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Abstract— Facial landmark detection plays an important role
in computer vision. It is a challenging problem due to various
poses, exaggerated expressions and partial occlusions. In this
work, we propose a Fully End-to-End Cascaded Convolutional
Neural Network (FEC-CNN) for more promising facial land-
mark detection. Specifically, FEC-CNN includes several sub-
CNNs, which progressively refine the shape prediction via finer
and finer modeling, and the overall network is optimized fully
end-to-end. Experiments on three challenging datasets, IBUG,
300W competition and AFLW, demonstrate that the proposed
method is robust to large poses, exaggerated expressions and
partial occlusions. The proposed FEC-CNN significantly im-
proves the accuracy of landmark prediction.

I. INTRODUCTION

Facial landmark detection is a vital topic in computer

vision, which is widely used in face recognition, face an-

imation and facial expression recognition. In the past few

decades, many researchers devote to tackle this problem and

impressive progress has been achieved.

Among early works, the Active Shape Model (ASM)

[6][8] and the Active Appearance Model (AAM) [5][19] are

representative ones, which both use Principal Component

Analysis (PCA) to parameterize shape and appearance to

tackle facial landmark detection problem. They are however

hard to model complex variations and thus perform badly on

wild testing data, partially because PCA is a linear model

which can hardly characterize those nonlinear variations.

Later, regression based methods, especially cascaded re-

gression methods achieve great success on facial landmark

detection [7][4][26][3][20][28]. Cascaded Pose Regression

(CPR) [7] firstly proposes cascaded regression framework for

general object pose estimation, which designs shape-indexed

control point feature and random fern regressors to predict

shapes of faces, mice and fish. Another representative ap-

proach in cascaded regression method is Supervised Descent

Method (SDM) [26], which cascades several linear regressors

to predict the shape stage by stage by using shape-indexed

SIFT feature [18]. SDM achieves quite promising results on

LFPW [2] and RU-FACS [1] datasets for real-time facial

landmark detection and tracking. Inspired by the promising

performance of SDM, the regression based methods draw

more and more attentions. In [3], Burgos-Artizzu et al.

further propose Robust Cascaded Pose Regression (RCPR) to

explicitly handle occlusion problems, which simultaneously

predicts the locations and occlusion conditions of each land-

mark. Moreover, the interpolated shape-indexed feature and

smart restart strategy are exploited to improve the robustness

against large pose variations and tackle shape initialization

problem respectively. Instead of directly using random forest

or random fern for face shape regression like CPR and

RCPR, Ren et al. [20] propose to learn local binary feature

based on random forest and predict the landmarks by linear

regression, achieving both high accuracy and efficiency. The

aforementioned methods all need an initial face shape to start

with. So, the optimization of landmark prediction might fail

into local minimum under large pose variations when given

a poor initialization. To further improve the robustness to

large pose variations, Zhu et al. [28] propose Coarse-to-

Fine Shape Searching (CFSS). Rather than give an initial

shape, CFSS uses a cascaded shape searching method to

relieve local optima problem due to poor shape initialization.

Although cascaded methods achieve promising performance

on both controlled and wild settings, most of them are linear

or shallow models which might be insufficient for modeling

the complex nonlinearity from the face appearance to shape,

especially under challenging wild scenario.

In consideration of the strong capacity of deep model in

nonlinear modeling, it is naturally applied to facial landmark

detection and achieved further huge success [24][27][25].

Sun et al. [24] propose to cascade several deep convolutional

neural networks (DCNN) to predict the shape stage by stage,

in which the feature is optimized by using the DCNN rather

than hand-crafting. Furthermore, Zhang et al. [27] propose a

Coarse-to-Fine Auto-Encoder Network (CFAN) which cas-

cades several stacked auto-encoder in a coarse-to-fine way

to refine the shape stage by stage. CFAN achieves promising

performance, however CFAN employs hand-crafted SIFT

feature as input. Except for the above 2D methods, a few

3D methods combining with deep cascaded model also

make promising progress for unconstrained facial landmark

detection [12][13][30]. In [13], Jourabloo et al. design a

cascaded CNN regression framework integrating a dense 3D

Morphable Model that predicts 3D shape parameters and

projects 3D landmark coordinates to 2D.

