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ABSTRACT
Given a query image, vehicle Re-Identification is to search the
same vehicle in multi-camera scenarios, which are attracting much
attention in recent years. However, vehicle ReID severely suffers
from the perspective variation problem. For different vehicles with
similar color and type which are taken from different perspectives,
all visual patterns are misaligned and warped, which is hard for the
model to find out the exact discriminative regions. In this paper,
we propose part perspective transformation module (PPT) to map
the different parts of vehicle into a unified perspective respectively.
The PPT disentangles the vehicle features of different perspectives
and then aligns them in a fine-grained level. Further, we propose
a dynamically batch hard triplet loss to select the common visible
regions of the compared vehicles. Our approach helps the model to
generate the perspective invariant features and find out the exact
distinguishable regions for vehicle ReID. Extensive experiments on
three standard vehicle ReID datasets show the effectiveness of our
method.
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Figure 1: (a). Two different vehicles with the samemodel. (b).
The original croppedwindow. (c). Thewindow after perspec-
tive transformation. The visual cues (marked with boxes)
are well aligned in the same position and could be easily
compared.

1 INTRODUCTION
Vehicle Re-Identification(vehicle ReID) is to find the same vehicle in
cross camera scenarios, which is especially useful when the images
are heavily blurred, deformed and occluded. Vehicle ReID has been
widely used in the urban surveillance and city security systems [1,
3, 5, 11, 20, 38]. With the proposal of large scale datasets [13, 16, 19]
and the development of deep learning [6, 30], researchers have
achieved impressive promotion on vehicle ReID.

There are two main challenges in vehicle ReID. The first chal-
lenge is that the same vehicle under different perspectives often
presents different appearances, which severely reduces the intra-
class similarity. To illustrate, vehicles can be regarded as rigid poly-
hedrons, and under different perspectives, the visible surfaces are
different. Directly extracting features from these different surfaces
could cause misalignment. The second challenge is the subtle dis-
crepancy of near-duplicate vehicles under the same perspective.
Since vehicles are human manufactured products, some of them
share the similar models, colors and vehicle types. Even for differ-
ent vehicles, their visual difference would be subtle when observed
from the same perspective.

One potential solution to both problems is to first align the per-
spective and then compare vehicle images. Following this thought,
many works seek to employ alignment in different level to alleviate
perspectives variation. Zhou et al. [39] proposed an effective multi-
view feature inference by an adversarial training architecture. It
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generated the features in different views and align them in view-
point level. However, the generated features are inference based on
the visible parts, which can not contain the discriminative visual
cues.

Recently, researchers introduce local feature extraction to en-
hance the vehicle features and align them in local region level.
Wang et al. [31] proposed orientation invariant feature embedding
to align the features in keypoints level, where local region features
of different orientations were extracted based on 20 key point lo-
cations. He et al. [5] aligned the features in parts level. It detected
the window, lights, and brand for each vehicle through a YOLO
detector and align them in feature learning. However, due to per-
spective transformation, the shape of the same area varies greatly
in different perspectives. As seen in the Figure 1, there are two
similar vehicles under different perspectives. The distinctive visual
cues (annual inspection mark, vehicle decorations) are distributed
in the window. Even if we detect and crop the window as Figure 1
(b), the cues are still located in different locations and deformed se-
verely. The previous methods localized different parts and directly
extracted features of them, which can not model such variations.

Based on such observations, an intuitive method to handle the
feature deformation and misalignment problems is to transform the
regions to the same perspective and then compare them to find the
discriminative regions. The well-aligned features can alleviate the
perspective variation, and help reduce the intra-class difference of
same vehicle and increase the discrepancy of near-duplicate vehi-
cles. Perspective transformation is a widely-used linear transform
which is to transform a plane from one perspective to another. At
the same time, a vehicle can be coarsely regarded as a polyhedron
which is composed by different planes. Inspired by this, we propose
a part perspective transform (PPT) to map each plane of a vehicle
to a unified viewpoint on feature space. First, the vehicles is divided
into four different planes based on the predefined vertexes.We solve
the perspective transform matrix according to the source vertexes
and the target vertexes of vehicle. The source vertexes are gener-
ated by the keypoints detection model and the target vertexes are
just the vertexes of a rectangle. Then we apply the transformation
to the feature maps generated by a deep convolutional network.
This transformation restores the region of varied shape to a uni-
form rectangle in feature space, and well align all the visual cues of
vehicle.

