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Abstract— Identity-preserving human detection is important
for the privacy-protecting applications. IPHD[1] is a newly col-
lected identity-preserving dataset that only contains depth and
thermal images, which have much less information than RGB
images. While less information and weakly labeled ground-
truth boxes make it dif�cult to locate the objects correctly.
In this paper, we adopt an ef�cient depth-thermal fusion
approach to combine these two different inputs and enhance
the representation. Moreover, a noise robust hard example
mining algorithm is proposed to deal with weakly labeled data.
The experiments show that our single model with single scale
testing can get the AP=88.1 at IoU=0.5, which is a signi�cant
improvement compared with other competition results.

I. INTRODUCTION

Human detection is a popular research topic of com-
puter vision in recent years [2], [3], [4]. Human detec-
tors also play important roles in many industrial appli-
cations such as ADAS, surveillance and other human in-
volved visual tasks. There are many related benchmarks
published. Most of them focus on the pedestrian detec-
tion, such as the classical works including INRIA [5],
TudBrussels [6] and Daimler [7], as well as nowadays
wildly used pedestrian dataset including Caltech-USA[8],
KITTI[9] and CityPersons[10]. Besides that, there are also
general human detection datasets proposed these years, e.g.,
CrowdHuman[11] and WiderPerson[12]. These two datasets
have large amounts of images with high-density of people.
Except for RGB image dataset, KAIST[13] provides ther-
mal images together with color images for high accuracy
pedestrian detection. While all of these human detection
benchmarks call for color images, which is harmful to
privacy protection. IPHD is a newly collected purely identity-
preserving dataset that only contains depth images and
thermal images[1]. It’s worth exploiting privacy-protected
human detection algorithms based on this dataset.

The thermal image and the depth image both contain less
information compared with the color image, which will result
in low accuracy for human detection. So it’s important to
make good use of the thermal and depth images together.
Besides less information, this dataset is weakly labeled and
exists plenty of inaccurate ground-truth boxes due to the
thermal to depth registration, which makes it more dif�cult
to learn a robust detector.

In this paper, we apply an ef�cient depth-thermal image
early fusion approach which ensures suf�cient cooperation

Fig. 1. Example of noise robust hard example selection approach. This
curve is the descending loss values of top-10K negative proposals from
one example image in a random selected training step. The red part is the
Nign n ignored noise examples with large values of loss, the blue part is
the ignored easy examples with small values of loss, and the green part
represents the selected noise robust hard examples.

between the depth and thermal information without increas-
ing computational complexity. Moreover, we propose a noise
robust hard example mining algorithm that make the learning
process robust from the weakly labels, which is shown
in Fig. 1. Equipped with these technologies, our model
can achieve a signi�cant improvement compared with the
baselines and submitted results of the competition.

II. DATA DESCRIPTION AND PREPROCESSING

A. Data Description

In IPHD dataset, each pixel of the depth images contains
absolute value of depth captured by RealSense D435. And
the pixels of thermal images are temperature values captured
by FLIR Lepton v3. The training set, validation set and
testing set contain 84818, 12974 and 15115 pairs of depth
and thermal frames respectively.

Weakly label. According to the of�cial dataset description
[1], annotation are done on the RGB images (not provided)
captured by RealSense. Unlike depth images that are on-
the-�y registered to RGB images by RealSense, thermal
images are spatially registered to depth by human’s off-line
procedure, which inevitably introduces ground-truth boxes
inaccuracy in thermal data.
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Fig. 2. Noise �xing method. The top-left: the original thermal image with
noise. The bottom-left: the thermal image applied our noise �xing algorithm.
The top-right: different directions of the kernel to deal zero values at the
boundaries and inner image. The bottom-right: an illustration of inner �lter
with eight expanding directions in four pairs. The �nal �xed value is the
mean of the center pixel values in red circles of the selected pair.

B. Data Normalization

Depth and Thermal images are different from the normal
RGB or gray scale images. In order to initialize backbone
with the ImageNet pre-trained parameters, the input data is
truncated and normalized to make it similar to RGB one.