In all above-mentioned cascaded methods, the models of

all stages are optimized one by one, which means each stage

heavily depends on the previous one. Consequently, the learnt

model might be suboptimal, especially when the results from

the previous stage are bad. To tackle this problem, Mnemonic
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Fig. 1. Overview of the fully end-to-end cascaded convolutional neural network (FEC-CNN) for facial landmark detection. FEC-CNN contains several
sub-CNNs each of which takes patches around landmarks predicted by previous stage as input. S0 denotes the initial shape, ΔSt , t = 1, · · · ,T denotes the
tth shape residual predicted by the tth sub-CNN and St , t = 1, · · · ,T denotes the tth refined shape which is the sum of St−1 and ΔSt . The whole network is
learnt fully end-to-end by propagating down the gradient back through every arrow shown in the figure.

Descent Method (MDM) [25] proposes a recurrent network

which enables end-to-end training of a cascaded structure.

Similar to DCNN [24], at each stage, MDM takes patches

around landmarks predicted by previous stage as input. But

differently, with the help of the recurrent structure, each stage

of MDM also takes the hidden-layer features of previous

stage as input. Therefore, the gradient can be propagated

from the last stage to the first one through the connection

between the hidden-layers of adjacent stages. That is, MDM

allows end-to-end training of the whole network rather than

train all the stages separately.

However, MDM is not fully end-to-end as the last layer

of each stage is not included in the end-to-end learning, but

only the hidden layers are involved, although the gradient is

indeed back propagated through all stages. In other words,

MDM only considers the gradient from a stage to the hidden

layers of previous stage, but does not back propagate the

gradient from a stage to the shape prediction layer of its

previous stage. Nevertheless, a current stage is evidently

related to the output shape of its previous stage, so we argue

that directly linking the first layer of current stage and shape

prediction from the last layer of previous stage in an explicit

end-to-end scheme can benefit the facial landmark detection.

Based on the above arguments, we design a Fully End-to-

End Cascaded Convolutional Neural Network (FEC-CNN)

as shown in Fig. 1. The proposed FEC-CNN consists of

several sub-CNNs, each directly taking the input image and

the output shape of its previous stage as input. As a result,

the gradient can be back propagated from the loss layer to

all the units of each stage, leading to promising performance

for facial landmark detection even on wild data.

The rest of this paper is organized as follows: Section

II illustrates the details about formulation and optimization

of the proposed method. Section III gives the experimental

results and analysis on three challenging datasets. Section IV

makes conclusions of this work.

II. OUR APPROACH

A. Formulation

Facial landmark detection can be formulated as learning

a complex nonlinear mapping from face image I to shape

S. Inspired by the powerful ability of deep neural network

for modelling nonlinearity, we propose a novel fully end-

to-end convolutional neural network as shown in Fig. 1.

The proposed method consists of several sub-CNNs, denoted

as {Ft}T
t=1, and the whole network is denoted as H. The

objective of the proposed method is to learn an end-to-

end network H which can well characterize the nonlinear

mapping from the appearance to shape as follows:

S = H(I) =
T

∑
t=1

ΔSt +S0 (1)

ΔSt = Ft(Θ(I,St−1)), t = 1, · · · ,T (2)

St = St−1 +ΔSt , t = 1, · · · ,T (3)

where Ft denotes the sub-CNN in the tth stage, S0 denotes

the initial shape such as mean shape, ΔSt denotes the shape

residual predicted by the tth sub-CNN, St denotes the tth

refined shape outputted from the tth sub-CNN and Θ(I,S) is
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Fig. 2. An illustration of each sub-CNN Ft . At tth stage, shape-indexed
patches are extracted from the original input image around the landmarks
St−1 predicted by the previous network. Each patch is separately fed into
the convolutional layers, then the convolutional features of all patches are
concatenated together and go through the fully-connected layers to predict
the shape residual ΔSt .

the patch extracting function which extracts patches around

shape S.

As seen from (2), in the tth stage, by taking the shape-

indexed patches extracted around the output shape of the

previous (t− 1)th stage as input, the sub-CNN Ft attempts

to further predict the shape residual ΔSt between St−1 and

the ground truth shape. In other words, the output from one

stage is directly used as input of the successive stage, so

the stages are strongly related to each other. Furthermore,

by summing up the shape prediction of all stages together

in (1), all stages are connected under a single objective to

approach the ground truth shape. Therefore, all stages can be

optimized jointly in an end-to-end way. Besides, each sub-

CNN taking the shape-indexed patches from the previous

stage as input refines the shape more and more accurately.

