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Abstract. Illumination variation is one of intractable yet crucial prob-
lems in face recognition and many lighting normalization approaches
have been proposed in the past decades. Nevertheless, most of them pre-
process all the face images in the same way thus without considering the
specific lighting in each face image. In this paper, we propose a lighting
aware preprocessing (LAP) method, which performs adaptive preprocess-
ing for each testing image according to its lighting attribute. Specifically,
the lighting attribute of a testing face image is first estimated by using
spherical harmonic model. Then, a von Mises-Fisher (vMF) distribution
learnt from a training set is exploited to model the probability that the
estimated lighting belongs to normal lighting. Based on this probability,
adaptive preprocessing is performed to normalize the lighting variation in
the input image. Extensive experiments on Extended YaleB and Multi-
PIE face databases show the effectiveness of our proposed method.

1 Introduction

Face recognition has attracted much attention in the past decades for its wide
potential applications in commerce and law enforcement [1]. The challenges that
a face recognition system has to face include variations in lighting, head pose,
facial expression, accessory and so on. Among these factors, varying lighting
conditions such as shadows, underexposure and overexposure in face imaging
are intractable yet crucial problems that a practical face recognition system has
to deal with. In the last decades, many approaches have been proposed to han-
dle illumination variation problem with the goal of illumination normalization,
illumination-insensitive feature extraction or illumination variation modeling.
Among these approaches, many are based on image processing technique for the
reason of simplicity and efficiency. In this paper, we refer these image processing
based approaches as illumination preprocessing, and briefly review them in the
following.

Histogram equalization (HE) [2] is one of the simplest illumination prepro-
cessing approaches for face images, which can enhance the global contrast of
one image. Logarithmic transformation (LT) [3], as a nonlinear transformation,
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tends to squeeze together the larger intensity values and stretch out the smaller
ones in a face image. Jobson et al. [4] extended Retinex theory [5] to a single-
scale Retinex (SSR) approach which could be used to enhance face images in
improving local contrast and lightness. Based on the gamma correction tech-
nique that is widely used in Computer Graphics (CG), Shan et al. [6] proposed
gamma intensity correction (GIC) in order to correct the overall brightness of a
face image in accordance with a pre-defined face image with canonical lighting.
Through analyzing the relationship between quotient image (QI) [7] algorithm
and Retinex theory based on the reflectance-illumination model, Wang et al.
[8] proposed self-quotient image (SQI) to handle the varying lighting conditions
in face recognition without using a bootstrap set. Nishiyama and Yamaguchi
[9] extended SQI as classified appearance-based quotient image (CAQI) in or-
der to handle face regions with different albedo separately. Xie and Lam [10]
proposed local normalization (LN) to reduce or remove the effect of uneven
lighting conditions in order to get the corresponding face images under normal
lighting. Considering that illumination variation mainly lies in the low-frequency
band, Chen et al. [11] discarded an appropriate proportion of DCT coefficients
in zigzag pattern in order to minimize the variation of face images from the
same individual under different lighting conditions and then inverse DCT trans-
form was performed to get the final illumination normalized images. Based on
the reflectance-illumination imaging model, TV-L1 [12] model was introduced
and analyzed in logarithm domain (LTV) by Chen et al. [13] for the purpose
of decomposing a face image into large-scale and small-scale components, which
correspond to illumination variation and intrinsic facial features respectively.
And then only the small-scale features were used for face recognition. Xie et al.
[14] reconstructed the illumination normalized face image by combining both the
normalized large-scale component and smoothed small-scale component (RLS).
Recently, face recognition using multi-band features are studied by Di et al. [15].
Tan and Triggs [16] presented a simple and efficient image preprocessing (PP)
chain, which incorporated a series of steps such as gamma correction, Difference
of Gaussian (DoG), masking and contrast equalization in order to extract illu-
mination insensitive features for face recognition. However, most of the above
approaches tend to perform illumination preprocessing equally on all the face
images regardless of the particular lighting of each face image. This implies that
a face image with canonical lighting will be processed like a face image with side
lighting using completely the same parameter settings.