The pixel value of thermal images are recti�ed between
10 �C (283.15 K) and 40 �C (313.15 K) and multiply
by 255/(31315 � 28315) to make it an unsigned integer.
Environment temperature is estimated and subtracted from
the image to get a sharp contrast between foreground and
background. As for the depth images, the pixel values are
recti�ed between 0.1 meters and 10 meters, and then they
are also normalized to unsigned integer and subtracted by
the mean value.

C. Noise Fixing

The thermal to depth registration brings many patches
of zero value in the thermal images. Different kinds of
kernels are applied to �ll the zero patches with the reasonable
values automatically. Fig.2 illustrates the visualization result
and kernel examples of one image applied our noise �xing
method.

III. DEPTH-THERMAL FUSION NETWORKS

A. Fusion Strategy

Depth images and thermal images have different distribu-
tions, so it is important to properly combine them. There are
three practical fusion strategies for multiple input data, that
is, early fusion, intermediate fusion and late fusion. Fig.3
shows how these three fusion strategies work.

In this task, early fusion, intermediate fusion and late
fusion could be regarded as image level fusion, feature level
fusion and box level fusion respectively.

Early fusion concatenates the thermal image and depth
image along the channel dimension and treat the concate-
nated data as a new multi-channel image. In this work,
we concatenate two duplicate thermal images and one cor-
responding depth image to create a 3-channel RGB-like

image to make use of the ImageNet pre-trained weights for
initialization.

Intermediate fusion has two separate feature extraction
paths for thermal and depth information respectively. The
features from these two paths are then merged by the feature
fusion approach. Finally the merged feature is utilized as
the intermediate part of the detection pipeline. Details of
the feature fusion in our experiment can be found at the
experiment section.

Late fusion applies two independent detectors that con-
duct the depth and thermal images detection separately. Then
the detected boxes were merged by NMS. Besides NMS we
used in this work, other boxes fusion methods for multi-
model ensemble works could also be applied to merge the
detected boxes from the two different branches.

Our experiments prove that early fusion has an advantage
over the other two methods both in the �nal detection
result and the computational complexity. In contrast to late
fusion that only merge the detected boxes, early fusion
make the depth and thermal information cooperate with each
other during the feature extraction. This kind of cooperation
empowers the model to extract and composite the useful
information from depth and thermal inputs. It’s worth noting
that although intermediate fusion also conducts the merging
procedure after the feature maps concatenation, while the
merging of early fusion is achieved by a deep backbone
network, which ensures more suf�cient cooperation between
the depth and thermal information.

B. Model Architecture

Fig.4 illustrates the model architecture that deploys early
fusion strategy.

Backbone The model applies ResNet-50[15] as backbone
to extract features from the depth and thermal input. There
are �ve stages of residual blocks in original ResNet, that is,
conv1, conv2, conv3, conv4 and conv5. Similar to FPN[15],
the outputs from last residual blocks of conv3, conv4 and
conv5 are denoted as {C3, C4, C5} respectively. These fea-
ture maps with stride {8, 16, 32} are employed as different
levels to handle different object scales.

Receptive Enhancement Module (REM) FPN module
is deprecated because both thermal and depth images only
contain low level representation. To enhance the capability
of multi-scale receptive �elds without FPN, an inception
module is applied to extract information with different spatial
sizes. It has three inner branches with different kernel sizes
of 3x3, 5x5 and 7x7, respectively.

Anchors There are three branches of detection heads
with downsampling ratios {8, 16, 32} respectively. Multiple
anchors with different scales {4xS, 6xS} and aspect ratios
{0.5, 1, 2, 4} are designed for each branch, where S denotes
the downsample ratio at a speci�c branch.

Box Prediction Module Two 1x1 sub-branches are at-
tached on the inception module for classi�cation and bound-
ing box regression respectively.
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Fig. 4. Model architecture. The architecture of early fusion strategy and
the detection pipeline with receptive enhancement module(REM).

