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Abstract

The learning of the deep networks largely relies on the
data with human-annotated labels. In some label insuffi-
cient situations, the performance degrades on the decision
boundary with high data density. A common solution is to
directly minimize the Shannon Entropy, but the side effect
caused by entropy minimization, i.e., reduction of the pre-
diction diversity, is mostly ignored. To address this issue,
we reinvestigate the structure of classification output ma-
trix of a randomly selected data batch. We find by the-
oretical analysis that the prediction discriminability and
diversity could be separately measured by the Frobenius-
norm and rank of the batch output matrix. Besides, the
nuclear-norm is an upperbound of the Frobenius-norm, and
a convex approximation of the matrix rank. Accordingly,
to improve both discriminability and diversity, we propose
Batch Nuclear-norm Maximization (BNM) on the output
matrix. BNM could boost the learning under typical la-
bel insufficient learning scenarios, such as semi-supervised
learning, domain adaptation and open domain recognition.
On these tasks, extensive experimental results show that
BNM outperforms competitors and works well with exist-
ing well-known methods. The code is available at https:
//github.com/cuishuhao/BNM .

1. Introduction

Deep neural networks have achieved large success in
most computer vision applications. Despite the success al-
ready achieved, deep models in visual learning tasks largely
rely on vast amounts of labeled data, where the labeling pro-
cess is both time-consuming and expensive. Without suffi-
cient amount of labeled training data, as a common conse-
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Figure 1. Illustration of problem. Beyond the discriminability, we
also focus on the minority category with few samples bounded in
the dotted frame at the bottom left part. The influence of minor-
ity category tends to be reduced in direct entropy minimization,
resulting in the degradation of the category prediction diversity.

quence, spurious predictions will be made even with a sub-
tle departure from the training samples. Actually, in most
applications, there exists large discrepancy between train-
ing data and real-world testing data. The discrepancy could
lead to annoying ambiguous predictions, especially under
label insufficient situations. In this paper, we focus on en-
hancing the model learning capability by reducing the am-
biguous predictions.

When deep models are applied to unlabeled examples,
the prediction discriminability is always low, due to the
large data density near the decision boundary. To reduce the
large data density, most methods resort to classical Shan-
non Entropy theory [41]. In semi-supervised learning, the
prediction entropy for unlabeled examples is directly min-
imized by [13], and further combined with Virtual Adver-
sarial Training [30] for better results. In domain adapta-
tion, the entropy minimization is also utilized in [27, 47]
to strengthen the discriminability on the unlabeled domain.
Meanwhile, from another aspect, to encourage the predic-
tion diversity, methods in [42, 55] utilize a balance con-
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straint to equilibrate the distribution between different cat-
egories. Methods in [58, 57] take the model predictions as
pseudo-labels of the statistical distribution, to further en-
hance the robustness of prediction on categories with less
data instances.

However, entropy-based methods suffer from the side ef-
fect of the entropy minimization, i.e., reduction of predic-
tion diversity. Entropy minimization pushes the examples
to nearby examples far from the decision boundary. Since
there are more examples in majority categories, examples
are prone to be pushed into majority categories, including
the examples actually belonging to minority categories. As
shown in Figure 1, the points in the dotted frame will be
misclassified, if all the samples are classified into the other
categories, resulting in the reduced prediction diversity. To-
wards higher prediction diversity, the balance constraint re-
quires prior knowledge on minority categories, but it is dif-
ficult to obtain. Some methods rely on the prior knowledge
estimated by pseudo-labels, to increase the prediction prob-
ability on minority categories. Nevertheless, it appears that
the guidance provided by prior knowledge is usually less
useful and straightforward towards more accurate predic-
tion.

In this paper, we reinvestigate the above issues, and try to
enforce the prediction discriminability and diversity of the
unlabeled data. We start by looking at the structure of clas-
sification output matrix of a randomly selected data batch.
We find by theoretical analysis that the discriminability and
diversity could be measured by the Frobenius-norm and
rank of the batch output matrix, respectively. The nuclear-
norm of a matrix is bounded by the Frobenius-norm of the
matrix. Maximizing nuclear-norm ensures large Frobenius-
norm of the batch matrix, which leads to increased discrim-
inability. The nuclear-norm of batch matrix is also a convex
approximation of the matrix rank, which refers to the pre-
diction diversity. Accordingly, we present Batch Nuclear-
norm Maximization (BNM), an approach to maximize the
nuclear-norm of the batch output matrix. Thus BNM could
simultaneously enhance the discriminability and diversity
of the prediction results.

We apply BNM to semi-supervised learning, domain
adaptation and unsupervised open domain recognition to
validate its effectiveness. Experiments show that our
method outperforms other well-established methods on four
datasets. Among these tasks, we achieve state-of-the-art re-
sults on unsupervised open domain recognition. For fur-
ther validation, we observe that BNM leads to better aver-
age prediction diversity on the batch samples in the experi-
ments. Our contribution is summarized as follows:

• We theoretically prove that the discriminability and di-
versity of the prediction output can be measured by
Frobenius-norm and rank of the batch output matrix.