Intuitively, the above pattern that most of the existing lighting normaliza-
tion approaches used to handle different lighting conditions is not optimal, since
any preprocessing might bring negative effect if the input image is captured un-
der normal lighting conditions. To reveal this possibility empirically, nine of the
above-mentioned illumination preprocessing approaches, i.e., HE [2], LT [3], SSR
[4], GIC [6], SQI [8], LN [10], DCT [11], LTV [13] and PP [16], are evaluated
on Extended YaleB face database [17] in a traditional lighting unaware pattern.
And Fisherfaces [18] is exploited as the recognition method following different
illumination preprocessing approaches in our evaluation. The measurement of



310 H. Han et al.

the evaluation is the percentage of correcting originally-wrong matches (denoted
as ”positive”) and reversing originally-correct matches (denoted as ”negative”).
The results are shown in Fig. 1, from which it is clear that most of the methods
do bring some negative effects while improving the face recognition performance.
Some of them may even completely counteract the positive effect, which thus
limit the effectiveness of traditional lighting preprocessing approaches in im-
proving variable lighting face recognition performance. Please note that, similar
empirical observation was also reported in [19], which found that some of the pre-
processing methods might result in lower recognition rates if applied to images
with normal lighting.

Mathematically, most of the existing lighting normalization approaches try
to have a universal method to deal with various cases. However, an image is a
mapping of an object under certain lighting condition. To understand all these
factors from a single image is an ill-posed problem. This is why most existing
approaches reversed originally-correct matches in performing lighting normaliza-
tion. In fact, it makes more sense to partition a problem as several sub-problems
in handling an ill-posed problem.
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Fig. 1. The positive and negative effects of various illumination preprocessing methods
performed in a lighting unaware way. We claim a ”negative” if a face image is correctly
recognized before the given preprocessing but incorrectly recognized after the prepro-
cessing. On the contrary, a ”positive” is reported if a face image originally incorrectly
recognized can be correctly recognized after the specific preprocessing.

Based on the mathematical analysis above, we come to the idea that light-
ing normalization should be performed adaptively, and thus propose a lighting
aware preprocessing (LAP) method for illumination-robust face recognition. Dif-
ferent from CAQI, in LAP, face images with different lighting conditions will be
normalized in an adaptive preprocessing approach, i.e. face images with normal
lighting will undergo minor or no illumination normalization, while face images
with side lighting or abnormal exposure will be normalized by eliminating more
large-scale components corresponding to lighting variations.

The remainder of this paper is structured as follows: Section 2 details the
algorithm of the LAP and then extensive experiments are performed to verify
the proposed approach in Sect. 3. Finally, we conclude this work in Sect. 4.
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Fig. 2. Illustration for the framework of lighting aware preprocessing

2 Lighting Aware Preprocessing

In this section, we describe the details of the proposed LAP method. The algo-
rithm overview of our LAP is shown in Fig. 2. Firstly, the lighting attribution
of a testing face image is estimated by using spherical harmonic model. The es-
timated lighting is then analyzed by modeling the probability that it belongs to
normal lighting. Finally, adaptive preprocessing is proposed to perform lighting
normalization for the images with different lighting conditions. Details of each
step are described below.

2.1 Lighting Attribute Estimation by Using Spherical Harmonic
Model

As above mentioned, face images should be adaptively preprocessed according to
their lighting conditions. Therefore, the lighting in each face image should be es-
timated. With different constraints introduced, many approaches have been pro-
posed to recover the lighting from a single input face image, such as shape from
shading (SFS) [20], 3D subspaces [21], 5D subspace [22], 9D linear subspace[23],
illumination cone [17,24] and so on. In our LAP approach, lighting attribute is
estimated by using spherical harmonic model, which has been used to estimate
the harmonic basis face images that span a linear subspace to approximate a
wide variety of illumination variations [23,25,26,27,28,29].