C. Online Noise Robust Hard Example Mining

We adopt standard L1 loss for box regression[16] and
2-class softmax with cross-entropy loss for bounding box
classi�cation. The classi�cation loss is de�ned as (1):

Lcls =
1

Npos

� Npos�
i=Nign p

Lsort
cls p(pi, ci)+

k�Npos�
i=Nign n

Lsort
cls n(pi, ci)

�
,

(1)
where Lrank

cls p is the descending sorted classi�cation loss
of positive samples and Lrank

cls n is for the negatives.
Hard Examples Mining: There are more than 10 thou-

sand anchors and most of them are negative ones. It intro-
duces the imbalance between positive and negative examples
for classi�cation. Online hard example mining[17] is an
effective method to deal with this imbalance. Npos denotes
the number of positive samples, k is the ratio between the
negatives and positives for hard negative examples selection.
In our experiments, we make k=7.

Noise Robust Filtering (NRF):

The thermal images are weakly labeled caused by ther-
mal to depth registration. So it is important to make the
learning process robust to these weakly data. Unlike normal
hard example mining approaches only focusing on the hard
examples, our method ignores part of the top ranked losses,
because the mislabeled or inaccurate boxes may result in high
amplitude discrete losses. Nign p and Nign n in (1) represent
numbers of positives and negatives that are considered to be
noise examples. Nign p and Nign n are determined by the
thresholds Tp and Tn for estimating noise examples. They
are de�ned in (2):

Tp =
�p

(�p � �p) �Nbatch

�Nbatch��p

i=Nbatch��p

Lsort
batch p[i],

Tn =
�n

(�n � �n) �Nbatch

�Nbatch��n

i=Nbatch��n

Lsort
batch n[i],

(2)

where Nbatch denotes the batch size. Lsort
batch n is the

descending sorted loss of negative samples within a batch,
and Lsort

batch p is for the positive one. It’s worth noting that
Lsort
batch {p,n} in (2) is different from Lsort

cls {p,n} in (1): the
former is batch level loss, while the latter is image level.
Fig.1 shows an example of loss distribution curve of top-
10k negative samples applied hard examples mining and
noise robust �ltering. �{p,n} are scale factors for positives
and negatives. �{p,n} and �{p,n} are hyper-parameters that
control the selected interval of sorted loss for noise threshold
calculation. The relative appropriate values of these hyper-
parameters in our experiments are set as {�p=5, �n=3, �p=3,
�p=5, �n=6, �n=10}.

IV. EXPERIMENTS

A. Training Details

Optimizer: We train the model using stochastic gradient
descent (SGD) optimizer with momentum at 0.9 and weight
decay at 5e-4 for totally 12 epochs. The learning rate starts
from 1e-3 and divided by 10 at 7 and 9 epochs respectively.
The model is trained on two NVIDIA TITAN Xp GPUs with
8 pairs of thermal and depth images on each card.
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TABLE I
ABLATION ON DIFFERENT INPUT AND NOISE ROBUST FILTER.

# D T NRF AP@0.25 AP@0.5 AP@0.75
1 � 81.4 75.2 44.0
2 � 82.0 76.2 46.6
3 � � 86.8 81.1 49.8
4 � � � 91.7 88.1 59.5

TABLE II
EFFECT OF RECEPTIVE ENHANCEMENT MODULE.

REM AP@0.25 AP@0.5 AP@0.75
90.1 86.5 54.7

� 91.7 88.1 59.5

Network Initialization: The ResNet-50 backbone is ini-
tialized with the parameters pre-trained on ImageNet. Except
for the backbone, other modules such as REM module and
box prediction module are trained from scratch.

Training Data The results are evaluated on the testing
data, so we combine the original training data and validation
data for model training.

Data Augmentation: Each image in a training batch
applies the basic color distortion and random horizontal
�ip. Multiple scale training is applied to make up for the
de�ciency of scale variety. We randomly resize the short size
of the images to [128, 256, 512] for each batch and keep the
width-height ratio a constant value.

