
cial image sequences using LBP-TOP features. As demon-
strated in their experiments, various types of dynamic in-
formation (e.g. dynamical appearance-based and dynamical
geometric-based information) are crucial for modeling emo-
tion variations in the recognition tasks.

However, facial dynamics extraction from successive video
frames requires accurate alignment for eliminating the rigid
motion of pose and retaining the non-rigid motion of facial
muscles. It is quite challenge especially when dealing with
real-world data due to the large variations caused by uncon-
trolled environment. Inspired by some recent research on
image-set-based classification [8, 15, 16, 1], we attempt to
model all the video frames as an emotional image set (sup-
pose that each video clip represents a single emotion from a
single person). Thus the set of images can be modeled by a
linear subspace which characterizes the specific person’s e-
motion. For distance metric, the collection of subspaces are
treated as points on Grassmannian manifold, and point-to-
point distances are induced from the Grassmannian kernels
[6, 7].

In this paper, we design a video-based emotion recog-
nition method especially for real-world scenario. First we
perform automatic preprocessing to purify the aligned data
by filtering out non-face or misaligned-face images. Then
video-based feature extraction is conducted using subspace-
learning and Grassmannian kernels. After that, One-to-Rest
Partial Least Squares (PLS) is learned on video and audio
features to distinguish each class from the other confusing
ones. In the end, we conduct a multi-modality information
fusion at decision level to further improve the performance.
An overview of the proposed method is demonstrated in
Figure 1. In Section 2, we will detail the key steps of our
method.

2. THE PROPOSED METHOD

2.1 Data Preprocessing

Due to large variations caused by pose, illumination, ex-
pression, face detection and alignment algorithms can hard-
ly work well on real-world data. Image normalization ac-
cording to these unreliable results may lead to non-face or
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misaligned-face samples, which become noises in subspace
learning. To purify the “dirty” aligned data, we attempt
to construct face subspace defined by “Eigenfaces” [13], in
which the non-face image cannot reconstruct itself as well
as face image.

Suppose X = {x1,x2,...,x,} (z; belongs to RP) is the
training set consisting of n face images, we calculate the
PCA projection W by preserving relatively low energy of
the origin images. The basic idea is that face images do not
change radically when projected into the face space, while
the projection of non-face images appear quite different [13].
Thus we consider the mean reconstruction error:

MeanErry = — - ||x: — W Wa||? (1)
As non-face images are tend to have larger reconstruction
error (see Figure 2 and Figure 3), we can set threshold to

filter out these non-face samples.
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Figure 2: The distribution of mean reconstruction
error on training set in EmotiW 2013 Challenge.
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Figure 3: An example of 100 samples with largest
mean reconstruction error. Most are non-face im-
ages or misalignment results.

2.2 Image/Video Feature Design

2.2.1 Image Feature

As real-world data exhibit large variations, here we em-
ploy a kind of mid-level feature introduced in [10] for image
representation instead of the simple gray intensity feature
used in most image set classification methods [8, 15, 7, 14].
As shown in Figure 4, the feature extraction process includes
a convolution layer and a max-pooling layer. First we learn
a dictionary (bank of filters) using the dense sampled lo-
cal patches from training images, and calculate the response
value of each filters by convolution. Second, max-pooling is
performed over adjacent spacial blocks on each filter map,
to generate a robust representation invariant to image trans-
lation. For more details please refer to [10].
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Figure 4: The image feature extraction process.

2.2.2  Video (Image Set) Feature

Based on the single image features obtained above, we can
construct a linear subspace P; € RP*" via SVD over the ith
image set, where r is the dimensionality of the subspace.
Thus the whole data can be modeled as a collection of sub-
spaces, which are also the points on Grassmannian manifold
M (see Figure 5), denoted by P = {P,}/_,, where N is the
number of sets (points). The similarity between two points
on Grassmannian manifold can be measured by projection
kernels [6]:

[proj] _
ki o =

|2 P % (2)

Combining the projection kernel with a more complex
canonical correlation kernel is proved to be effective in [7].
For P; and P;, the canonical correlation kernel is defined as:

cc
ko = (3)

We express the linear combination of two Grassmannian
kernels kl[p fhd Iand kz[gc] using a tunable parameter a:

T
mamapespan(Pi)ma-rbq €span(Pj) ap bq

[com] __ 4 .[proj] [cc]
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_/

" Video Clip 1 | Video Clip 2
1

\
\ Similarity
’ -

]
m---

Figure 5: Image sets can be described by linear sub-
spaces and represented as points on Grassmannian
manifold.