However, there is an important problem: vehicle images may
be taken from different perspective so that their visible planes are
different. In fact, a vehicle can be regarded as a box. In most situa-
tions, there are three planes can be seen. For two different images,
some planes are visible in both of them. Based on this, we propose
a dynamically batch hard triplet loss. The hardest and co-visible
planes in a mini-batch are dynamically selected to calculate the loss
during the training procedure. The dynamically batch hard triplet
loss takes the advantage of the perspective relationship between the
images of a mini-batch and aggregate the local features effectively.

The PPT aligns the vehicle features in fine-grained level and the
dynamic batch hard triplet loss guides the network to optimize to a
right direction. In testing stage, we drop the perspective transform
module so it would not introduce any extra computing resources.
Our model can be added to any existing vehicle ReID systems.

In summary, our contribution is three fold:

• We proposed a part perspective transformation on feature
space to transform the deformed region to a unified perspec-
tive, which aligns the features in fine-grained level and guide
the model to find the real discriminative regions of vehicles.

• We implement a dynamic batch hard triplet loss strategy to
further aggregate and enhance the local features. The loss
takes the advantage of the perspective relationship between
images in the same batch and guides the network to focus
on the co-visible planes of vehicle.

• Extensive experiments on three major benchmarks of vehicle
Re-ID show that our method surpasses the SOTA methods
on mAP, CMC@1 and CMC@5. Ablation study evaluates
the effectiveness of different modules in our model.

2 RELATEDWORKS
Vehicle Re-Identification Vehicle ReID is to retrieve the vehicle
in a large scale gallery set taken by non-overlapping cameras. It
has attracted much attention recently as it serves as an important
role in the field of the intelligent transportation systems and smart
city [3, 4, 13, 14, 16, 17, 19, 20, 41]. With the development of deep
learning, researchers introduce deep learning into vehicle ReID
and get impressive results. These methods extract global features
by a deep convolutional neural networks, and optimize them by
the triplet loss and ID losses. Nonetheless, the features extracted
by the neural network directly are unstable due to the variation
of illuminate and background. Some methods take advantages of
the meta information of the vehicle to overcome these variations,
such as vehicle plate [17], attributes [38] and sptio-temporal infor-
mation [27]. These methods merge the meta information into the
features and improves the representation capacity of the features.
However, sometimes the meta information are hard to get and if two
vehicles share the same color and vehicle type, these methods failed.
How to focus on the local distinctive regions remains a problem.
He et al. [5] detects the vehicle window, brand and lights for local
distinctive feature enhancement. This method ignores the visual
difference of the vehicle appearance under different viewpoints.

To solve the problem caused by visual difference caused by the
perspectives, some methods are proposed[11, 22, 31, 39]. Some re-
searchers begin to focus on the viewpoint variation problem in
vehicle ReID recent years. Wang et al. [31] has proposed a method
generated orientation invariant feature based on pre-defined key-
points detection. In a vehicle image under a definite perspective,
some of the keypoints are invisible and they contributed equal to
the final features. Khorramshahi et al. [11] selects the seven visible
keypoints based on a perspective classifier. Zhou et al. [39] find a
new path to handle the viewpoint problem. It first classify the main
perspective of that image and then generate the features of other
perspective using a generative scheme. However, the generated
features are inferenced based on the known perspective and do not
contain the discriminative features. Unlike the above methods, our
method first split different planes of the vehicle and then transform
each part to a unified perspective, which align the features in a fine
level.

Spatial Alignment The idea of conduct perspective transform
to align the features and improve the performance on different
vision tasks has been widely used [2, 7, 9, 10, 12, 15, 24, 25, 28, 33,
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Figure 2: The architecture of our PPT. The red and the blue boxes represents the discriminative regions of a pair of different
vehicles. In the original image, they are located in different locations because of the difference in perspective. The part per-
spective transformation align the each parts of the vehicles to the same perspective. All the features are aligned fine-grained
at the same time,hence the discriminative regions are located in the same location. After we get the perspective transform
matrix(PTM), we apply it to the feature map to disentangle and align the features of different parts fine-grained. Finnaly, the
dynamically triplet loss is applied to the local features to guide the model to focus on the common visible regions.