• We propose Batch Nuclear-norm Maximization, which
is a new learning paradigm that achieves better dis-
criminability and diversity under label insufficent
learning situations.

• We achieve promising performance on semi-
supervised learning, domain adaptation and open
domain recognition.

2. Related Work
In this paper, we analyze the label insufficient situa-

tions on three typical tasks, i.e., semi-supervised learn-
ing [20, 31, 21, 48], domain adaptation [14, 25] and unsu-
pervised open domain recognition. Semi-supervised learn-
ing [44, 30] leverages the unlabeled examples to improve
the robustness of model. Domain adaptation [18, 39, 26, 56]
reduces the domain discrepancy between labeled and un-
labeled examples. Unsupervised Open Domain Recogni-
tion [55] considers a more realistic circumstance than do-
main adaptation, where some categories in unlabeled do-
main are unseen in labeled domain.

Among the tasks, they all face the problem of the
rich data distribution near the decision boundary. To re-
duce the ambiguous predictions, most methods resort to
the Shannon Entropy [41] to model uncertainty. In semi-
supervised learning, reducing the entropy of the classifi-
cation responses for unlabeled domain is adopted in [13].
Meanwhile, the entropy minimization is further applied to
Virtual Adversarial Training in [30] and implicitly modeled
by pseudo-labels [2]. In domain adaptation, entropy mini-
mization is utilized in [27, 47] to obtain reliable prediction
on unlabeled examples. The entropy minimization is fur-
ther modified into maximum squares loss in [6] to lower the
influence of easy-to-transfer samples.

To maintain prediction diversity on the minority cate-
gories, a direct thought is resorting to imbalanced learn-
ing [16]. Existing imbalanced learning methods such as
[42, 55] enforce the ratio of predictions on minority cate-
gories to be appropriately higher. However, they demand
prior knowledge on the category distribution. Without the
prior knowledge, the predictions are taken as pseudo-labels
in [57, 58] to approximate the category distribution, while
our method is performed in a data driven manner that is
free from any form of prior knowledge. From another as-
pect of increasing diversity, Determinantal Point Processes
(DPPs) [23] act probabilistically to capture the balance be-
tween quality and diversity within sets, but suffer from the
large computation time.

In this paper, we analyze the problem from the perspec-
tive of matrix analysis [4, 3], which has already been widely
applied to many computer vision tasks. As a popular per-
spective, matrix completion is based on the assumption that
the noisy data brings extra components to the matrix. To



reduce the influence of the extra components, minimizing
nuclear-norm of the matrix has been applied to image de-
noising [15], image restoration [9] and many other tasks.
In comparison to the above methods, we aim to explore the
extra information in the matrix, thus the nuclear-norm of
the matrix is maximized towards more prediction diversity.
Recently, BSP [7] penalizes the largest singular values of
the batch feature matrix to boost the feature discriminability
for domain adaptation, while we analyze the batch classifi-
cation response matrix to increase both the prediction dis-
criminability and diversity.

3. Method

3.1. Measuring Discriminability with F -norm

In the training process of a deep neural network, we start
by looking at the prediction outputs on a data batch with B
randomly selected unlabeled samples. Denote the number
of categories as C, and we represent the batch prediction
output matrix as A ∈ RB×C , which satisfies:∑C

j=1
Ai,j = 1 ∀i ∈ 1...B

Ai,j ≥ 0 ∀i ∈ 1...B, j ∈ 1...C,
(1)

where deep methods could achieve well-performed re-
sponse matrix A by training with sufficient number of la-
beled samples. However, in label insufficient situations, the
discrepancy between labeled and unlabeled data might re-
sult in the high-density regions of the marginal data distri-
bution near the task-specific decision boundary. Since the
ambiguous samples are easy to be misclassified, we focus
on optimizing prediction results of unlabeled samples by
increasing the discriminability.

Actually, higher discriminability means less uncertainty
in the prediction. To measure the uncertainty, most methods
resort to Shannon Entropy [41], which is always denoted as
entropy for simplicity. The entropy could be calculated as
follows:

H(A) = − 1

B

B∑
i=1

C∑
j=1

Ai,j log(Ai,j). (2)

Same as [13, 30, 27, 47], we could directly minimizeH(A),
towards lessened uncertainty and more discriminability.
When H(A) reaches the minimum, only one entry is 1
and other C − 1 entries are 0 in each row of Ai, i.e.,
Ai,j ∈ {0, 1} ∀i ∈ 1...B, j ∈ 1...C. The minimum ex-
actly satisfies the highest prediction discriminability of A,
where each prediction Ai is fully determined.