By simplifying the face imaging procedure as a convex Lambertian object
under distant isotropic illumination, the image intensity is proportional to the
radiance reflected by the face surface and can be approximated by

I(x, y) ≈ λ(x, y)E(α(x, y), β(x, y)) (1)
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where (x, y) ranges over the whole face surface, λ(x, y) is the albedo at point
(x, y), (α, β) is the normal at point (x, y) and E(α, β) is the total irradiance that
arrives at point (x, y), which is a function of the surface normal (α, β) [30]

E(α, β) =
∫ 2π

ϕi=0

∫ π/2

θi=0

Li((x, y), ϕi, θi) cos θi sin θidθidϕi (2)

where θi and ϕi are respectively the elevation and azimuth angles of incident
light. Under the distant illumination assumption, E(α, β) is independent of sur-
face position (x, y) [25]

E(α, β) =
∫ 2π

ϕi=0

∫ π/2

θi=0

Li(ϕi, θi) cos θi sin θidθidϕi (3)

where Li(ϕi, θi) is the radiance of the incident light with direction (ϕi, θi). Hence,
lighting estimation is converted to recovering the coefficients Li(ϕi, θi) given an
input face image I.

As is shown independently by Basri and Jacobs [23] as well as Ramamoorthi
and Hanrahan [25], E(α, β) can be well approximated by a combination of the
first nine spherical harmonics

E(α, β) =
2∑

l=0

l∑
m=−l

(
4π

2l + 1
)1/2AlLl,mYl,m(α, β) (4)

where Al is the spherical harmonic coefficient for transfer function, Ll,m is the
coefficient of incident lighting and Yl,m forms the orthonormal spherical harmonic
basis. It is more convenient to parameterize Yl,m in Cartesian coordinate system
as below [23]

Y0,0 =
√

1
4π Y1,−1 =

√
3
4π y

Y1,0 =
√

3
4π z Y1,1 =

√
3
4π x

Y2,−2 =
√

15
4π xy Y2,−1 =

√
15
4π yz

Y2,0 =
√

5
16π (3z2 − 1) Y2,1 =

√
15
4π zx

Y2,2 =
√

5
16π (x2 − y2)

(5)

where (x, y, z) is the representation for surface normal (α, β) in Cartesian coor-
dinate system. Combining (1) with (4), we will get

I(x, y) ≈
2∑

l=0

l∑
m=−l

( 4π
2l+1 )1/2λ(x, y)AlLl,mYl,m(α(x, y), β(x, y))

=
2∑

l=0

l∑
m=−l

Ll,mbl,m(x, y)
(6)

where bl,m(x, y) is the harmonic image of a face

bl,m(x, y) = (
4π

2l + 1
)1/2λ(x, y)AlYl,m(α(x, y), β(x, y)) (7)
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Fig. 3. The construction of a lighting direction vector

In order to estimate the 9 illumination coefficients Ll,m, one needs to know the
albedo map λ(x, y) and normal map (α(x, y), β(x, y)) of the given face. How-
ever, in practice, they are usually unavailable for a single input face image.
Fortunately, as shown in [27], with a quasi-constant albedo map and a warped
generic 3D facial normal map as the approximations for the real ones, the 9 il-
lumination coefficients Ll,m can be well estimated by solving the following least
squares problem

L̂ = arg min
L

‖I − BL‖L2 (8)

where image I is vectorized as a P -dimensional column vector, B is a P × 9
matrix with bl,m as its columns.

In our implementation, given an input face image, its two eyes are first local-
ized and used to roughly align a generic 3D facial normal map. Then, spherical
harmonic images, i.e. B, of this face are computed based on (7). And finally the
9 coefficients are estimated by solving (8).

According to the spherical harmonics theory, among the 9 illumination coef-
ficients, L0,0 is the DC component reflecting the average energy of the incident
lighting, while the three first-order coefficients, L1,1, L1,−1, L1,0, as illustrated in
Fig. 3, reflect the intensity of incident lights in X, Y, Z directions respectively.
Therefore, they are utilized in our method to form the lighting direction vector
d

′
= [L1,1, L1,−1, L1,0]T . Since we care only the relative quantity of these coeffi-

cients, we further normalize it by dividing its module and thus get a unit vector
in L2 norm d = d

′
/‖d′‖ = [l1,1, l1,−1, l1,0]T , which is then used to analyze the

lighting condition of the input image in the following.