34, 36, 37]. Spatial Transformer Networks [9, 12] proposed spatial
manipulation to learn rotation invariant features in vision recogni-
tion tasks. Some researchers [2, 10, 34] use spatial transformer to
learn the pose invariant features for the face representation. But the
above methods just transform the images to a single perspective.
Our part perspective transformation transforms the different parts
of the vehicle to different perspectives, which takes the advantages
of all the visible parts of a vehicle. Some works [25, 28, 37] align the
different parts of the bodies to handle the pose variation problem in
person Re-Identification. Compare to person, the vehicles are rigid
bodies and there are no pose variations. Our method disentangles
the vehicles to different perspectives and aligns them fine-grained.

3 METHODOLOGY
The perspective variation problem is crucial in vehicle ReID, which
could cause serious feature mis-alignment and deformation. To
address this problem, we propose part perspective transformation
to disentangle the different parts of a vehicle and transform them to
a unified perspective respectively. We embed the part perspective
transform module to a deep neural network. Finally, a dynamically
batch hard triplet loss is proposed to handle the problem of missing
parts.

3.1 Part Perspective Transformation
Perspective transformation is a linear transform to map a plane
from one perspective to another. Let (𝑥,𝑦) denote a point in original
image and (𝑥 ′, 𝑦′) denote corresponding point in the target image.
We first augment them to homogeneous coordinates (𝑥,𝑦, 1) and

(𝑥 ′, 𝑦′, 1). The perspective transformation can be formulated as

𝑀 (𝑥,𝑦, 1)𝑇 = (𝑥 ′, 𝑦′, 1) (1)

where 𝑀 ∈ R3×3 is the transformation matrix. Because of the
constrains of the homogeneity, the right-bottom element of 𝑀 is
always equal to 1. Given the coordinates of four pairs of points
both in the original image and the target image, we can get the
perspective transformation matrix directly by solving the linear
equations.

The vehicles can be roughly seen as a polyhedron composed of
different planes. As shown in Figure 3, each plane is a trapezoid in
their main view. They could be captured in irregular polygons from
different perspectives. Given the four vertexes of a polygon, we can
transform the polygon to a rectangle by perspective transformation
so that the features could be all well aligned.

Instead of mapping the points from source plane to target plane,
we reverse the Equation 1 to 𝑀−1 (𝑥 ′, 𝑦′, 1)𝑇 = (𝑥,𝑦, 1). For each
pixel in the target image, we calculate the corresponding coordi-
nate in the source image. The benefit of the reversal is that for each
integer pixel in target image, we can get the corresponding coor-
dinate in original image. As the coordinates of the corresponding
points may not be integers, we use bilinear interpolation to get
the target features. The bilinear interpolation also makes the back
propagation easy to implement.

Now the question is how to find the vertexes in the source image.
Wang et al. [31] has annotated 20 vehicle keypoints for VeRi776.
The vehicle keypoints are located in the front, left, right, top and
back face of the vehicle. Here we just use the annotation of the
keypoints. We train a stacked hourglass model [23] to detect the
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Figure 3: The vehicle keypoints and the transformation re-
gions. The vehicles are split into four different parts based
on the different perspectives, which are front, back, side and
top. Each part is determined by the four corresponding key-
points.

vehicle keypoints for all datasets. As the vehicles are rigid bodies
with the similar shape, the keypoints detection model is not suffer-
ing from the deformation problem. Hence the keypoints detection
model is generalizable to different vehicle datasets.

We define four planes for a vehicle, namely front, back, side and
top, which has been shown in Figure 3. As the left side and right
side can not appear in a single image simultaneously and they are
usually symmetry, we regard them as one plane and only take the
visible one. The planes are defined following the principle that all
of the pixels inside the polygon must be approximately in the same
plane, which is required by the assumption of Equation 1.

Not all the points are always visible in the image because of the
occlusion caused by perspective or the missed keypoints detection.
When a point is not visible, all associated parts will be marked as
invisible. This will result in a sharp reduction in the number of
available planes. In order to solve this problem, we offer some alter-
native construction rules for the front and back part. For example,
if the right-bottom keypoint of the front plane is invisible, we will
use the middle-bottom keypoint to take place of it. At the same
time, the target point would become the bottom-middle point of
the rectangle.

Another failure case is when the points are mis-detected or three
of the four keypoints distributed nearly in a line because of specific
perspective. In these circumstances, the perspective transformation
equation is linear correlation, therefore the perspective transform
will fail. To handle this problem, we check whether the polygon
generated by the four points is convex and mark the non-convex
plane as invisible.

3.2 Network Architecture
We design a deep convolutional neural network with the part per-
spective transformation (PPT). The overall architecture of the PPT
is shown in Figure 2. At the beginning, the images are fed into a

feature extractor to get the global feature map. The feature extrac-
tor is a deep convolutional neural network without the last fully
connected layer. To remain more position information, we set the
stride of the last pooling layer to 1. Then the global features are fed
into two branches.