Other functions could improve the prediction discrim-
inability, by push A to the same minimum with H(A).
We choose to calculate Frobenius-norm (F -norm) ‖A‖F ,

as follows:

‖A‖F =

√√√√ B∑
i=1

C∑
j=1

|Ai,j |2. (3)

We prove that H(A) and ‖A‖F have strict opposite mono-
tonicity and the minimum of H(A) and the maximum of
‖A‖F could be achieved at the same value in Supplemen-
tary. Particularly, according to inequality of arithmetic and
geometric means, the upper-bound of ‖A‖F could be calcu-
lated as:

‖A‖F ≤

√√√√ B∑
i=1

(

C∑
j=1

Ai,j) · (
C∑

j=1

Ai,j)

=

√√√√ B∑
i=1

1 · 1 =
√
B.

(4)

The upper-bound of ‖A‖F could be achieved in the same A
with the minimum ofH(A). Thus prediction discriminabil-
ity could also be enhanced by maximizing ‖A‖F .

3.2. Measuring Diversity with Matrix Rank

It is normal in randomly selected batch of B examples
that some categories dominate the samples, while other cat-
egories contain less or even no samples. In this case, a
model trained with entropy minimization or F -norm maxi-
mization tends to classify samples near the decision bound-
ary to the majority categories. The continuous convergence
to the majority categories reduces the prediction diversity,
which is harmful to the overall prediction accuracy. To im-
prove the accuracy, different from [42, 55, 58, 57], we aim
to maintain the prediction diversity by analyzing the batch
output matrix A to model the diversity.

To model prediction diversity, we start by looking at the
fixed batch of B unlabeled samples in matrix A. The num-
ber of categories in the predictions is expected to be a con-
stant on average. If this constant becomes larger, the predic-
tion approach could obtain more diversity. Thus the predic-
tion diversity could be measured by the number of predicted
categories in the batch output matrix A.

We further analyze the number of categories and the pre-
dicted vectors in A. Two randomly selected prediction vec-
tors, i.e., Ai and Ak, could be linearly independent when
Ai and Ak belong to different categories. When Ai and
Ak belong to the same category and ‖A‖F is near

√
B, the

differences between Ai and Ak are tiny. Then Ai and Ak

could be approximately regarded as linearly dependent. The
largest number of linear independent vectors is called the
matrix rank. Thus rank(A) could be an approximation on
the number of predicted categories in A, if ‖A‖F is near the
upper-bound

√
B.



Figure 2. Illustration of comparison between the effect of BNM
and Entropy Minimization (EntMin) in a toy example with two
categories and batch size 4. The dark region means the increase
of the variable, i.e., the dark blue (red) represents the increase of
blue (red) variable. H(A) represents the entropy value and ‖A‖?
represent the value of nuclear-norm.

Based on the above analysis, the prediction diversity
could be approximately represented by rank(A), when
‖A‖F is near

√
B. Accordingly, we could maximize

rank(A) to maintain prediction diversity. Apparently, the
maximum value of rank(A) is min(B,C). When B ≥ C,
the maximum value is C, which firmly guarantees that the
prediction diversity on this batch achieves the maximum.
However, when B < C, the maximum value is less than
C, it still enforces that the predictions on the batch samples
should be as diverse as possible, though there is no guar-
antee that all the categories will be assigned to at least one
sample. Therefore, maximization of rank(A) could ensure
the diversity in any case.

3.3. Batch Nuclear-norm Maximization

For a normal matrix, the calculation of the matrix rank
is an NP-hard non-convex problem, and we could not di-
rectly restrain the rank of matrix A. Theorem in [10] shows
that when ‖A‖F ≤ 1, the convex envelope of rank(A)
is the nuclear-norm ‖A‖?. In our situation, different from
above theorem, we have ‖A‖F ≤

√
B as shown in Eqn. 4.

Thus the convex envelope of rank(A) becomes ‖A‖? /
√
B,

which is also proportional to ‖A‖?. Meanwhile, rank(A)
could approximately represent the diversity, when ‖A‖F is
near the upper-bound, as described in Sec. 3.2. Therefore,
if ‖A‖F is near

√
B, the prediction diversity could be ap-

proximately represented by ‖A‖?. Also, maximizing ‖A‖?
could ensure higher prediction diversity.

In [10, 37, 43], the relationship of the range between
‖A‖? and ‖A‖F could be expressed as follows:

1√
D
‖A‖? ≤ ‖A‖F ≤ ‖A‖? ≤

√
D · ‖A‖F (5)

where D = min(B,C). This shows that ‖A‖? and ‖A‖F
could bound each other. Therefore, ‖A‖F tends to be larger,
if ‖A‖? becomes larger. Since maximizing ‖A‖F could im-
prove the discriminability described in Sec. 3.1, maximiz-

ing ‖A‖? also contributes to the improvement on prediction
discriminability.