2.2 Lighting Analysis with vMF Model

With the above estimated lighting attribute, what we need to do next is deter-
mining which kind of lighting it belongs to. However, it is difficult to make a
quantitative definition of lighting category, as lighting condition is a subjective
concept. To overcome the uncertainty of imaging procedure and the subjective-
ness in lighting condition definition, we apply a statistical model to determine
the probability that the estimated lighting belongs to normal lighting. The sta-
tistical model, which combines the principle of physics, geometrical model and
the robustness of statistics, thus provides a relative definition of different lighting
conditions instead of an absolute one.
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Fig. 4. The distribution of normal lighting is analogous to a Gaussian distribution on
a sphere surface

In most face recognition testing protocols [17,31], so-called normal lighting
usually means frontal distant lighting. Therefore, the subset with normal light-
ing in the testing protocol of each face database is utilized to learn a statistical
model for normal lighting. In practice, normal lighting should distribute analo-
gously to a Gaussian distribution on a unit sphere as illustrated in Fig. 4 with
d0 = [0, 0, 1]T being the expectation. Thus, normal lighting can be modeled as
a von Mises-Fisher (vMF) distribution [32] which is widely used in directional
statistics.

Specifically, a 3-dimensional unit random vector x(i.e., x ∈ R
3 and ‖x‖ = 1)

is of 3-variate von Mises-Fisher distribution if its probability density function is
with the form

p(x|μ, κ) = c(κ) exp(κμT x) (9)

where μ is the mean direction with ‖x‖ = 1, κ(κ ≥ 0) is the concentration
parameter describing how strongly the unit random vectors sampled from the
distribution are concentrated toward the mean direction, and normalization con-
stant c(κ) is defined as

c(κ) =
κ

4π sinh κ
=

κ

2π(eκ − e−κ)
(10)

Given the vMF model, modeling normal lighting is then to estimate the pa-
rameters of the vMF model. In this study, maximum likelihood estimation is
adopted to estimate μ and κ from a learning dataset. Formally, given a training
set containing N face images captured under ”normal” lighting conditions, we
estimate the lighting direction vectors by the method in Section 2.1 for all the
training images and obtain

D = {di ∈ R
3, 1 ≤ i ≤ N} (11)

By safely assuming di to be independent with each other, we have the following
likelihood

p(D|μ, κ) =
N∏

i=1

p(di|μ, κ) (12)
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And then the log-likelihood will be

ln p(D|μ, κ) = N ln c(κ) + κμT t (13)

where t =
N∑

i=1

di. In order to get the maximum likelihood estimates for μ and κ,

Lagrange multipliers is used to maximize the log-likelihood objective function

Λ(μ, κ, di, λ) = N ln c(κ) + κμT t + λ(1 − μT μ) (14)

subject to the constraint μT μ = 1(‖μ‖ = 1). Let the derivative dΛ = 0, then we
get the following system of equations

∂Λ
∂μ = κt − 2λμ = 0
∂Λ
∂κ = Nc

′
(κ)

c(κ) + μT t = 0
∂Λ
∂λ = 1 − μT μ = 0

(15)

From (15), it is not difficult to get an estimate for μ

μ̂ =
t

‖t‖ (16)

In directional statistics, the concentration parameter κ is usually estimated in an
approximation manner [32,33] and for a 3-variate von Mises-Fisher distribution,
the following approximation will be sufficient

κ̂ =
3t − t

3

1 − t
2 (17)

where t = ‖t‖/N
After μ and κ are estimated, the statistical model for describing normal light-

ing is constructed and then the probability that the estimated lighting d of a
testing face image belongs to normal lighting can be calculated based on (9)

p(d|μ̂, κ̂) = c(κ̂) exp(κ̂μ̂T x) (18)

In this paper, the subset#1 from Extended YaleB face database is used as the
training set. The face images in subset#1 are captured with the angle between
the light source direction and the camera axis within 12◦. Details about the
subset division for Extended YaleB can be found in [17].

2.3 Adaptive Lighting Preprocessing

As we have mentioned before, once the lighting condition of a testing face image
has been grouped in a relative manner, facial images will be handled accordingly.
For this purpose, we further propose an adaptive method to perform illumination
normalization for each testing face image. By varying the truncation scale, many
existing approaches, e.g. the Gaussian smoothing filter used in [4,8], the DCT
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Fig. 5. The results of traditional LTV on three face images of one individual

reported in [11] and the TV-L1 model [12] utilized in LTV [13], can reach a
better balance between eliminating extrinsic lighting variation and preserving
intrinsic facial features. Without loss of generality, here TV-L1 model is used to
implement adaptive preprocessing based on the estimated probability that the
lighting in a testing face image belongs to normal lighting.

