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Abstract— Lip reading has received an increasing research
interest in recent years due to the rapid development of deep
learning and its widespread potential applications. One key
point to obtain good performance for the lip reading task
depends heavily on how effective the representation can be
used to capture the lip movement information and meanwhile
to resist the noises resulted by the change of pose, lighting
conditions, speaker’s appearance, speaking speed and so on.
Towards this target, we propose to introduce the mutual
information constraints on both the local feature’s level and the
global sequence’s level to enhance the relations of them with
the speech content. On the one hand, we require the features
generated at each time step to carry a strong relation with
the speech content by imposing the local mutual information
maximization constraint (LMIM), so as to improve the model’s
ability to discover fine-grained lip movements and the fine-
grained differences between words with similar pronunciation,
such as “spend” and “spending”. On the other hand, we
introduce the mutual information maximization constraint on
the global sequence’s level (GMIM), to make the model be able
to pay more attention to discriminate key frames related with
the speech content, and less to various noises appeared in the
speaking process. By combining these two advantages together,
the proposed method is expected to be both discriminative
and robust for effective lip reading. To verify this method,
we evaluate on two large-scale benchmarks whose videos are
collected from several TV shows with a wide coverage of
the speaking conditions. We perform a detailed analysis and
comparison on several aspects, including the comparison with
the baseline of the LMIM and GMIM, and the visualization
of the learned representation. The results not only prove the
effectiveness of the proposed method but also report new state-
of-the-art performance on both the two benchmarks.

I. INTRODUCTION

Lip reading is a task to infer the speech content in a

video by using only the visual information, especially the lip

movements. It has many crucial applications in practice, such

as assisting audio-based speech recognition [4], biometric

authentication [2], aiding hearing-impaired people [22], and

so on. With the huge success of deep learning based models

for several related tasks in the computer vision domain,

some works began to introduce the powerful deep models

for effective lip reading in these three years [2], [18], [17],

[14]. For example, [18] proposed an end-to-end deep learning

architecture for word level visual speech recognition, which

is a combination of convolutional networks and bidirectional
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Fig. 1. The word-level lip reading is a challenge task. (a) The actual frames
of “ABOUT” include only frames at the time step T = 12∼19. (b) The same
word label always have a greatly diversified appearances changes.

Long Short-Term Memory networks, yielding an improve-

ment of 6.8% on the accuracy than before. Besides the great

impetus of deep learning technologies, several large-scale

lip reading datasets, were released in recent years, such as

LRW [6], LRW-1000 [23], LRS2 [5], LRS3 [1], and so

on. These datasets have also contributed significantly to the

recent progress in the development of lip reading.

In this paper, we focus on the word-level lip reading,

which is a basic but important branch in the lip reading

domain. For this task, each input video is annotated with a

single word label even when there are other pronunciations

in the same video. For example, the sample in Fig. 1(a) is

annotated as “ABOUT”, but the actual frames of “ABOUT”

include only frames at time step T = 12∼19, shown in

the red boxes. The frames before and after this interval are

corresponding to the word “JUST” and “TEN” respectively,

not “ABOUT”. This is consistent with the actual case where

the exact boundary of a single word is always hard to get.

This property requires a good lip reading model to be able

to learn the latent regular patterns hidden in different videos

of the same word label, and so to be able to pay more

attention to valid key frames, but less to other unrelated

frames. Besides the above problem of word boundary, the

video samples corresponding to the same word label always

have greatly diversified appearance changes, as shown in Fig.

1(b). All these properties require the lip reading model to be

able to resist the noises in the sequence to capture the latent



patterns which are consistent in various speech conditions.

In the meanwhile, due to the limited effective area of

lip movements, different words probably give a similar

appearance in the speaking process. Especially, the existence

of homophones where different words may look the same or

quite similar increases many extra difficulties to this task.

These properties require the model being able to discover

the fine-grained differences related to different word labels

in the frame-level to distinguish each word from the other.