Due to the relationship between ‖A‖? and ‖A‖F , and the
fact that upper-bound of ‖A‖F is

√
B in Eqn. 4, we could

calculate the maximum of ‖A‖? as follows:

‖A‖? ≤
√
D · ‖A‖F ≤

√
D ·B, (6)

where we could find that the influence factor of ‖A‖? could
be separated into two parts, respectively corresponding to
the two inequality conditions in the equation. The first in-
equality corresponds to the diversity, and the second corre-
sponds to the discriminability. When the diversity is larger,
the rank of A tends to be larger and ‖A‖? tends to increase.
Similarly, when the discriminability becomes larger, ‖A‖F
tends to increase and ‖A‖? tends to be larger.

Based on the above findings, maximizing ‖A‖? could
lead to the improvement on both the prediction discrim-
inability and diversity. Thus to improve discriminability
and diversity, we propose Batch Nuclear-norm Maximiza-
tion by maximizing the nuclear-norm of the batch matrix A,
where A represents the classification responses on a batch
of B randomly selected samples. For better comprehen-
sion of the effect of BNM, we build two toy examples, one
explaining BNM in the maximum case, and another in ordi-
nary situations.

In the first example, we assume B and C are 2. In this
case, A could be expressed as:

A =

[
x 1− x
y 1− y

]
, (7)

where x and y are variables. Thus the entropy, F -norm and
nuclear-norm could be calculated as:

H(A) =− x log(x)− (1− x) log(1− x)− y log(y)

− (1− y) log(1− y)

‖A‖F =
√
x2 + (1− x)2 + y2 + (1− y)2

‖A‖? =
√
x2 + (1− x)2 + y2 + (1− y)2 + 2|y − x|,

(8)

where the calculation of ‖A‖? is described in Supplemen-
tary. For entropy and F -norm, there is no constraint limiting
the relationship between x and y, thus entropy and F -norm
could reach the optimal solution when:

A =

[
1 0
1 0

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
,

[
0 1
0 1

]
. (9)

But ‖A‖? would reach the optimal solution when:

A =

[
0 1
1 0

]
,

[
1 0
0 1

]
. (10)

where ‖A‖? tries to maintain diversity by maximizing the
prediction divergence among the data batch in this example.



The second example is shown in Figure 2, where we
assume that there are only two categories, i.e., zebra and
sheep. In this data batch with three zebras and a goat, the
zebra category is the majority category. The matrices af-
ter Entropy Minimizataion and BNM could obtain the same
value on entropy as 0.50. But for the matrices, the value
of nuclear-norm tends to be larger when the sheep is cor-
rectly classified. Direct entropy minimization tends to clas-
sify the batch examples into the majority category zebra. In
comparison, BNM could maintain the prediction possibil-
ity of minority classes, and the image of sheep tends to be
assigned with the infrequent but correct label.

Since BNM is computed by matrix operations, there re-
main concerns on the computational complexity. To obtain
the nuclear-norm, we calculate all the singular values in
the matrix A. The singular value decomposition comput-
ing on the matrix A ∈ RB×C costs O(min(B2C,BC2))
time. Since the batch size B is always small, the overall
computational budget of ‖A‖? is almost negligible in the
training of deep networks.

3.4. Application

We apply BNM to three typical label insufficient sit-
uations, including semi-supervised learning, unsupervised
domain adaptation and unsupervised open domain recog-
nition. In the tasks, we are given labeled domain DL and
unlabeled domain DU . There are NL labeled examples
DL = {(xLi , yLi )NL

i=1} in C categories and NU unlabeled
examples DU = {(xUi )NU

i=1}. In DL, the labels are denoted
as yLi = [yLi1, y

L
i2, ..., y

L
iC ] ∈ RC , where yLij equals to 1 if

xLi belongs to the jth category otherwise 0.
In these tasks, the classification responses are obtained

by the deep network G, i.e., Ai = G(xi). The classification
network consists of a feature extraction network, a classifier
and a softmax layer. With randomly sampled batch size BL

examples {XL, Y L} on the labeled domain, the classifica-
tion loss on DL could be calculated as:

Lcls =
1

BL

∥∥Y Llog(G(XL))
∥∥
1
, (11)

where the classification loss could provide initial parame-
ters for further optimization.

For learning on the unlabeled domain DU , on all the
three tasks, we apply the method BNM introduced in
Sec. 3.3 to the classification response matrix. With ran-
domly sampled batch sizeBU examples {XU}, the classifi-
cation response matrix on DU could be denoted as G(XU ).
And the loss function of BNM can be formulated as:

Lbnm = − 1

BU

∥∥G(XU )
∥∥
?
, (12)

where the neural network G is shared between both DL

and DU . Minimizing Lbnm could reduce the data density

near the decision boundary without losing diversity, which
is more effective than typical entropy minimization. Mean-
while, the gradient of nuclear-norm could be calculated ac-
cording to [33], thus Lbnm could be applied to the training
process of gradient-based deep networks.