The first branch is the global branch. A global average pooling
layer is applied to pool the feature map to a single feature vector.
After a batch normalization layer, The features are then fed into
a classification layer which classifies them to different instances.
Following the settings in [21], the features before the BNNeck are
used to calculate the distances for the triplet loss and the features
after the BNNeck are used for the ID loss.

The other branch is the part perspective transformation branch.
First, we train a stacked hourglass network with the keypoints anno-
tation of VeRi776 [31]. Based on the keypoints and the pre-defined
four different parts, namely front, back, side and top, we calculate
the perspective transformation matrix for each visible part respec-
tively. Second, we apply the part perspective transformation to the
global feature map to get local feature maps. The part perspective
transformation restores the irregular polygons to rectangles. Third,
we use average pooling to each different local feature map to get
the final local features. Finally, a triplet loss is followed to them
shorten the distance of same instances and enlarge the distance of
different instances.

We conduct part perspective transform on the feature space
rather than on the raw image. This strategy can bring us three
benefits. First, each point of the feature map has a larger receptive
field. This will keep more context information for each part. Second,
the optimizing process of the local branch can guide the global
vehicle feature extractor to focus on the aligned discriminative
cues. Hence we can drop the local branch in testing stage. Third,
conducting on feature space are more computational effective as
we need not to re-calculate the feature map for each part.

The local and global branches share the same convolutional lay-
ers. In the training stage, the optimizing procedure of the local
branch will guide the backbone to focus on the discriminative re-
gions. In the inference stage, we can drop the local branch and use
the global feature only for vehicle retrieval. Under such configura-
tion, the part perspective transformation module can be regarded
as a regularizer and would not introduce any extra computation.

3.3 Dynamically Batch Hard Triplet Loss
Batch hard triplet loss [8] has been used in vehicle ReID successfully.
It first chooses 𝑃 different vehicles randomly and then selects 𝐾
samples for each vehicle to generate a mini-batch. For each vehicle
in the mini-batch, it chooses the most similar negative sample and
the most dissimilar positive sample in a mini-batch to generate a
triplet. Then it optimizes model to shorten the distance between
the anchor image and the positive image, and enlarge the distance
between the anchor image and negative image. The hardest triplet
within amini-batch is moderate hard compared to thewhole dataset,
which can avoid the risk of over-fitting on hard samples or wasting
time on simple samples.

However, we can not apply it to the local features directly, since
different images of a mini-batch may have different visible planes.
If that plane is invisible in all other images in that mini-batch, the



triplet can not be generated. To handle that problem, we propose
dynamically batch hard triplet loss. For a certain vehicle, the invisi-
ble planes are not used for triplet loss. For the visible planes, we first
determine whether the plane is visible in any positive samples and
any negative samples in that mini-batch respectively. If the above
conditions are not satisfied, this plane will be dropped. Otherwise
we will select the hardest samples from the visible planes.

For an anchor vehicle 𝑎, the index of the hardest positive sample
in the mini-batch can be formulated as

id𝑝 = argmax{𝑖 |𝑣𝑖=1,id𝑖=id𝑎 }𝐷𝑎𝑖 (2)
where id𝑖 means the vehicle ID of the 𝑖th vehicle in the mini-batch,
the 𝑣𝑖 denotes the visibility of that part and 𝐷𝑎𝑖 means the distance
of the anchor vehicle and the 𝑖th vehicle. In the same way, the index
of the hardest negative can be formulated as:

id𝑛 = argmin{𝑖 |𝑣𝑖=1,id𝑖≠id𝑎 }𝐷𝑎𝑖 (3)
If there is no visible example in the candidate set, the anchor will
be dropped. The triplet loss of that plane is

𝐿𝑖 = {𝐷𝑎𝑝 − 𝐷𝑎𝑛 +𝑚}+ (4)

Let 𝐿 𝑗
𝑖
denote the triplet loss of the 𝑖th image, 𝑗th plane. The local

triplet loss is the sum of anchors and planes.

𝐿
triplet
𝑙

=
∑
𝑖

∑
𝑗

𝑤 𝑗𝐿
𝑗
𝑖

(5)

𝑤 𝑗 is the weights of different planes, which is set to (0.5, 0.5, 0.3, 0.2)
for front, back, side and top.