Specifically, each sub-CNN Ft in (2) endeavors to further

refine the output shape of its previous stage by taking the

shape-indexed patches as input to approximate the residual

between the output shape of the previous stage and the

ground truth shape. As shown in Fig. 2, at each stage,

the shape-indexed patches are extracted from the original

input image around the landmarks predicted by the previous

network. Then, each patch is separately fed into the con-

volutional layers, and then the convolutional features of all

patches are concatenated and followed by fully connected

layers to predict the shape residual.

By summing up all stages together, the overall objective

of the whole network is formulated as follow:

{F∗t }T
t=1 = argmin

{Ft}T
t=1

N

∑
i=1

||Ŝi−
T

∑
t=1

Ft(Θ(Ii,Si
t−1))−Si

0||22 (4)

Fig. 3. An illustration of the back propagation process of the sub-CNN in
the tth stage. ∂L

∂St
denotes the shape gradient coming from the (t+1)th stage,

∂L
∂Ft

denotes the CNN gradient of the tth stage, Wt denotes the parameters

of the CNN, and ∂L
∂St−1

denotes the shape gradient which is propagated to

the (t−1)th stage.

where Ŝi is the ground truth shape of the ith training sample

Ii, and Si
t is the output shape of the tth sub-CNN for the ith

training sample Ii calculated as

Si
t = Si

t−1 +Ft(Θ(Ii,Si
t−1)). (5)

The {Ft}T
t=1 can be obtained jointly by optimizing the whole

network end-to-end detailed in the following.

B. Optimization

Following most existing deep neural network, the objective

in (4) is optimized by using the gradient descent method.

Firstly, the gradient of the parameters is calculated, and then

the parameters are updated along the descent direction of the

gradient.

As seen from Fig. 1, the structures of all stages are similar,

and so the gradient back propagation processes of all stages

are also similar. Let’s take the tth stage shown in Fig. 3 as

an example.

Let Li = ||Ŝi − ∑T
t=1 Ft(Θ(Ii,Si

t−1)) − Si
0||22 denote the

prediction loss of the ith training sample, and ΔSi
t =

Ft(Θ(Ii,Si
t−1)). We omit the index i of the ith sample for

simplicity unless misunderstanding. Let Wt denote the pa-

rameters of CNN Ft .

As seen from Fig. 3, in the tth stage, given the gradient
∂L
∂St

, there are two parts of gradient needed to be calculated:

1) the gradient of the parameters Wt of the sub-CNN Ft which

is further used to update the sub-CNN; 2) the gradient of the

input shape St−1 which is propagated to the previous (t−1)th

stage.
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Firstly, the gradient of Wt is calculated as follows:

∂L
∂Wt

=
∂L
∂St

∂St

∂ΔSt

∂ΔSt

∂Wt
(6)

=
∂L
∂St

∂ (ΔSt +St−1)

∂ΔSt

∂ΔSt

∂Wt

=
∂L
∂St

∂ΔSt

∂Wt
, t = 1, · · · ,T

In (6), ∂L
∂St

is calculated from the (t + 1)th stage, and ∂ΔSt
∂Wt

can be easily obtained like any typical CNN.

Secondly, the gradient of the input shape ∂L
∂St−1

is calcu-

lated as below:

∂L
∂St−1

=
∂L
∂St

∂St

∂St−1
(7)

=
∂L
∂St

∂ (ΔSt +St−1)

∂St−1

=
∂L
∂St

(
1+

∂ΔSt

∂Θt

∂Θt

∂St−1

)
, t = 1, · · · ,T

where Θt = Θ(I,St−1). In (7), ∂L
∂St

is calculated from the

(t + 1)th stage , and ∂ΔSt
∂Θt

can be easily obtained like most

typical CNN. So, the left part is how to calculate the gradient

of St−1 from the shape-indexed patch, i.e. ∂Θt
∂St−1

, which will

be detailed in the following.

With (6) and (7), the gradient can be propagated stage

by stage by looping t from T down to 1. For the start, the

gradient of the output shape of the last stage is computed as

∂L
∂ST

= 2(ST − Ŝ). (8)

In summary, with (8) as start, the whole network in (4) can

be updated end-to-end by looping t according to (6) and (7).