To train the network, we simultaneously optimize clas-
sification loss and BNM loss, i.e., Lcls and Lbnm could be
simultaneously optimized and combined with the parameter
λ as follows:

Lall =
1

BL

∥∥Y Llog(G(XL))
∥∥
1
− λ

BU

∥∥G(XU )
∥∥
?
. (13)

By enforcing diversity, the key insight of BNM may be sac-
rificing a certain level of the prediction hit-rate on majority
categories, to enhance the prediction hit-rate on minority
categories. The samples belonging to the majority classes
might be misclassified as minority classes, to increase the
diversity. But the classification loss on the labeled train-
ing data would penalize the wrongly encouraged diversity
in a batch, since classification loss is simultaneously mini-
mized. Asymptotically, the network tends to produce more
diverse prediction given that the samples can be correctly
predicted. As a consequence, BNM is particularly useful
to avoid prediction degradation for learning in label insuf-
ficient situations on datasets with both balanced and imbal-
anced category distributions.

4. Experiments

We apply our method to semi-supervised learning, unsu-
pervised domain adaptation, and unsupervised open domain
recognition. The experiments of the three tasks are done
on CIFAR-100 [22], Office-31 [38], Office-Home [46] and
I2AwA [55]. The results with the notion ofmethod∗ are re-
produced by us in the same environment with our methods,
while other results are directly reported from the original
papers. We also denote the direct entropy minimization,
batch Frobenius-norm maximization as EntMin, BFM in
our experiments. When applied to the existing methods, we
denote Batch Nuclear-norm Maximization or entropy mini-
mization as +BNM or +EntMin.

4.1. Semi-supervised Learning

CIFAR-100 [22] is a standard benchmark dataset for
semi-supervised learning. We evaluate our method of BNM
on CIFAR-100 with 5000 and 10000 labeled examples re-
spectively. We utilize the ResNet [17] model, the same
backbone with [32]. The batch size is fixed to 64 in our
experiments. The experiments are implemented with Ten-
sorflow [1]. We create 4 splits for each and report the mean
and variance across the accuracy on different splits.

The results are shown in Table 1. In semi-supervised
learning (SSL), direct entropy minimization could improve



Table 1. Accuracy(%) on the CIFAR-100 dataset for semi-
supervised learning methods.

Method 5000 10000
Temporal Ensembling [24] - 61.35±0.51

SNTG+Π-model [28] - 62.03±0.29
ML+CCN+VAT [50] 56.58±0.31 64.72±0.23

ResNet [17] 39.73±0.33 49.55±0.28
EntMin 40.92±0.18 50.36±0.20
BNM 41.59±0.27 51.07±0.24

VAT* [30] 56.63±0.18 63.62±0.18
VAT+EntMin 56.97±0.21 64.48±0.22
VAT+BNM 57.43±0.24 64.61±0.15

the performance, while BNM outperforms entropy mini-
mization. The improvement of BNM applied on a sim-
ple pretrained ResNet is moderate compared to other state-
of-the-art well-designed SSL methods. However, working
with other SSL methods such as VAT [30], BNM demon-
strates more significant improvement, which is compara-
ble to methods with more complicated mechanism such as
ML+CCN+VAT [50]. Thus BNM is more suitable for co-
operation with existing SSL methods, and performs better
than entropy minimization in all cases.

4.2. Domain Adaptation

Office-31 [38] and Office-Home [46] are standard bench-
marks for domain adaptation. Office-31 contains 4,652 im-
ages in 31 categories, and consists of three domains: Ama-
zon (A), Webcam (W), and DSLR (D). We evaluate the
methods across the three domains, resulting in six transfer
tasks. Office-Home is a relative challenging dataset with
15,500 images in 65 categories. It has four significantly dif-
ferent domains: Artistic images (Ar), Clip Art (Cl), Product
images (Pr), and Real-World images (Rw). There are 12
challenging transfer tasks among four domains in total.

We adopt ResNet-50 [17] pre-trained on ImageNet [8]
as our backbone. The batch size is fixed to 36 in our
experiments. The experiments are implemented with Py-
Torch [34]. BNM loss is directly combined with classifi-
cation loss with the parameter λ fixed to 1. When BNM is
combined with existing methods, the parameter λ is fixed to
0.1. For each method, we run four random experiments and
report the average accuracy.

The results on Office-31 and Office-Home are shown
in Table 2 and 3. On both Office-31 and Office-Home,
as we expected, BFM obtains similar results with EntMin,
while BNM achieves substantial improvement on average
over other entropy-based methods. Surprisingly, BNM ob-
tains superior results compared with popular alignment-
based comparison methods. The results show that Batch
Nuclear-norm Maximization is effective for domain adap-
tation, especially on the difficult tasks where the baseline
accuracy is relatively low. Besides, we add BNM to ex-

Table 2. Accuracies (%) on Office-31 for ResNet50-based unsu-
pervised domain adaptation methods.