The final optimizing targets of our PPT is composed by the global
ID loss, global triplet loss and the local dynamically triplet loss,
which can be formulated as

𝐿 = 𝐿id𝑔 + 𝐿triplet𝑔 + 𝐿triplet
𝑙

(6)

3.4 Discussion
Differences with PDC Pose-driven deep convolutional model
(PDC) [28] use a similar transform strategy for person ReID. It
normalize the poses of a person by joint points. But there are still
some differences with our method. 1) PDC separated a person to 6
parts based on the joint points and then normalized them to fixed
size. The parts were coarsely determined by the joint points and
their bounding boxes. In fact, the appearance of some parts change
greatly as viewpoint changes, so it is difficult to align features of
different parts. Our transformation is based on the vertexes of any
irregular quadrilateral. The vehicles are rigid bodies composed by
several planes. Each part can be transformed to a unified perspec-
tive, so they can be aligned fine-grained. 2) PDC generated a new
image using the 6 parts and extracted its features for person ReID.
We just transformed the features in the feature space, which needs
less computing resources.

Differences with VPM loss Sun et al. [29] proposed a similar
loss function in visibility-aware part-level features model (VPM)
for person ReID. Both the VPM loss and our proposed loss are to
guide the network to focus on the common visible regions of the
compared images. There are two main differences. 1) The VPM
calculated a soft visibility score for each pre-defined region, which
was used to normalize the final distance of all different parts. Then
the distance was used to select the hard-triplets directly and to

calculate the triplet loss. In our method, we transformed different
parts to fixed size and used the hard label to select visible regions.
There might be no common visible regions among images of a mini-
batch. Our loss dynamically selected the valid parts to generate the
hard-triplets for each part respectively. 2) In VPM loss, the smaller
area led to a smaller weight in the final distance. But in our loss, all
visible regions of different sizes were treated equally. For vehicle
images under front-side or back-side view, the area of the side part
was usually larger than the front or back parts in a vehicle image,
but the discriminative visual cues are often distributed in the back
and front parts. Considering this, we ignored the area factor in our
loss.

4 EXPERIMENTS
4.1 Datasets
We evaluate our method in three main vehicle ReID benchmarks.
In this section, we describe the details of them.

VeRi776 [16] is a the first large scale benchmark for vehicle
ReID task. It contains 51032 images of 776 vehicles. The images are
taken by 20 cameras with different perspectives, illuminations and
occlusions. The training set contains 576 images and the testing set
covers the rest 200 vehicles.

VehicleID [13] is a large scale benchmark for vehicle ReID,
which contains 113346 images for training and 39647 images for
testing. All of the images are under front views and rear views.
The testing set is divided into 3 sub testing set with different size
(small, medium and large). In the testing stage, One image of each
vehicle is selected randomly to form the gallery set and leave the
rest images to form the query set. Such testing method results that
there are only one ground truth image in the gallery set for each
query image. As a result, the cumulated matching characteristics
curve is more concerned on this dataset.

VERI-Wild [19] is a recently released dataset and is the largest
dataset for vehicle ReID right now. It contains 277797 images for
training and 249767 images for testing. The vehicles are taken from
200 cameras across the whole city in a month under all kinds of
perspectives, weather and illuminations. Besides, it provides the
vehicle brand, color and vehicle type information for researchers
to mine the attributes guided methods. Like VehicleID, the testing
images are also divided into 3 parts with different size.

4.2 Implementation Details
We implement a stacked hourglass network [23] with 8 stacks and
1 block per stack as the vehicle keypoints detector. We train the
network with 6 epochs using a RMSProp optimizer. The learning
rate is set to 0.00025.

During the training procedure of vehicle ReID network, the
parameters of the vehicle keypoints detection module are fixed.
Before fed into the ReID network, the images are first resized to
(256, 256), then are padded by 10 pixels in each side. Random crop-
ping is used to crop the image back to (256, 256). After that, random
erasing is applied, which has been proved efficiently to prevent
over-fitting[21]. We use the ResNet50 [6] pretrained on ImageNet
without the classification layer as the feature extractor. An Adam
optimizer is used to train the model. We use warmup strategy. The
learning rate is set to 3.5e-5 in the first epoch and increased to 3.5e-4



Table 1: Experiments on VeRi776

Method mAP CMC@1 CMC@5
OIFE[31] 0.480 0.894 -
VAMI[39] 0.501 - -
RAM[18] 0.615 0.886 0.940
EALN[20] 0.574 0.844 0.941
AAVER[11] 0.612 0.890 0.947
PRN[5] 0.743 0.943 0.989

PPT(ours) 0.806 0.965 0.983

linearly during the first 10 epochs, then it multiplies 0.1 every 30
epochs. Each mini-batch are composed by 16 different vehicles and
each vehicle contains 4 different images. All experiments are con-
ducted on a single GPU with a batch size of 64. For VeRi776 dataset,
we train the network for 240 epochs. For the larger VehicleID and
VERI-Wild datasets, we train the model for 120 epochs to save the
computing resources.