The above process is for one sample, when given a batch of

a few samples, the gradient of each sample can be obtained

similarly and independently.

Now, let’s concentrate on ∂Θt
∂St−1

which denotes the deriva-

tive of shape-indexed patches with respect to the input shape.

As the shape-indexed patches are extracted independently,

the ∂Θt
∂St−1

can be divided into a few independent
∂Θtk

∂S(t−1)k
, with

Θtk denoting the patch extracted around the kth landmark

S(t−1)k = (y(t−1)k,x(t−1)k). For simplicity, the index k and t
is omitted unless misunderstanding.

Formally, the patch extraction process Θ around one

landmark (y,x) can be formulated as below:

Θ : I,y,x→V (9)

where I is the input image with height H and width W , (y,x)
is the coordinate of a landmark, and V is the output patch

with height h and width w.

Therefore, the ∂Θt
∂St−1

can be divided into multiple inde-

pendent gradient w.r.t. each patch, i.e. ∂V
∂x and ∂V

∂y . Inspired

by Spatial Transformer Networks [11], we adopt bilinear

interpolation for generating patch V . The pixel located at

(q, p) of V is calculated via the following function,

Vqp =
H−1

∑
n=0

W−1

∑
m=0

Inmmax(0,1−|yq−n|)max(0,1−|xp−m|)
(10)

yq = y+q− (h−1)/2 (11)

xp = x+ p− (w−1)/2 (12)

where (yq,xp) is the coordinate of Vqp with respect to the

whole image I, h and w denote the height and the width of

the patch V , Inm denotes the pixel located at (n,m) of I.

The partial derivative of (10) w.r.t. the landmark is

∂Vqp

∂x
=

∂Vqp

∂xp

∂xp

∂x
=

∂Vqp

∂xp
(13)

∂Vqp

∂xp
=

H−1

∑
n=0

W−1

∑
m=0

Inmmax(0,1−|yq−n|)

⎧⎪⎨
⎪⎩

0, |m− xp| ≥ 1;

1, m≥ xp;

−1, m < xp

(14)

Similarly,
∂Vqp

∂y is calculated as below:

∂Vqp

∂y
=

∂Vqp

∂yq

∂yq

∂y
=

∂Vqp

∂yq
(15)

∂Vqp

∂yq
=

H−1

∑
n=0

W−1

∑
m=0

Inmmax(0,1−|xp−m|)

⎧⎪⎨
⎪⎩

0, |n− yq| ≥ 1;

1, n≥ yq;

−1, n < yq

(16)

The time cost of (10), (14) and (16) are O(WH) which

is time consuming. However, we found that the time cost

can be reduced to O(1), because Vqp can be obtained by

only considering four neighboring pixels of (yq,xp) in I.

Specifically, (10), (14) and (16) can be equally reformulated

as follows,

Vqp = I�yq��xp�ydxd + I�yq��xp�ydxu + I�yq��xp�yuxd + I�yq��xp�yuxu

(17)

∂Vqp

∂xp
=−I�yq��xp�yd + I�yq��xp�yd− I�yq��xp�yu + I�yq��xp�yu

(18)

∂Vqp

∂yq
=−I�yq��xp�xd− I�yq��xp�xu + I�yq��xp�xd + I�yq��xp�xu

(19)

xd = 1− (xp−�xp�) (20)

xu = 1− (�xp�− xp) (21)

yd = 1− (yq−�yq�) (22)

yu = 1− (�yq�− yq) (23)

Following (13), (18), (15) and (19), each independent part

of ∂Θt
∂St−1

, i.e.
∂Θtk

∂S(t−1)k
can be calculated inducing the ∂L

∂St−1
in

(7).
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C. Discussions
Differences with DCNN [24]. Our FEC-CNN and DCNN

differ in the following aspects: 1) DCNN optimizes different

stages separately, while FEC-CNN optimizes all stages fully

end-to-end which results in a better solution. 2) DCNN

predicts different groups of landmarks separately without any

shape constraint, which might be stuck in partial occlusions.

On the contrary, in FEC-CNN, the CNN features of all

landmarks are concatenated together as input of the fully

connected layer in each stage which implicitly constrain all

landmarks in a reasonable shape even with partial occlusions.
Differences with CFAN [27]. FEC-CNN and CFAN differ

in the following aspects: 1) Similar as DCNN, CFAN is opti-

mized stage by stage, while our FEC-CNN is optimized fully

end-to-end. 2) CFAN employs SIFT feature [18] as shape-

indexed feature which is handcrafted and not differentiable.