Method A→D A→W D→W W→D D→A W→A Avg
ResNet-50 [17] 68.9 68.4 96.7 99.3 62.5 60.7 76.1

GFK [12] 74.5 72.8 95.0 98.2 63.4 61.0 77.5
DAN [25] 78.6 80.5 97.1 99.6 63.6 62.8 80.4

DANN [11] 79.7 82.0 96.9 99.1 68.2 67.4 82.2
ADDA [45] 77.8 86.2 96.2 98.4 69.5 68.9 82.9

MaxSquare [6] 90.0 92.4 99.1 100.0 68.1 64.2 85.6
Simnet [36] 85.3 88.6 98.2 99.7 73.4 71.8 86.2
GTA [40] 87.7 89.5 97.9 99.8 72.8 71.4 86.5
MCD [39] 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CBST [58] 86.5 87.8 98.5 100.0 70.9 71.2 85.8
CRST [57] 88.7 89.4 98.9 100.0 70.9 72.6 86.8

EntMin 86.0 87.9 98.4 100.0 67.0 63.7 83.8
BFM 87.7 86.9 98.5 100.0 67.6 63.0 84.0
BNM 90.3 91.5 98.5 100.0 70.9 71.6 87.1

CDAN [26] 92.9 93.1 98.6 100.0 71.0 69.3 87.5
CDAN+EntMin 92.0 91.2 98.7 100.0 70.7 71.0 87.3
CDAN+BNM 92.9 92.8 98.8 100.0 73.5 73.8 88.6

(a) Ar→ Cl (b) Ar→ Pl

Figure 3. Diversity ratio on Office-Home for domain adaptation,
calculated as the predicted diversity divided by the ground truth
diversity. The predicted (ground truth) diversity is measured by the
average number of predicted (ground truth) categories in randomly
sampled batches.

isting CDAN [26], denoted as CDAN+BNM. The results
of CDAN+BNM outperforms CDAN and CDAN+EntMin
by a large margin, which shows that BNM could cooperate
well with other methods. In summary, BNM could not only
be regarded as a basic simple method for domain adapta-
tion, but also an effective module contributing to existing
methods.

To validate that BNM could maintain the diversity in do-
main adaptation compared with entropy minimization, we
show the diversity ratio in Office-Home on tasks of Ar →
Cl and Ar→ Pr in Figure 3. The diversity is measured by
the mean matrix rank, i.e., mean number of predicted cate-
gories in randomly sampled batch. Thus the diversity ratio
is measured by the mean predicted category number divid-
ing the mean ground-truth category number. As shown in
Figure 3(a), the diversity ratio of BNM is larger than that
of the EntMin by a large margin in Ar → Cl. This phe-
nomenon is normal since the rich samples near the decision
boundary are mainly classified into the majority categories,
reducing the diversity in the batch examples. As shown in



Table 3. Accuracies (%) on Office-Home for ResNet50-based unsupervised domain adaptation methods.
Method Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg

ResNet-50 [17] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [25] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [11] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD [39] 48.9 68.3 74.6 61.3 67.6 68.8 57 47.1 75.1 69.1 52.2 79.6 64.1
SAFN [52] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

Symnets [54] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD [53] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

EntMin 43.2 68.4 78.4 61.4 69.9 71.4 58.5 44.2 78.2 71.1 47.6 81.8 64.5
BFM 43.3 69.1 78.0 61.3 67.4 70.9 57.8 44.1 78.9 72.1 50.1 81.0 64.5
BNM 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

CDAN [26] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+EntMin 54.1 72.4 78.3 61.8 71.8 73.0 62.0 52.3 79.7 72.0 57.0 83.2 68.1
CDAN+BNM 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4

Table 4. Accuracies (%) on I2AwA for ResNet50-based unsuper-
vised open domain recognition methods.

Method Known Unknown All Avg
zGCN [49] 77.2 21.0 65.0 49.1
dGCN [19] 78.2 11.6 64 44.9
adGCN [19] 77.3 15.0 64.1 46.2
bGCN [42] 84.6 28.0 72.6 56.3

pmd-bGCN [5] 84.7 27.1 72.5 55.9
UODTN [55] 84.7 31.7 73.5 58.2
Balance* [55] 85.9 22.3 72.4 54.1

EntMin 87.5 7.2 70.5 47.4
BFM 87.7 9.2 71.1 48.4
BNM 88.3 39.7 78.0 64.0

Figure 3(b), the diversity of BNM is still larger in Ar→ Pl.
But the differences between EntMin and BNM in diversity
ratio are shorter than that in Ar → Cl. This results from
fewer samples near the decision boundary in Ar→ Pl since
Ar → Pl is easier, i.e., the basic accuracy of Ar → Pl is
higher. Thus BNM is more effective in difficult tasks with
rich data near the decision boundary.