TV-L1 model aims at decomposing a face image into large-scale component u
which corresponds to illumination variation and small-scale component v which
corresponds to intrinsic facial feature and the large-scale component in a face
image is estimated by solving the following variational problem

μ̂ = arg min
u

∫
|∇u| + λ‖I − u‖L1 (19)

where
∫ |∇u| is the total variation of u and λ is a scalar constant controlling the

scale truncation. With u solved, the small-scale component v can be calculated
as v = I − u, which can then be used for face recognition across varying lighting
conditions. Evidently, in TV-L1 model, the scale-truncation constant λ actually
balances the illumination removal by u and feature preserving in v. However, in
LTV, it is empirically set and kept the same for all face images. This might be
questionable, since different lighting attributes imply illumination component of
different scales. Figure 5 shows some examples of LTV with fixed λ for images of
the same person but with different lighting attributes. It is clear that the results
are not desirable. Different from LTV, in our adaptive lighting preprocessing,
TV-L1 model are applied in an adaptive pattern based on the above estimated
probability rather than in a fixed pattern.

According to the analysis for parameter λ in [12], a larger truncation scale
is more desirable in order to avoid discarding too much intrinsic facial features
for face images with normal lighting and correspondingly a smaller λ should
be used for TV-L1 model. While the effect introduced by abnormal lighting,
such as the artificial edges caused by side lighting, mainly lies in high frequency
band; therefore a small truncation scale is suitable and correspondingly a larger
λ should be taken.

According to the above analysis, the parameter λ in TV-L1 model can be
approximately determined based on the probability that the lighting in a face
image belongs to normal lighting
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λ = (1 − p(d|μ̂, κ̂))β (20)

where p(d|μ̂, κ̂) is the above estimated probability that the lighting in a testing
face image belongs to normal lighting, β is the range for parameter λ. In TV-L1
model, parameter λ can be set as any positive real number, but in practice, for
face image with the size of 64× 80, λ in the range of [0, 1.2] will be sufficient for
handling most of the lighting variations. A linear relationship between p and λ
seems simple but reveals to be effective in our experiments. To be note that in
the theory of TV-L1, features of all scales should be keep in v when λ = 0, i.e.
vλ=0 = I; however, due to the limitation in computation, v cannot be calculated
when λ = 0. Therefore, we force vλ=0 = I in our implementation. When TV-L1
model is substituted by other methods, e.g. Gaussian smoothing filter or DCT,
the parameters can also be determined like in (20). All the gallery images are
also preprocessed in the same way as each testing face image when performing
face recognition.

3 Experimental Results

3.1 Databases and Settings for Experiments

Extended YaleB [17], PIE [34] and Multi-PIE [31] are three representative face
databases in the area, however, many illumination preprocessing approaches,
including the proposed LAP, have gotten 100% recognition performance. There-
fore, two challenging face databases of the three: Extended YaleB [17] and Multi-
PIE [34], are exploited in our experiments to compare our proposed approach
with other illumination preprocessing approaches in face recognition across vary-
ing illumination.

Extended YaleB face database includes the original YaleB face database with
10 individuals under 64 different illumination conditions and the extended part
with 28 individuals that are also captured under 64 different illumination con-
ditions. Totally 2,432 face images of 38 individuals under 64 illumination condi-
tions in frontal view are used for experiments. All the face images are divided
into five subsets according to [17], in which subset#1 is used as the training set
for both lighting estimation and face recognition algorithm. The varying lighting
in Extended YaleB is harsh for illumination-robust recognition as the lighting
directions vary from left 130◦ degrees to right 130◦.

Multi-PIE is a recently published face database, which contains as many as
755,370 images from 337 subjects, imaged under 15 view points and 19 illumi-
nation conditions in up to four recording sessions [31]. According to the testing
protocol in [31], the face images of 14 randomly selected subjects are used for
training and images of all the other 323 subjects are used for testing. Among
all the testing images, only one face image of each individual recorded without
flashes is used as gallery. The huge database size and time span of Multi-PIE
have determined the challenge for variable lighting face recognition. Moreover,
the limitation of 14 subjects for training further increase the difficulty in recog-
nition across varying lighting conditions.
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ORI HE LT SSR GIC SQI LN DCT LTV PP LAP

Fig. 6. Illumination preprocessing on testing face images using different approaches.
Images in the first column are the original input face images under different lighting
conditions. Images in the rest columns are the results of different illumination prepro-
cessing approaches.