B. Inference Details

During testing phase, only one scale image is forwarded
through the network. The image scale we choose is 256x448.
Each 3-channel image is made up from two duplicate thermal
images and one corresponding depth image. The output
predicted boxes are then conducted deduplication by normal
non-maximum suppression (NMS). Only single scale testing
is applied to reduce the gap with industrial applications.

C. Ablation Study

Thermal, depth and fusion: In this section, we study
the different performance of (a) only depth image as input,
(b) only thermal image as input, and (c) depth and thermal
fusion. Early fusion approach just treat the concatenated
image as the 3-channel image. We make three copies of
a depth image and concatenate them as a new 3-channel
image when conducting the depth image human detection on
depth images. The same thing is done for the thermal one. In
Table.I, we denote depth as D, thermal as T and noise robust
�ltering as NRF. The result shows that the depth-thermal
fusion method achieve signi�cant performance improvement
than only use depth or thermal images.

Effect of Noise Robust Filtering: Thermal data is weakly
labeled caused by thermal to depth registration. The 2ed and
3rd row in Table.I show that noise robust �ltering improves
AP of thermal image detection by 4.8, 4.9 and 3.2 at three
IOU thresholds respectively. Noise robust �ltering is proved
to be effective on the task with weakly labeled data.

TABLE III
COMPARISON OF DIFFERENT FUSION METHODS.

AP@0.25 AP@0.5 AP@0.75
Early fusion 91.7 88.1 59.5

Intermediate fusion 88.5 83.5 51.4
Late fusion 90.1 84.0 47.6

TABLE IV
COMPARISON OF SUBMITTED COMPETITION RESULTS. RANK NO.3 ,

RANK NO.3 AND RANK NO.3 ARE TOP3 RESULTS OF THE COMPETITION.

AP@0.25 AP@0.5 AP@0.75
iphd baseline[19] 78.3 65.7 23.4

rank No.3[19] 79.5 71.8 40.2
rank No.2[19] 82.6 75.1 40.0
rank No.1[19] 84.3 81.7 54.7

ours 91.7 88.1 59.5

Receptive Enhancement Module: As is shown in Ta-
ble.II, REM module improves AP by 0.4, 0.9 and 2.3 at IOU
threshold equaling 0.25, 0.5 and 0.75 respectively. Based on
the above, one can draw a conclusion that REM module
improves the accuracy of bounding box localization.

D. Comparison of Different Fusion Strategies

We evaluated three fusion strategies shown in Fig.3, which
are early fusion, intermediate fusion and late fusion. In
the intermediate fusion approach, the model applies parallel
ResNet-50 branches as backbones to extract features from
depth and thermal images respectively. Features from these
two ResNet50 backbones are concatenated together and then
merged by a 3x3 convolutional layer. In the late fusion
approach, the outputs from two independent detectors of
depth and thermal images are merged by normal NMS.

Table.III shows the results of these three fusion strategies.
As is analyzed before, early fusion shows signi�cant advan-
tages than the other two fusion strategies.

E. Comparison of Submitted results

Table.IV shows the comparison with the submitted results
in the IPHD challenge[18], [19]. Our proposed single model
with single testing scale achieves a signi�cant improvement
compared with the baseline and the top three �nal results.

V. CONCLUSIONS
In this work, we design a depth-thermal fusion model

for identity-preserved human detection. The experiments
are based on the IPHD dataset in ChaLearn Looking at
People’s competition organized in the context of the 15th
IEEE International Conference on Automatic Face and Ges-
ture Recognition (FG 2020). An optimal fusion strategy is
analyzed and the ef�cient detection pipeline is designed for
depth-thermal human detection. To deal with the weakly
labeled ground-truth boxes, an effective example selection
method is proposed, which combines online noise example
�ltering and online hard example mining together. Our model
with single-scale testing can gain signi�cant improvement
compared with the submitted results of the competition.
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