To solve the above issues, we try to introduce the mu-

tual information maximization (MIM) on different levels

to help the model learn both robust and discriminative

representations for effective lip reading. On the one hand, the

representation at the global sequence level would be required

to have a maximized mutual information with the speech

content, to force the model learning the latent consistent

global patterns of the same word label in different samples,

while being robust to the variations of pose, light and other

label-unrelated conditions. On the other hand, the features

at the local frame level would be required to maximize

their mutual information with the speech content to enhance

the word-related fine-grained movements at each time step

to further enhance the differences between different words.

By combining these two types of constraints together, the

model could automatically find and distinguish the valid key

frames corresponding to the target word, and ignore other

unrelated frames. Finally, we evaluate the proposed approach

on two large-scale benchmarks LRW and LRW-1000, whose

samples are all collected from various TV shows with a

wide variation of the speaking conditions. The results show a

new state-of-the-art performance on both the two challenging

datasets when compared with other related work in the same

condition of using no extra data or extra pre-trained models.

The proposed method could also be easily modified to

other existing models for other tasks, which may bring some

meaningful insights to the community for other tasks.

II. RELATED WORK

In this section, we provide an overview of the related

literature on two closely related aspects, lip reading and

mutual information based methods.

A. Lip Reading

When deep learning technologies are not so popular, many

methods have achieved several encouraging results by using

specifically-designed and hand-engineered features, such as

optical flow [16], lip movement tracking, and so on. The

classification is often done by Support Vector Machine [16]

together with the Hidden Markov Models (HMMs) [3]. We

refer to [24], [15] for a detailed review on these non-

deep methods based lip reading. These previous work have

provided an important impetus to the advancement of lip

reading at the early stage.

With the rapid development of deep learning in recent

years, more and more researchers gradually tend to perform

the lip reading task by deep neural networks.

2D-CNN is the first type of network applied for lip reading

to extract features for each frame. [12] proposed a system

comprises a CNN and a hidden Markov model with Gaussian

mixture observation model (GMM-HMM). The outputs of

the CNN are regarded as visual feature sequences, and

the GMM-HMM is applied for word classfication. In the

later works [19], [5], long short-term memory (LSTM) or

gated recurrent unit (GRU) is used to model the patterns

on the temporal-dimensional issues. The CNN-LSTM based

models, which can be trained in an end-to-end manner, has

gradually become a processing pipeline for lip reading.

However, the mouth region at each frame is not con-

sistent and the context in near frame plays an important

role for effective lip reading. Several methods introduce

3D convolution to tackle this problem [14], [17], [23]. For

example, LipNet [2] employed a 3D-CNN in the front-end

on the visual frames for the lip reading task and obtained

remarkable performance. Stafylakis et al. [18] combined 3D-

CNN and 2D-CNN based networks to obtain features, which

got a much higher accuracy on LRW dataset than before.

Besides directly applying different types of deep networks

to lip reading, some recent impressive works begun to

design particular models to solve the shortcomings of some

existing networks for more effective lip reading. For exam-

ple, Stafylakis et al. [17] utilized additional word boundary

information to improve the performance on the word-level

LRW dataset. [5] introduced the attention mechanism for

selecting key frames in the sequence-to-sequence model.

Wand et al. [20] improved the accuracy of lip reading

by domain-adversarial training, which is expected to get

speaker-independent features, which is beneficial to the final

word classification. However, it is unable to apply in large

scale dataset which contains over one thousand people.

Recently, Wang [21] extracted both frame-level fine-grained

features and short-term medium-grained features by a 2D-

CNN network and 3D-CNN network respectively. In this

paper, we propose a new way for effective lip reading.

Specifically, we introduce the constraints on both the local

feature level and the global representation level to make the

model both be able to learn fine-grained features and pay

attention to key frames respectively. At the same time, it is

easy to train and doesn’t increase many parameters while

preserving good performance.