On the contrary, out FEC-CNN employs CNN to directly

learn the feature based on the shape-indexed patches which

is more flexible and differentiable.
Differences with MDM [25]. Both MDM and FEC-CNN

are structured end-to-end. However, MDM only considers

the gradient from a stage to the hidden layers of the previous

stage, but doesn’t consider the gradient from a stage to the

shape prediction layer of the previous stage, therefore, MDM

is not fully end-to-end. On the contrary, in FEC-CNN, the

gradient is back propagated from the loss layer to all units

of each stage, which is fully end-to-end.

III. EXPERIMENTS

A. Experimental Settings
Datasets. To evaluate the proposed method, we employ

three wild datasets, i.e. 300W [23][22], 300W competition

[21][22] and AFLW [15] which are commonly used for facial

landmark detection.
The 300W dataset consists of three wild datasets including

LFPW [2], AFW [31], HELEN [17] and a challenging

dataset IBUG [22]. The 300W competition dataset consists

of an indoor subset and an outdoor subset. The 68-point

annotations of these datasets are provided by Sagonas et al.

[23][21][22]. The AFLW dataset contains 24386 in-the-wild

faces with large variation of head pose which is challenging

for multi-view facial landmark detection.
The 300W dataset and the 300W competition dataset are

divided into three subsets, the training set, the validation

set and the testing set. The training set consists of 3,148

images from AFW (337), LFPW training set (811) and Helen

training set (2,000). The validation set consists of 554 images

including LFPW testing set (224) and Helen testing set (300).

Following the existing works [28][25], two testing sets are

employed: the IBUG dataset which includes 135 images, and

the 300W competition dataset which includes 300 indoor

images and 300 outdoor images. Following the setting of

Zhu et al. [29], the AFLW dataset is used for training and

evaluating the multi-view facial landmark detection.
Methods for comparison. To evaluate the effectiveness

of our proposed FEC-CNN, it is compared with a few state-

of-the-art methods including MDM [25], CFSS [28], ERT

[14], CFAN [27], RCPR [3], SDM [26] and Zhu et al. [29].

For fair comparison, we follow the same testing settings as

them, and directly refer to their released results [28][25][29].

All methods are evaluated in terms of the normalized root

mean squared error (NRMSE) between the predicted land-

mark coordinates and the ground truth. For fair comparison

with the existing methods, the NRMSE is normalized by the

distance between the outer eye corners on 300W competition

dataset, by the distance between the eye centers on 300W

dataset and by the face size on the AFLW dataset. The

cumulative error distribution (CED) and mean error are used

for reporting performance.

B. Implementation Details of FEC-CNN

Data augmentation. To include more variations for better

generalization, the training data are augmented by adding

variance to each training sample, including rotation, transla-

tion, horizontal flipping, up-sampling and down-sampling.

Network structure. The FEC-CNN in all experiments

consists of 3 sub-CNNs with the same structure to refine the

shape. Instead of a mean shape S0, we employ a deep CNN

to directly predict an initial shape S0 by taking the whole

face image as input, in order to achieve more robustness

to large global variations such as large poses, exaggerated

expressions and partial occlusions. Although the CNN for

initial shape is fixed in our experiment, it can be included

in the end-to-end flow. The structure of CNN for initial

shape and the structure of each sub-CNN in our FEC-CNN

follow [16][9][10] and are respectively shown in Table I and

Table II. In the table, the convolution layer is represented

by C(n,k,g,s) where n, k, g and s denote the kernel number,

kernel size, group number and stride respectively. The max

pooling layer is represented by P(k,s) where k denotes the

kernel size and s denotes the stride. The fully connected

layer is represented by FC(n) where n denotes the hidden

unit number. Furthermore, the size of the input image for

TABLE I

THE STRUCTURE OF CNN FOR INITIAL SHAPE

Layer 1 Layer 2 Layer 3 Layer 4
C(24,11,1,4)

PReLU
LRN
P(3,2)

C(64,5,2,1)
PReLU
LRN
P(3,2)

C(196,3,1,1)
PReLU

C(196,3,2,1)
PReLU

Layer 5 Layer 6 Layer 7 Layer 8

C(96,3,2,1)
PReLU

FC(1024)
PReLU
Dropout

FC(1024)
PReLU
Dropout

FC(136)

TABLE II

THE STRUCTURE OF EACH SUB-CNN IN THE PROPOSED FEC-CNN

Layer 1 Layer 2 Layer 3 Layer 4
C(16,6,1,2)

BN
ReLU
P(2,2)

C(16,3,1,1)
BN

ReLU
P(2,2)

FC(128)
BN

ReLU
FC(136)
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(a) 68 points (b) 51 points

Fig. 4. Comparison on 300W competition

initial CNN is 256*256, and the size of the shape-indexed

patch in each sub-CNN is 31*31.