Before performing any illumination preprocessing, all the face images are ge-
ometrically normalized to the size of 64× 80 with the distance between two eyes
35 pixels. The proposed LAP is a kind of illumination normalization approach
instead of illumination-insensitive feature extraction or illumination variation
modeling approach, therefore, the state of the art as well as several represen-
tative illumination normalization approaches are taken for comparison, i.e., HE
[2], LT [3], SSR [4], GIC [6], SQI [8], LN [10], DCT [11], LTV [13] and PP [16].
For fair comparison with other methods, we exploited the parameters settings
recommended in the original literature proposing the corresponding methods for
comparison. As what we concern is the comparison between different lighting
preprocessing approaches, Fisherfaces [18] is fixed as the recognition algorithm
for all the illumination preprocessing approaches we compared.

Face recognition is performed on the illumination normalized face images pre-
processed by different approaches and recognition performance is reported to
verify the effectiveness of different lighting preprocessing approaches in improv-
ing the robustness for face recognition across varying lighting conditions. For
the convenience of our description, we denote ”ORI” as the original face images
without any lighting preprocessing.

3.2 Comparisons

The visualization of some illumination normalized face image of different lighting
preprocessing approaches is illustrated in Fig. 6. In the figure, the face images
in the first column are the original input images and those in the rest columns
are the results of different lighting preprocessing approaches labeled above the
column. As can be seen from the figure, the traditional approaches performed
in a lighting unaware pattern tend to produce satisfying results for some kinds
of lighting but not for others. On the contrary, for our LAP, testing images
with normal lighting are kept as close to the original as possible and images
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Table 1. Face recognition performance of Fisherfaces on the preprocessed face images
by different illumination preprocessing approaches from Extended YaleB and Multi-
PIE databases

Approach
Recognition Rate (%)

Extended YaleB Multi-PIE

ORI 54.15 52.77
HE 54.75 62.53
LT 62.79 62.73
SSR 55.45 63.79
GIC 67.73 64.27
SQI 72.58 65.71
LN 67.36 60.74

LDCT 74.10 61.82
LTV 78.02 60.81
PP 71.56 61.18

LAP 86.89 71.15

with abnormal exposure are processed to discard most lighting variations while
preserving more discriminative facial features compared with LTV.

Face recognition experiments are then performed on the two face databases
following different illumination preprocessing approaches and the recognition
rates are reported in Table 1. As shown in the table, our LAP achieves im-
pressively better face recognition performance than all the other methods on
both Extended YaleB and Multi-PIE face databases. On Extended YaleB, com-
pared with LTV, LAP gets more than 8% higher face recognition rate. Even on
the much more challenging Multi-PIE face database, LAP gets the highest face
recognition rate 71.15%. Experimental results on Extended YaleB and Multi-PIE
face databases suggest that our proposed LAP framework is more effective and
robust in improving face recognition performance across varying illumination
compared with the traditional lighting unaware approaches.

4 Conclusions

Traditional illumination preprocessing methods deal with face images in a light-
ing unaware way, so they might suffer from negative effect, for instance, failing to
recognize an image which can correctly recognized before preprocessing. This pa-
per analyzed the problem and proposes a lighting aware preprocessing method.
In the method, face images with different lighting conditions are processed ac-
cording to the lighting attribute in the images. Experiments illustrate impressive
performance improvement compared with the state of the art and representative
illumination preprocessing methods. To be note that although TV-L1 is utilized
in the proposed LAP framework, other methods such as low-pass filtering and
DCT can also be embedded into the proposed LAP framework.

The preliminary studies in this paper show that we still have large space for
improvement for illumination-invariant face recognition. Preprocessing automati-
cally adapted to the lighting attribute of the imagemight be a promisingpossibility.
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Currently, spherical harmonic model is used to estimate the lighting in a test-
ing face image. Simple and efficient approaches without using 3D face informa-
tion, e.g. the method proposed by S. Choi, et al. [35], might be used for lighting
estimation. Moreover, the relationship between the normal lighting probability
and adaptive parameter selection will also be exploited in future work.
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