B. Mutual Information Mechanism

Mutual information (MI) is a fundamental quantity for

measuring the relationship between two random variables.

It is always used to evaluate the “amount of information”

obtained about one random variable when given the other

random variable. Based on this property, the mutual informa-

tion of two random variables is always used as a measure of

the mutual dependence between the two variables. Moreover,

unlike the Pearson correlation coefficient which only captures

the degree of linear relationship, mutual information also

captures nonlinear statistical dependencies [9], and therefore

has a wide range of applications.
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For example, Ranjay et al. [10] built a visual question

generation model by maximizing the MI between the image,

the expected answer and the generated question, leading to

the model’s ability to select corresponding features. Li et al.

[11] tried to maximize the MI between the source and target

sentences in the neural machine translation task to improve

the diversity of translation results.

One work which has a bit relation with our work is

Zhu et al. [25], who performed talking face generation by

maximizing the MI between the words distribution and the

facial/audio distribution. But in our work, we try to maximize

the MI between the words distribution and the representation

at different levels, to guide the model towards learning both

robust and discriminative features for the lip reading task,

which is totally different with [25].

III. THE PROPOSED MUTUAL INFORMATION

MAXIMIZATION FOR LIP READING

In this section, we would first give an overview of the

overall architecture. Then the particular manner to introduce

mutual information mechanisms on different levels is pre-

sented. Finally, the optimization process to learn the model

is provided.

A. The Overall Architecture

Let X = (x1,x2, ...,xT ) denotes the input sequence with

T frames in total, where xi is the feature vector of the i-th

frame. The task of the model is to classify the input sequence

into one of the C classes, where C is the total number of all

the classes. Let Y= (0,0,1, ...,0) denotes the annotated word

label of the sequence, where Y is a C−dimensional one-hot

vector with only a single 1 at the position corresponding to

its word label index. We construct our base architecture with

two principal components, front-end and back-end, which

enable the total network to be trained end-to-end.

Specifically, given the input image sequence X, a 3D-

CNN layer is firstly applied on the raw frames, in order to

perform an initial spatial temporal alignment in the sequence

for effective recognition. A spatial max-pooling layer is then

followed to compact the features in the spatial domain.

It should be noted that we keep the temporal dimension

unchanged in this procedure to avoid a further shortage

of the movement information in the sequence because the

duration of each word is always very short. In the next step,

we divide the features into T parts and employ ResNet18

at each time step t = 1,2, ...,T to separately extract dis-

criminative features. To improve the ability to capture fine-

grained movements related to the spoken word, we impose

the mutual information constraint on these features with the

annotated label to enhance their relations in the learning

process. Then all these features would be fed into a global

average pooling(GAP) layer to compress the final features

into T ×D where D is the channel of the last layer and 512

in this paper, GAP is always used to reduce the dimensions

of a tensor. We named the above module as the Front-
end, including a 3D-CNN layer, a spatial pooling layer, a

ResNet18 network, and a GAP layer, as shown in Fig. 2.

With the initial representation from the Front-end, a 3-

layer Bi-GRU is followed to capture the latent patterns of the

sequence in the temporal dimension. Bi-GRU contains two

independent single directional GRUs. The input sequence is

fed into one GRU as the normal order, and into another GRU

as the reverse order. The outputs of the two GRUs would

be concatenated together at each time step to represent the

whole sequence. The output of the Bi-GRU is expected to

be a global representation of the whole input sequence with

dimension T × 2N, where N is the neurons in each GRU.

The representation will be finally sent to a linear layer for

classification, we named these parts as the Back-end, as

shown in Fig. 2. To improve its ability to resist noises and

selecting key frames in the sequence, we impose another

mutual information constraint on this global representation.