C. Evaluations on 300W competition

Firstly, we evaluate the performance of FEC-CNN, MDM

[25], CFSS [28], CFAN [27] and ERT [14] on 300W

competition dataset. Following the standard protocol, the

performance of 68 points and 51 points is evaluated in

terms of cumulative error distribution (CED). As seen from

the results in Fig. 4, both our FEC-CNN and MDM [25]

perform better than CFSS [28], CFAN [27] and ERT [14]

benefited from the end-to-end learning structure. Moreover,

our FEC-CNN outperforms the MDM which is attributed to

the full consideration of the relationship between adjacent

stages rather than only the relationship of the hidden layers

of adjacent stages. As seen from the results of 68 points in

Fig. 4(a), when NRMSE is 0.08, the data proportion of FEC-

CNN is 96%, that is, few serious prediction error happens,

which means FEC-CNN is robust for large global variations.

Similar observations can be found in Fig. 4(b) demonstrating

the superiority of the full consideration of the relationship of

adjacent stages in our proposed FEC-CNN. Moreover, FEC-

CNN preforms in 10 fps including the time consumption of

the deep CNN for initial shape, and it can perform in real-

time with a mean shape initialization.

D. Evaluations on 300W Dataset

Furthermore, the methods of CFSS [28], CFAN [27],

RCPR [3], SDM [26] and our FEC-CNN are evaluated on

300W challenging subset (IBUG), which consists of 135

wild images with large poses, exaggerated expressions and

partial occlusions. The performance of 68 landmark detection

is shown in Fig. 5. As seen, the similar observations can

be obtained that the proposed FEC-CNN achieves the best

performance, demonstrating the effectiveness of FEC-CNN.

Following the settings of [28], we also evaluate the mean

error of FEC-CNN on 300W common subset and fullset,

Fig. 5. Comparison on IBUG

which is 0.042 and 0.049 respectively. Some exemplar results

of landmark detection are shown in Fig. 6, from which we

can see that the proposed FEC-CNN detects the landmarks

accurately and is robust to large variations of pose, expres-

sion, lighting, occlusion and etc.

E. Evaluations on AFLW Dataset

Moreover, we evaluate RCPR[3], Zhu et al. [29] and our

FEC-CNN on a more challenging multi-view facial landmark

dataset AFLW following [29]. The performance is reported

in Table III. Our FEC-CNN outperforms the other methods

which demonstrates its robustness and effectiveness for large

pose and shape variation.

TABLE III

THE MEAN ERROR ON AFLW TESTSET

RCPR [3] Zhu et al. [29] FEC-CNN (ours)
0.037 0.027 0.017
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Fig. 6. Exemplar results of FEC-CNN prediction on IBUG and 300W competition. The first four rows contain samples with partial occlusion, large
expression, large head pose and extreme illumination respectively. The last row shows some failure cases.

TABLE IV

THE MEAN ERROR ON IBUG

Mean shape Initialization CNN
0.107 0.079

F. Evaluations on Initial Shape

To evaluate the influence of the initial shape on the

performance, we use the mean shape and a initialization

CNN for the initial shape respectively, and the mean errors

on IBUG are shown in Table IV. As seen from the results, the

initialization CNN significantly improves the performance of

our FEC-CNN framework, which demonstrates the necessity

of a robust initialization for better performance.

IV. CONCLUSIONS AND FUTURE WORKS

We propose a Fully End-to-End Cascaded CNN method

for facial landmark detection problem. Our FEC-CNN fully

considers the relationships between adjacent stages and is

optimized end-to-end. Furthermore, FEC-CNN outperforms

the state-of-the-art methods on three challenging datasets

300W competition, IBUG and AFLW. In future, we will try

other network structures to further improve the prediction

performance.
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