According to the combined kernel Ko™ = {kl[cjo m]} €

RN*¥N the ith row contains similarities between the ith set
(point) and all sets (points) in data, which can be treat
as a feature vector of the ith set. For each set (point) in
training data or test data, we calculate its similarities to all
the training sets (points). Thus the training kernels K¢rqin €
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RNtrainXNtrain and test kernels Kiesy € RNtest*Ntrain are
constructed as the video/image set feature matrices.

2.3  One-to-Rest PLS Classifier

Partial Least Squares (PLS) algorithm can model the re-
lation between sets of observed variables by means of latent
variables [12]. Recent work [5, 14] have adapted it to recog-
nition tasks and obtained promising results. In our method,
PLS is applied in a One-to-Rest manner to especially deal
with several difficult and confusion classes (e.g. disgust, fear,
and sad).

Suppose there are ¢ categories of emotions, we design ¢
One-to-Rest PLS to predict each class simultaneously. For
a single classifier, given feature variables X and 0-1 value
labels Y, the PLS decomposes them into the form:

X=TP"+E

Y=UQ" +F (5)

where T" and U are matrices containing the extracted latent
vectors, P and @ represent loadings, E and I’ are residu-
als. Based on the nonlinear iterative partial least squares
(NIPALS) algorithm [17], PLS finds weight vectors w and v
such that

(6)
where ¢ and u are the column vectors of T' and U respec-
tively, cov(t, ) is the sample covariance. With the obtained
latent vectors, the regression coefficients between X and Y
is estimated by:

[cov(t,u)]* = MAL || =|v| =1 [cov(Xw, Yv))?

B=w(EP" W) 'ty = x"uar"xx"u)y"'t"y  (7)
which results in ¥ = XB. For each test sample, we can
obtain c¢ regression values from all the One-to-Rest classi-
fiers. The category corresponding to the maximum value is
decided to be the recognition result.

2.4 Video-Audio Fusion

We performed the One-to-Rest PLS on both video and au-
dio data, the regression result in two modalities are Fit?*4¢° ¢
RNtestX¢ and fytavdic ¢ RNtestX¢ We conduct a linear fu-
sion at decision level by introducing a weighted term A:

Fitfusion _ (1 _ )\)Fz-tvideo + )\Fitaudio (8)

3. EXPERIMENTS

3.1 EmotiW 2013 Challenge

The Emotion Recognition In The Wild Challenge (Emoti-
W 2013) [2] is to define a common platform for evaluation of
emotion recognition methods in real-world conditions. The
database in challenge is the AFEW [3], which has been col-
lected from movies showing close-to-real-world conditions
and divided into three sets for the challenge: training, vali-
dation and testing. The task is to classify a sample audio-
video clip into one of the seven emotion categories: Anger,
Disgust, Fear, Happiness, Neutral, Sadness and Surprise.
Participants are free to use either video or audio modality
or both, to report an overall results in the end. The labels
of the testing set are unknown. Participants can learn their



models only on training set, and optimize the parameter on
validation set.

3.2 Experimental Parameters

3.2.1 Basic Image Feature

We simply use the aligned face images provided by Emoti-
W 2013 organizers. After the data preprocessing described
in Section 2, the purified images are resized to 32x32 pixels.
According to the parameters in [10], for the first layer, we
sample 6-by-6 pixel patches with a stride of 1 pixel on the
resized images. Thus each image contains 27-by-27 patches.
We learn K = 100 filters using K-means among these patch-
es, then the image can be represented by a 27-by-27-by-K
dimension vector after convolution. For the second layer,
we apply max-pooling over 3-by-3 adjacent patches on each
filter map, in the end this yields 9-by-9-by-100 features. To
reduce the high dimension, we perform PCA to retain only
1500-dimension as the basic image feature.

3.2.2  The Fusion Weights of Grassmannian Kernels

To evaluate the combination of two Grassmannian kernels
kz[zfjmj] and kz[gc], we tune the parameter o and obtain dif-
ferent results as shown in Figure 6. The trends on training
and validation sets are inconsistent. The kggc] seems useless
on predicting training set, but useful on validation set. For
test set, we select the best parameter on validation set, i.e.
a=2""1n (4).