B. Local Mutual Information Maximization (LMIM)

As stated in the previous section, the performance of lip

reading is heavily affected by the model’s ability to capture

the local fine-grained lip movements, so as to generate

discriminative features to distinguish the words from each

other, especially the homophones. MI-based constraint is a

promising tool for learning good features in an unsupervised

way, because we never need any additional data to train

it. In this paper, we would introduce LMIM (Local Mutual

Information Maximization) on ResNet18 to help the model

focus more on the spatial related regions at each time step

and produce more discriminative features. Especially when

it comes to lip reading, the local features related to mouth

regions are significant, so that the Front-end should perceive

the variations of the local regions properly. Therefore, unlike

most existing work [10], [25], we maximize the MI on each

patch of the features rather than the whole features.

The process of the LMIM is shown in Fig. 3. We assume

the feature map in the last layer of ResNet18 (which will be

sent to the GAP layer) as F with has a shape of H ×W ×D,
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Fig. 3. The process of training the base network with the proposed LMIM. The total loss is computed by averaging all of the time steps and patches.
The gradients from the LMIM will be backpropagated to the Front-end through the features sampled from the ResNet18. The LMIM will be dropped after
training.

where H,W and D are the height, width and the channels

respectively.

Because mutual information is notoriously hard to com-

pute for unknown distribution, we estimate it with the help of

deep network here. Following the representation of Jensen-

Shannon(JS) MI estimator [8], [13]:

̂I
(JSD)

θ (A,B) = Ep(A,B) [−ϕ (−Tθ (a,b))]

−Ep(A)p(B) [ϕ (Tθ (a,b))] ,
(1)

where ϕ(k) = log(1+ek), A and B are the two variables that

we want to estimate the MI between them, Tθ is a continuous

function that we directly use a network to approximate

it. The p(A,B) is the joint distribution of paired samples

{a,b}, and the p(A)p(B) is the marginal distribution of the

unpaired samples {a,b} by randomly sampling A and B.

In the optimization process, because ϕ(k) = log(1+ ek) is

a monotone increasing function, so maximizing the JS MI

estimator is equivalent to optimize (1) with ϕ(k) = log(1+k)
when the formula is equal to the binary cross-entropy loss.

We assume the feature F have H × W local patches

( f1, f2, ..., fH×W ) which looks like we separate the original

image to H ×W patches when the receptive field of the

features are mapped to the original image. The label of each

sample is expanded from the one-hot vector of dimension

C×1 to the same height and width as C×H ×W by repeti-

tion. Then we concatenate the labels and features together to

obtain a representation of dimension (C+D)×H×W , which

would be used as the input to compute the Local Mutual

Information Maximization network (LMIM). To obtain the

local mutual information in each position of the H ×W
locations, we employ two convolutional layers with kernel

size 1×1 on the concatenated representation. Then a sigmoid

activation is applied to the last layer to simulate the value

of the mutual information. Please note that the architecture

of the network in this step can be any other form, because

it is just applied to approximate a continuous function Tθ .

The output layer must be based on a sigmoid activation

function when using the binary cross-entropy. The dimension

of the outputs of the LMIM is H×W , each number explains

how much the corresponding patch is related with the given

word label. When the inputs are paired samples, we expect

the mutual information of every patch close to 1 (Real). In

other cases, we expect it to 0 (Fake). For sampling unpaired

samples, we randomly concatenated the features with the

labels in the same batch.

Therefore, the optimization for LMIM can be denoted as

a binary cross-entropy loss:

L(LMIM) = Ep(F,Y ) [log(LMIM ( f ,y))]

+Ep(F)p(Y ) [log(1−LMIM ( f ,y))] .
(2)

Noting that in this stage, we don’t solve any temporal issues,

the features of T time steps in an input video will be sent

to LMIM successively. In the end, we compute the mean of

the loss at all time steps for computing the gradients.

C. Global Mutual Information Maximization (GMIM)

In each sequence, the amount of valuable information

provided by different frames is not equal. In LRW dataset and

several practical cases, there are many frames in a sequence

that is not relevant to the given target word label. However,

the popular way in current related work is to average all

the time steps to get the final representation, which has

neglected this point and has superior performance when

come to practice.