4.3 Comparison with State of the Art
4.3.1 Compared Methods. We compared our methods with some
state-of-the-art methods proposed recently for vehicle ReID. Ori-
ented Invariant Feature Embedding network (OIFE) [31] is to detect
20 keypoints and aggregate the local features to enhance the final
representation. Viewpoint Aware Multi-view Inference (VAMI) [39]
uses viewpoint aware attention to localize the main view and gener-
ates the other views of the vehicle in feature space by a generative
adversarial network. Region Aware deep Model (RAM) [18] divides
the vehicle into different parts evenly and introduces the attributes
information into feature learning. Embedding Adversarial Learning
Network (EALN) [20] uses generative adversarial network to gener-
ate the hard negative samples and cross-view samples to enhance to
dataset. Adaptive Attention model for Vehicle ReID (AAVER) [11]
detects the keypoints and use viewpoint classification to select the
most informative regions. Part Regularized Network (PRN) [5] de-
tects brand, window and lights to guide the network focus on these
common discriminative regions.

The selected methods all introduce extra information to enhance
the local features for vehicle ReID, like the keypoints informa-
tion [11, 31], viewpoint information [39], attributes information[18]
and bounding box information[5]. All the selected methods use
ResNet50 as the backbone.

4.3.2 Results on VeRi776. We evaluate our methods in the VeRi776
dataset and provide the results of three metrics, the mAP, CMC@1
and CMC@5. Table 1 shows the results of our PPT and the compared
methods. As can be seen, PPT surpasses most of the counterparts
by a large margin in all three metrics. The promising performance
is benefited from the fine-grained alignment of local features.

Part Regularized Network (PRN) [5] also pays attention to the lo-
cal distinguishable regions which is similar to our method. It detects
the vehicle brand, window and vehicle lights as the local features to
regularizing the ReID network. But the brands, lights and windows

are usually not visible when the images are taken in a side per-
spective. Even when those local regions are detected successfully,
the visual appearance would still be misaligned (front light to rear
light) and warped because of perspective variation. The part per-
spective transformation disentangles the features under different
perspectives and aligns them fine-grained. Besides, the dynamically
triplet loss selects the common visible regions dynamically, which
provides an accurate distance. Finally, our method achieves better
performance than PRN (6.3% in mAP, 2.2% in CMC@1).

4.3.3 Results on VehicleID. Part perspective transformation can
disentangle the features under different perspectives and attend
to the common visble regions. In VehicleID, almost all the vehicle
images are taken from the front and back view. The features are
already aligned for the vehicles under the same view. For the ve-
hicle images under different views (one in front view and one in
back view), their common area (such as the roof) is very small. So
the promotion on the dataset is not significant. So the potential
of our method on this dataset is quiet limited. Nevertheless, our
method still achieves better performance in most of the evaluation
metrics than the counterparts. This is because even for two images
which are both under the front view or both under rear view, fea-
ture misalignment still exists because of the subtle difference of
the observing angles. Part perspective transform will correct such
misalignment, which improves the performance for vehicles under
similar viewpoints.

4.3.4 Results on VERI-Wild. Because VERI-Wild is a new proposed
dataset, at present, only a few works have reported the performance
on that dataset except the original paper [19]. Here, we provide
the comparision between our method and the results provided by
the original paper for the convenience of later researchers. Here,
GoogLeNet[30] is the GoogLeNet model pretrained on CompCar
dataset, which is a large scale fine-grained vehicle classification
dataset. GSTE[1] proposed group-sensitive-triplet embedding to
model the intra-class variance elegantly. FDA-Net [19] used the
generative adversarial network to generate the hard negative sam-
ples. Our PPT network surpasses the FDA-Net in all evaluation
metrics, which shows the ability of fine-grained feature alignment
in large scale dataset.