0.33

! -e-Train-Val
-e-Val-Train

Recognition Accuracy

26 . . .
0.26 5 2 0 2 4

The Value of Grassmannian Kernels Combination Weight (Alpha)

Figure 6: The recognition accuracy on training and
validation sets with different combination weights
of Grassmannian kernels.(“Train-Val” means using
Train set to learn model and Validation set to report
performance. “Val-Train” means the opposite.)

3.2.3  The Dimensions of One-to-Rest PLS

An important parameter in our method is the dimensions
of One-to-Rest PLS classifier. To optimize this parameter,
we perform cross-validation on the provided training and
validation sets. The experimental results are shown in Fig-
ure 7 and Figure 8.

As demonstrated in the figures, we can see the One-to-
Rest PLS classifier is very easy to overfit on training set.
We can find that when dimension is 10 on video and 5 on
audio, it can achieve consistently good performance on both
training and validation sets. The settings are also applied
on test sets.
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Figure 7: The recognition accuracy on video modal-

ity with different dimensions of PLS.
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Figure 8: The recognition accuracy on audio modal-
ity with different dimensions of PLS.

3.2.4 Video-Audio Fusion Weights

At decision level, we conduct video-audio fusion to further
improve the recognition performance. To decide the fusion
weights, we tune the A in (8) and obtain the following results
on training and validation sets respectively.

As the inconsistent trend shown in Figure 9, we choose
the best parameter on validation set, i.e. A = 0.25.

3.3 Results Comparisons

We demonstrate all of our results on validation and test
sets (note that the test results are evaluation feedbacks from
EmotiW 2013 organizers) in Table 1. For video only part,
we compare our method with graph embedding based Grass-
mannian Discriminant Analysis proposed in [7]. For audio-
video fusion, we conduct both feature-level fusion and decision-
level fusion. In the last column, We also show the improve-
ment by using purified data. The final accuracy achieved
by our method outperform the baseline [2] (which adopted
LBP-TOP features for video and kernel SVM for classifica-
tion) significantly on both validation and test sets.

The confusion matrix of final test results are shown in
Table 2. We can see that “Happy” and “Angry” are easy to
be distinguished from other expressions, but it is still hard
to do well on some difficult and confusion emotion classes
such as “Disgust” and “Sad”.



Table 1: The comparison results on both validation and test sets.

Audio + Video
Audio only Video only
Original data Purified data
Performance Decision Decision
: . Grassmannian ~ ; - -
Comparison One-to-Rest Grassmannian Koot Feature-level fusion level fusion level fusion
Discriminant
PLS Analysis One-to-Rest Multi-class One-to-Rest One-to-Rest One-to-Rest
PLS LR PLS PLS PLS
Val 24.49 % 30.81% 32.07% 22.48% 24.24% 34.34% 35.85%
Ours
Test* - 24.04% - - 26.28% 33.01% 34.61%
Val 19.95% 27.27% 22.22%
Baseline
Test 22.44% 22.75% 27.56%

Table 2: The confusion matrix of final test results.

Angry Disgust Fear Happy Neutral Sad Surprise
Angry - 0 1.85 12.96 7.4 0 12.96
Disgust| 38.77 6.12 0 18.36 6.12 10.2 20.4
Fear | 21.21 0 18.18 9.09 21.21 9.09 21.21
Happy 12 0 2 - 12 0 10

Neutral | 25 4.16 0 25 39.58 2.08 4.16
Sad 13.95 0 4.65 41.86 18.6 9.3 11.62
Surprise. 25.71 0 5.71 11.42 20 1142 25.71
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Figure 9: The overall recognition accuracy with dif-
ferent video-audio fusion weights.

4. CONCLUSIONS

In this paper, we propose a method for video-based human
emotion recognition in real-world. For each video clip, all
frames are treated as an integrated image set, which can be
modeled as a linear subspace to be embedded in Grassman-
nian manifold. In classification, One-to-Rest PLS is applied
for both video and audio data, and a fusion of the two modal-
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ity is conducted at decision level. The method is evaluated
on EmotiW 2013 and shows promising result on unseen test
data. In the future, we will try to deal with the few dif-
ficult categories and design more effective modality fusion
strategy to further improve the recognition performance.
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