4.3. Unsupervised Open Domain Recognition

We evaluate our BNM method on I2AwA for unsuper-
vised open domain recognition [55]. In I2AwA, the labeled
domain consists of 2,970 images belonging to 40 known
categories, via selecting images from ImageNet and Google
image search engine. The unlabeled domain of I2AwA is
AwA2 [51] which contains a total of 37,322 images. The
images are totally classified into 50 categories, with the
same 40 known categories as labeled domain, and the re-
maining 10 classes as unknown categories.

To obtain a reliable initial classification model on un-
known categories, we construct the same knowledge graph
for I2AwA with UODTN [55]. The graph structure is built
according to the popular methods, Graph Convolutional
Networks (GCN) [21, 49]. The graph nodes include all

Table 5. Parameter Sensitivity on the I2AwA dataset for ResNet50-
based unsupervised open domain recognition methods.

Method Known Unknown All AVG
BNM (λ = 1) 88.0 39.4 77.7 63.7

BNM (λ = 1.5) 88.1 39.7 77.9 63.9
BNM (λ = 2) 88.3 39.7 78.0 64.0
BNM (λ = 3) 87.7 39.5 77.5 63.6
BNM (λ = 4) 87.4 38.6 77.1 63.0

categories in the unlabeled domain and also their children
and ancestors in WordNet [29]. To obtain the features of
the nodes, we choose the word vectors of all categories ex-
tracted via the GloVe text model [35] trained on Wikipedia.
We use ResNet-50 [17] pretrained on ImageNet [8] as our
backbone, where the parameters of the last fully connected
layer could be initialized by the parameters of GCN in the
same categories.

For fair comparison, we perform in the same environ-
ment as UODTN [55]. The experiments are implemented
with Pytorch [34]. We fix the batch size to 48 for both
the labeled and unlabeled domain. We apply BNM on the
classfication outputs on the total 50 categories and minimize
classification loss on the known 40 categories in labeled do-
main and BNM loss on all the 50 categories in the unlabeled
domain to train the network. We report the results of known
categories, unknown categories, all categories on unlabeled
domain and the average of known and unknown category
accuracy. For each method, we run four random experi-
ments and report the average classification accuracy.

The results are shown in Table 5, we achieve remark-
able improvement on I2AwA. We achieve 11.4% improve-
ment on the known categories over the baseline zGCN, and
BNM surprisingly improves by 19.0% on the unknown cat-
egories over zGCN. From the overall range of the dataset,
we achieve 13.3% improvement on the whole dataset and
we achieve an average improvement of 15.2% improvement
over zGCN. Besides, BNM outperforms the state-of-the-art
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Figure 4. Statistics for Entropy, Balance and Nuclear-norm in the whole training process.

UODTN [55] by 4.8%. This shows that the simple BNM is
effective enough for unsupervised open domain recognition,
which outperforms the combination of complex functions in
UODTN [55]. We also show the parameter sensitivity ex-
periments in Table 5. The results show BNM is relatively
stable under different parameters, and we set λ fixed to 2
for further comparison.

We also compare the training process of EntMin, Bal-
ance and BNM loss functions in Figure 4. The predic-
tion results on all categories, known categories and un-
known categories are separately shown in Figure 4(a), 4(b)
and 4(c). BNM outperforms others on All accuracy, Known
category accuracy and Unknown category accuracy in the
whole training process. To explore the intrinsic effect of
BNM on unknown categories, we show the unknown cat-
egory ratio, which is the ratio of predicting the samples in
the labeled domain of I2AwA into unknown categories in
Figure 4(d). Obviously, Entmin reduces the unknown cat-
egory ratio by a large margin, which greatly damages the
prediction diversity and accuracy on unknown categories.
Though the unknown category ratio in BNM is reduced at
first, it gradually raises along the training process, and it ap-
pears to be even higher than initial ratio after training. This
means BNM could protect the diversity by ensuring ratio
of prediction on minority categories. Though the Balance
constraint could also protect ratio of prediction on minority
categories, results of Balance loss seems not quite stable.
Besides, the accuracy of Balance loss is much lower than
BNM due to the lack of discriminability. The experimental
phenomenon has steadily proved the effectiveness of BNM
towards both discriminability and diversity.

4.4. Discussion

The chosen tasks are typical label insufficient situations
to show the mechanism of BNM. Among the tasks and
datasets, there are differences in two aspects, i.e., the do-
main discrepancy and category balance. There exists large
domain discrepancy in tasks of domain adaptation and un-
supervised open domain recognition, while no domain dis-
crepancy is assumed in semi-supervised learning. From the
view of category balance, the categories are balanced in
datasets of semi-supervised learning, i.e., CIFAR-100. In

datasets of domain adaptation, i.e., Office-31 and Office-
Home, the categories are imbalanced. While unsupervised
open domain recognition is a learning task with extremely
imbalanced category distributions, where some categories
are even unseen in the labeled domain. In datasets of
I2AwA, 10 categories are unknown categories, which hold
a remarkable percentage of the total 50 categories.