To solve this problem, we introduce global mutual infor-

mation maximization on the global representation obtained

from the Bi-GRU. Specifically, we introduce an additional
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LSTM together with a linear layer on the outputs of the

Front-end. This additional LSTM would allocate different

weights β for different frames according to the target word.

The total architecture is shown in Fig. 4.

Based on the outputs Z(T × 2N) of the 3-layer Bi-GRU

layers and the weighted value β (T × 1), the final global

representation is the weighted average of the outputs Z at

all time steps:

O =
∑T

t=1 βt ·Zt

T
. (3)

The output O(2N) will be sent to a linear layer to transform

its shape from 2N to C, C is the total number of classes, the

final representation of the whole sequence O(C) is applied

to get the classification score as

Ŷi =
exp(Oi)

∑C
j=1 exp(O j)

. (4)

However, the weights β would not be normalized in some

manner. For related valuable key-frames, the weight should

be positive and can be of any value. While for unrelated

frames, we just want its weight close to zero, not a negative

number for the optimization problem. Therefore we use

ReLU to obtain the weight β as

βt = ReLU(Wlinear ×LSTM(G)t +blinear) , (5)

where G is the outputs of the GAP layer, Wlinear and blinear
are the parameters of the linear layer and LSTM(G)t denotes

the hidden state at time step t of the extra LSTM layer.

To guide the learning of the weights, we constrain the

weighted average vector to contain most of the information

about the target word. Specifically, we maximize the MI

between the weighted average representation O(2N) and

label Y, both of which will be fed into the global mutual

information maximization network (GMIM), which consists

of two linear layers and outputs a scalar after a sigmoid

activation. If the inputs come from paired samples, we expect

the outputs of GMIM as large as possible and even close to

1 (Real). In other cases, the output is expected to close to 0

(Fake). So the objective function can be written as:

L(GMIM) = Ep(O,Y ) [log(GMIM (o,y))]

+Ep(O)p(Y ) [log(1−GMIM (o,y))] .
(6)

D. Loss Function

Combining the cross-entropy loss with the LMIM and

GMIM optimization function, the final objective loss func-

tion for the whole model is:

Ltotal =−
C

∑
i=1

Yi logŶi −L(LMIM)−L(GMIM), (7)

where the first term is the cross-entropy loss and Yi is the

label. These three cross-entropy loss have the similar number,

there is no need to allocate different weights to each loss,

which makes the networks can be trained easily and stably.

IV. EXPERIMENTS

In this section, we first evaluate the performance of our

modified architecture (baseline) which can be trained easier

than others. Then we conduct an ablation study on the

proposed LMIM and GMIM (GLMIM) and figure out how

they help the model get better results respectively. we also

evaluate the performance of the baseline with the GLMM and

compare it with other state-of-the-art lip reading methods on

the two largest benchmark datasets. Finally, we visualize the

discriminative representations leaned with the GLMIM. Code



and models will be available at https://github.com/
xing96/MIM-lipreading.

A. Datasets

We evaluate our method on two large-scale word-level lip

reading benchmarks, LRW and LRW-1000. The samples in

both of these two datasets are collected from TV shows, with

a wide coverage of the speaking conditions including the

lighting conditions, resolution, pose, gender, make-up etc.

LRW [6]: is released in 2016, contains 500 classes

with more than a thousand speakers. It is the largest En-

glish database for word-level audiovisual speech recognition,

which has 500 classes and displays substantial diversity

in speech conditions. The training set instances reach to

488766, validation and test set each contains 25000 in-

stances. LRW remains a challenging dataset and therefore

has been widely used by most existing deep learning based

methods, even the accuracy is hard to rise by one percentage

point.