4.4 Ablation Study
4.4.1 The Effectiveness of Different Parts. As is shown in Table 5,
we conduct the ablation study of how each part affects the final

Table 2: Experiments on VehicleID

Method small medium large
@1 @5 @1 @5 @1 @5

OIFE[31] - - - - 0.670 0.829
VAMI[39] 0.631 0.833 0.529 0.751 0.473 0.703
RAM[18] 0.752 0.915 0.723 0.870 0.677 0.845
EALN[20] 0.751 0.881 0.718 0.839 0.693 0.814
AAVER[11] 0.747 0.938 0.686 0.900 0.635 0.856
PRN[5] 0.784 0.923 0.750 0.883 0.742 0.864

PPTN(ours) 0.796 0.923 0.760 0.894 0.748 0.870



Table 3: The mAP on VERI-Wild.

Method small medium large
GoogLeNet[32] 0.243 0.242 0.215
Triplet[26] 0.157 0.133 0.099
Softmax[17] 0.264 0.227 0.176
CCL[13] 0.225 0.193 0.148
HDC[35] 0.291 0.248 0.183
GSTE[1] 0.314 0.262 0.195

Unlable-GAN[40] 0.299 0.247 0.182
FDA-Net[19] 0.351 0.298 0.228

PPT 0.742 0.675 0.593

Table 4: The CMC@1 and CMC@5 on VERI-Wild.

Method small medium large
@1 @5 @1 @5 @1 @5

GoogLeNet[32] 0.572 0.751 0.532 0.711 0.446 0.636
Triplet[26] 0.447 0.633 0.403 0.590 0.335 0.514
Softmax[17] 0.534 0.750 0.462 0.699 0.379 0.599
CCL[13] 0.570 0.750 0.519 0.710 0.446 0.610
HDC[35] 0.571 0.789 0.496 0.723 0.440 0.649
GSTE[1] 0.605 0.801 0.521 0.749 0.454 0.665

Unlabled Gan[40] 0.581 0.796 0.516 0.744 0.436 0.655
FDA-Net[19] 0.640 0.828 0.578 0.783 0.494 0.705
PPT(ours) 0.919 0.973 0.891 0.955 0.848 0.932

performance on VeRi776 dataset. We gradually increase the number
of parts and re-train the model from scratch to see the effective-
ness of each parts. The results shows that once we add a kind of
region into the training procedure, the overall performance will be
improved slightly.

In detail, adding the front part brings 1.3% promotion on mAP.
The front part contains the richest distinguishable visual cues, such
as annual inspection mark, vehicle decorations. The part perspec-
tive transformation can disentangle the front region from the whole
vehicle and align the features in fine-grained level, which helps the
network find out these visual cues.

Adding the side part can bring 1.2% promotion on mAP. A possi-
ble explanation is that in VeRi776, most of the vehicles are taken in
front-side view and back-side view. The side view is the common
visible view for both perspectives. Traditional methods just ignore
the information on the side part and pay more attention to the

Table 5: The effectiveness of each parts on VeRi776

front back side roof mAP C@1 C@5
0.774 0.960 0.976

✓ 0.787 0.966 0.983
✓ ✓ 0.788 0.964 0.982
✓ ✓ ✓ 0.800 0.964 0.983
✓ ✓ ✓ ✓ 0.805 0.959 0.987

Table 6: Transformation on Different Space

Transformation on mAP C@1 C@5
no transformation 0.774 0.960 0.976

pixel space 0.785 0.950 0.982
feature space 0.805 0.959 0.987

front and back part. When one of the compared images is under
front-side view and the other is the back-side view, the side part
would be the only common visible part. The dynamically triplet
loss will guide the network to pay more attention to the side part,
which provide a more accurate distance measurement.

4.4.2 Transform on Different Space. Another set of experiments is
carried out to verify whether the model can really take the advan-
tages of the perspective transform on feature space. We design an
experiment to compare the transformation on feature space and the
transformation on pixel space on VeRi776. The experiments of trans-
formation on pixel space is conducted as follows. For each parts,
we first conduct the part perspective transformation on the raw
images to get four transformed sub images. Then each sub-images
are fed into a individual ResNet50 network to get the corresponding
local features. Triplet loss and ID loss are both used to optimize the
models. Since each model is trained separately, we ensemble the
four local models and the global model to get the final results.

Some vehicle parts are invisible in a single vehicle image, so we
can not get all of the five features for it. Summing the distance of
different models to ensemble the models is impossible. We design
an ensemble strategy to handle this problem. First, we assign fixed
weights for different models. For the global, front, back, side and
top models, we set the weights to𝑤 = [10, 5, 5, 2, 1]. Second, for two
vehicle images to be compared, we first determine the regions that
both visible in the two images. Then the corresponding weights
are selected and normalized to unit length to keep the scale of
the distance. Finally the distance is calculated by the normalized
weighted sum of the distance of the common visible parts.