As shown in the experiments, BNM could cooperate well
with existing methods in semi-supervised learning. For
domain adaptation, BNM could outperform most existing
methods using losses such as adversarial loss. While in un-
supervised open domain recognition, method with only the
BNM loss and classification loss could even achieve state-
of-the-art results. We could see the progressive progress and
fitness of BNM to the tasks, from semi-supervised learning
to unsupervised open domain recognition. Considering the
differences between the tasks, we could obtain two conclu-
sions on the applicability of BNM. The first is that BNM
could work well in label insufficient situations. The other is
that BNM outperforms entropy minimization significantly,
especially when there exists rich domain discrepancy and
imbalanced category distribution.

5. Conclusion
The discriminability and diversity could be separately

represented by the Frobenius-norm and rank of the batch
output matrix. Nuclear-norm is the upperbound of
Frobenius-norm, also a convex approximation of matrix
rank. Accordingly, we propose BNM method which max-
imizes the batch nuclear-norm to ensure higher predic-
tion discriminability and diversity. Experiments show our
method is suitable for the classification tasks under sce-
narios of semi-supervised learning, domain adaptation and
open domain recognition. We will explore the effect of
BNM on other settings and tasks in the future.

Acknowledgement. This work was supported in part
by the National Key R&D Program of China under Grant
2018AAA0102003, in part by National Natural Science
Foundation of China: 61672497, 61620106009, 61836002,
61931008, 61771457, 61732007 and U1636214, and in
part by Key Research Program of Frontier Sciences, CAS:
QYZDJ-SSW-SYS013.



References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16), pages 265–283, 2016.

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A
holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019.

[3] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A
singular value thresholding algorithm for matrix completion.
SIAM Journal on optimization, 20(4):1956–1982, 2010.

[4] Emmanuel J Candès and Benjamin Recht. Exact matrix com-
pletion via convex optimization. Foundations of Computa-
tional mathematics, 9(6):717, 2009.

[5] Jianfei Chen, Chongxuan LI, Yizhong Ru, and Jun Zhu. Pop-
ulation matching discrepancy and applications in deep learn-
ing. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, NIPS,
pages 6262–6272. Curran Associates, Inc., 2017.

[6] Minghao Chen, Hongyang Xue, and Deng Cai. Do-
main adaptation for semantic segmentation with maximum
squares loss. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2090–2099, 2019.

[7] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin
Wang. Transferability vs. discriminability: Batch spectral
penalization for adversarial domain adaptation. In Interna-
tional Conference on Machine Learning, pages 1081–1090,
2019.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. 2009.

[9] Weisheng Dong, Guangming Shi, and Xin Li. Nonlocal im-
age restoration with bilateral variance estimation: a low-
rank approach. IEEE transactions on image processing,
22(2):700–711, 2012.

[10] Maryam Fazel. Matrix rank minimization with applications.
2002.

[11] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016.

[12] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman.
Geodesic flow kernel for unsupervised domain adaptation.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2066–2073. IEEE, 2012.

[13] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In Advances in neural
information processing systems, pages 529–536, 2005.

[14] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. Journal of Machine Learning Research, 13(Mar):723–
773, 2012.

[15] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with applica-
tion to image denoising. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2862–2869, 2014.

[16] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on knowledge and data engineer-
ing, 21(9):1263–1284, 2009.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Dar-
rell. Cycada: Cycle-consistent adversarial domain adapta-
tion. arXiv preprint arXiv:1711.03213, 2017.

[19] Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao
Wang, Yujia Zhang, and Eric P Xing. Rethinking knowledge
graph propagation for zero-shot learning. arXiv preprint
arXiv:1805.11724, 2018.

[20] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende,
and Max Welling. Semi-supervised learning with deep gen-
erative models. In Advances in neural information process-
ing systems, pages 3581–3589, 2014.

[21] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

[23] Alex Kulesza, Ben Taskar, et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends R© in
Machine Learning, 5(2–3):123–286, 2012.

[24] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.

[25] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I
Jordan. Learning transferable features with deep adaptation
networks. arXiv preprint arXiv:1502.02791, 2015.

[26] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. In Advances in Neural Information Processing Systems,
pages 1647–1657, 2018.

[27] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.
Jordan. Unsupervised domain adaptation with residual trans-
fer networks. In NIPS, pages 136–144, 2016.

[28] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang.
Smooth neighbors on teacher graphs for semi-supervised
learning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8896–8905,
2018.

[29] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

[30] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018.



[31] Augustus Odena. Semi-supervised learning with genera-
tive adversarial networks. arXiv preprint arXiv:1606.01583,
2016.

[32] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances in Neural
Information Processing Systems, pages 3235–3246, 2018.
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