LRW-1000 [23]: The dataset is the largest and also the

only one for Mandarin lip reading dataset, which has 1000

classes. The training set contains 603097 instances and test

set contains 51578 instances, totaling 57 hours. Samples of

the same word are not limited to a previously specified length

range to allow the existence of various speech rates, which

brings the more difficulties. This dataset aims at covering

a “natural” variability over different speech modes and

imaging conditions to incorporate challenges encountered in

practical applications.

B. Implementation Details

The inputs for network are all cropped or resized to 88×
88. The kernel size, stride and padding of the first 3D-CNN

are (5,7,7), (1,2,2) and (2,3,3) respectively. Each GRU or

LSTM layer has 1024 neurons (which means each Bi-GRU

contains 2048 neurons). The Adam optimizer is used with

weights decay 0.00005. In the training process, the learning

rate would decay from 0.0001 to 0.00001 when the accuracy

doesn’t increase. Dropout is utilized at Bi-GRU layers to

mitigate the overfitting problem.

C. Baseline

We adopt [14] as the base architecture. The accuracy of our

re-implementation on LRW is a little lower than the value in

the original paper. We use the modified version as described

in III-A and take it as our baseline when using no MI

constraint. As is shown in Table I, our modified architecture

is superior to the base architecture, which achieves 82.14%

accuracy on LRW dataset.

TABLE I

COMPARISON OF THE MODIFIED BASELINE.

Method Accuracy
Petridis[14] 82.00%

Petridis[14](our re-implement) 81.70%

The Modified Baseline Architecture 82.14%

TABLE II

IMPROVEMENT ON WORDS WITH SIMILAR PRONUNCIATION

Class Baseline Baseline with LMIM Improvement

MAKES 62% 74% 12%
MAKING 80% 92% 12%

POLITICAL 82% 90% 8%
POLITICS 84% 92% 8%

STAND 48% 60% 12%
STAGE 70% 80% 10%
NORTH 78% 90% 12%

NOTHING 78% 86% 8%
SPEND 36% 46% 10%

SPENDING 78% 82% 4%

D. Effect of the LMIM

In order to illustrate the effectiveness of the proposed

LMIM, we train the baseline network and the baseline net-

work with the LMIM separately. The LMIM will be dropped

after training, which means that these two networks have

the same architecture and parameters. When we compare

the accuracy between these two networks, we find that

the network trained with the LMIM performs better, the

accuracy have risen by more than a percentage point. We

conduct the statistics of the accuracy of each class, after

applying the LMIM, most of the classes with high accuracy

improvement are similar words, such as MAKES/MAKING

and POLITICAL/POLITICIANS, as is shown in Table II.

The LMIM helps the baseline architecture to extract the

local fine-grained features, which is significant to improve

the ability to distinguish the words which have similar

pronunciation.

E. Effect of the GMIM

Selecting key frames is essential because a video contains

more than one word, this is why we apply GMIM to

make the model pay different attention to all frames. We

directly choose the model trained with LMIM in IV-D as the

contrastive network because of its excellent ability to extract

fine-grained features. For the sake of fairness, the Front-

end is fixed and only the Back-end is trained with GMIM.

Without sending any additional word boundary information,
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Fig. 5. We randomly sample three words and show the weights of each
frame learned with GMIM. The blue line shows the learned weight for each
frame. The red dashed line denotes the word boundary for the target word
when its value is 1.



TABLE III

COMAPRISON WITH OTHER RELATED WORK ON LRW.

Method Accuracy

Chung[2018][7] 71.50%
Chung[2017][5] 76.20%

Petridis[2018][14] 82.00%
Stafylakis[2017][18] 83.00%

Wang[2019][21] 83.34%

Baseline 82.14%
Baseline+LMIM 83.33%

The Proposed GLMIM 84.41%

TABLE IV

COMAPRISON WITH OTHER RELATED WORK ON LRW1000.

Method Accuracy

LSTM-5 25.76%
D3D[2018][23] 34.76%

3D+2D 38.19%
Wang[2019][21] 36.91%

Baseline 38.35%
Baseline+LMIM 38.69%

The Proposed GLMIM 38.79%

the model learns the key frames precisely and the accuracy

has increased by one percentage point. After we fine-tune

the total model with the proposed GLMIM, we get a new

state-of-the-art result.