As shown in Table 6, perspective transformation in pixel space
is also helpful for the performance because of the well aligned local
images provide accurate distances. At the same time, perspective
transform in feature space even performs better than the ensem-
ble model. The transformation keeps the information inside the
polygons, while there is rich information in the boundary. Transfor-
mation in feature space enlarges the receptive field so that the local
features can hold more information. Besides, transformation on
feature space will also optimize the feature extractor, which brings
extra promotion for global branch.

4.5 Qualitative Analysis
4.5.1 How the Part Perspective Feature Works. Classification Acti-
vation Map (CAM) is a common tool to observe the activated area of
deep neural network for classification. For a specific class, it use the
weight connected to the target class in the last fully connected layer
as the weights, and generate the heatmap by weighted sum of the
convolutional feature map before the global average pooling layer.
In ReID task, there is no classification layer in testing stage. We



Baseline

PPT

Figure 4: The distance activation map of baseline and our
PPT model. The images are divided into four group by the
lines. Each group represent a pair of comparison. The top
row indicates the heatmap of baselinemodel and the bottom
row indicates the same comparison of our PPT model. Our
PPT model attends more on the discriminative regions.

propose Distance Activation Map (DAM) to explore the concerned
area of two compared images. For two vehicle features, we use the
square of the difference of each dimension as the weights, and then
calculate the weighted sum of the feature map of the two images.
DAM shows the areas which dominates the distance between the
two features. Figure 4 shows two pairs of comparisons.

The images in first row are the DAM of the baseline model and
the second row are of our PPT model. First, our PPT model focus
more on the discriminative regions such as the annual inspection
marks, lights and the windows, while the baseline model only con-
cerns the lights. This is because the fine-grained alignment of the
features guide the network find the right different areas. Second,
our PPT model pays more attention to the side and roof of the vehi-
cle. This is because the part perspective transform fully exploits the
information of different regions, which can prevent the network
from over fitting into a single area.

4.5.2 Rank list on different datasets. Figure 5 shows the qualitative
results of our method on the three vehicle ReID datasets. We can
observe that when the query image and target image are under
different views, our PPT can better recognize the same vehicle,
which benefits from the disentangle and the fine-grained alignment
of features under different perspectives.

The top two rows in Figure 5 shows the results of PPT and PPT
without part perspective transform on VeRi776, where PPT ranked
all vehicles correctly. The medium two rows are the results on
VehicleID. According to the testing rule, for each query, there is
only one target image in the gallery set. The key visual cue is the
annual mark in the top-left window. PPT find it and rank it in the
first place even the perspectives of them are lightly different. The
bottom two rows show the results on VERI-Wild. PPT model find
the correct vehicle in all kinds of perspectives. We can find that the
top-k retrieved vehicles of the baseline model are all of the same
perspective and also in similar color and vehicle type. However,
PPT find the right images under different perspectives. This indi-
cates that the part perspective transformation can disentangle the
features under perspectives and provide the perspective-invariant
fine-grained alignment. Dynamically triplet loss guides the network
to the common visible regions. They both help the network to find

query Top5 results

VeRi776

w/o PPT

PPT

VehicleID

VERI-Wild

w/o PPT

PPT

w/o PPT

PPT

Figure 5: The top five results of the PPT and the baseline
model in three datasets.

out the exact different regions and find the correct vehicles. Finally,
PPT model performs well in different datasets.

5 CONCLUSION
In this paper, we introduce the part perspective transformation on
feature space to disentangle the features under different perspec-
tives and align them in a fine-grained level for vehicle ReID. The
vehicle parts are divided based on the vehicle keypoints, which
can disentangle the features of different perspectives. Further the
perspective transformation on feature space provides a fine-grained
alignment of the vehicle features, which will guide the network
to find out the exact discriminative visual cues. We propose the
dynamically triplet loss to guide the network to focus on different
regions to handle the problem of missing views, which will guide
the network to focus on the common visible regions. This not only
shortens the distance among intra-instances, but also enlarges the
discrepancy of inter-instances. Part perspective transform helps
capture the stable and discriminative information of vehicles. The
experiments conducted on three datasets show that our model
outperforms state-of-the-art methods by a large margin.
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