The weights learned with the proposed GMIM, as is shown

in Fig. 5. The horizontal axis represents the 29 frames of

the video and the vertical axis represents the numeric of the

learned weights. The blue line shows the learned weights for

each frame. The red dashed line denotes the word boundary

for the target word when its value is 1. Meanwhile, the

context information is important for lip reading, if we only

use the frames which are among the word boundary, the

performance would drop off, which has been experimented in

[17]. Our model trained with GMIM not only learns the key

frames successfully and pays more attention to the frames

which are included in the word boundary, but also allocates

small amount of weights to the frames close to the word

boundary for capturing the context information.

F. Compare with state-of-the-art methods

We apply the proposed GLMIM to our main architecture

and compare it with the current state-of-the-art methods

on LRW. Although our baseline is not the best, but after

we apply the LMIM, the accuracy rises about 1.21%, our

proposed LMIM can help the CNN to capture more discrim-

inative and accurate features for the main task. Meanwhile,

the GMIM can help our main architecture to select key

frames rather than averaging all time steps directly. When

we apply the LMIM and GMIM together, the accuracy of

our model reaches 84.41%. Comparing with other lip reading

methods which have no additional inputs except the visual

information, as shown in Table III, we get the best result and

provide a new state-of-the-art result on the LRW dataset.

LRW1000 is a new dataset, which has a large variation of

speech conditions including lighting conditions, resolution,

speaker’s age, pose, gender, and make-up, etc. The best result

Fig. 6. Visualization of the features of the word “ABOUT”, the network
concentrates on the regions around the mouth.

is only 38.19% up to now. It is challenging to obtain a

good performance on this dataset while we achieve a high

accuracy of 38.79% which outperforms the state-of-the-art

results. Table IV gives the accuracy of our models. The

improvement of the GMIM is smaller when comparing with

the improvement on LRW, this interesting phenomenon may

be due to the useless frames in LRW-1000 is less than LRW,

even in some cases, there is no additional frames for other

words which makes the context information unavailable.

G. Visualization

For better demonstrating the ability of our method, we

choose a sample word “ABOUT” and visualize the feature

maps as shown in Fig. 6. The word boundary of the target

word “ABOUT” are surrounded by the red dashed line. We

performed summation over the features in the last layer

of ResNet18 along the channel dimension and mapped the

values (after normalizing) to different colors. Then we draw

the color to the same regions in the original input frame

according to the receptive field. The bright yellow regions

corresponding to the saliency regions with big feature values.

We can see that, the learned features automatically highlight

the mouth related regions.

We want to figure out how the proposed GLMIM achieve

high results, we choose 6 classes and each of them contains

20 samples. We send them separately to our original baseline

architecture and the architecture with applying the proposed

GLMIM. We extract the final representations O which will

be sent to the linear layer for classification. We apply PCA to

reduce its dimension form higher dimensions to 2 dimensions

for better visualization. As is shown in Fig. 7, the variance

among these classes before applying GLMIM ranges only

from −20 to 20; While the variance has been enlarged to the

interval between −40 and 60 after applying GLMIM, which

means the variance among the classes have been greatly

increased due to the introduction of the proposed GLMIM,

which makes it easier to distinguish different classes.



(a) Results before applying the GLMIM (b) Results after applying the GLMIM

Fig. 7. PCA visualization of the final represention form the Bi-GRU. With the help of the GLMIM, the architecture gets more discriminative results.

V. CONCLUSION

In this paper, we propose the mutual information maxi-

mization based methods both for local fine-grained feature

extraction and global key frames selection. We also modify

the existing model for lip reading that make it can be trained

easier, and we get the best results on the two largest word-

level lip reading datasets. Lip reading is still a challenge task,

but it’s worth to do because of its great value.
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