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ABSTRACT

In this paper, we focus on egocentric action anticipation from videos,

which enables various applications, such as helping intelligent wear-

able assistants understand users’ needs and enhance their capabili-

ties in the interaction process. It requires intelligent systems to ob-

serve from the perspective of the first person and predict an action

before it occurs. Owing to the uncertainty of future, it is insufficient

to perform action anticipation relying on visual information espe-

cially when there exists salient visual difference between past and

future. In order to alleviate this problem, which we call visual gap

in this paper, we propose one novel Intuition-Analysis Integrated

(IAI) framework inspired by psychological research, which mainly

consists of three parts: Intuition-based Prediction Network (IPN),

Analysis-based Prediction Network (APN) and Adaptive Fusion

Network (AFN). To imitate the implicit intuitive thinking process,

we model IPN as an encoder-decoder structure and introduce one

procedural instruction learning strategy implemented by textual

pre-training. On the other hand, we allow APN to process informa-

tion under designed rules to imitate the explicit analytical thinking,

which is divided into three steps: recognition, transitions and combi-

nation. Both the procedural instruction learning strategy in IPN and

the transition step of APN are crucial to improving the anticipation

performance via mitigating the visual gap problem. Considering the

complementarity of intuition and analysis, AFN adopts attention

fusion to adaptively integrate predictions from IPN and APN to

produce the final anticipation results. We conduct experiments on

the largest egocentric video dataset. Qualitative and quantitative

evaluation results validate the effectiveness of our IAI framework,

and demonstrate the advantage of bridging visual gap by utilizing

multi-modal information, including both visual features of observed

segments and sequential instructions of actions.

CCS CONCEPTS

• Computing methodologies→Activity recognition and un-

derstanding.
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Figure 1: (a) An instance of egocentric action anticipation.

The model takes an observed video segment xt as its input

and outputs the label yt+1 of the action which occurs one

unit of time later. (b) The visual gap problem in egocentric

action anticipation. Humans can often easily infer what will

happen even though there exists salient visual difference be-

tween past and future. How to endow the model with this

capability deserves exploration.
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1 INTRODUCTION

Imagine such a scenario, someone whose hands are injured wants

to cook when he/she is alone at home, it would be very helpful if an

intelligent system (e.g., a wearable exoskeleton robot) can guess the

user’s intentions and needs [15], predict the user’s next action in

advance, and thus assist the latter to execute this action. This kind

of ability to act as the first person is closely related to the task of

egocentric (i.e., First-Person Vision [4]) action anticipation, which

has attracted increasing attention in recent years [5, 9, 10, 20].

As shown in Fig. 1 (a), the task can be described as follows:

given an observed video segment xt which ends at time point t ,
the anticipation model is expected to output the label yt+1 of the
action that starts at time point t + 1, where 1 represents one unit
of time. There is no doubt that the task of predicting the future
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Figure 2: Overview of our proposed Intuition-Analysis Integrated (IAI) framework, which mainly consists of three sub-

networks named Intuition-based Prediction Network (IPN), Analysis-based Prediction Network (APN), and Adaptive Fusion

Network (AFN).

has a wide range of research significance as well as application

value, including human-robot interaction and augmented/virtual

reality. However, it is quite difficult for the model to perform action

anticipation on account of the time distance between xt and yt+1.
To be more specific, it is insufficient to address the task relying

on visual information especially when there exists salient differ-

ence between past and future in terms of visual information. As

illustrated in Fig 1 (b), the action “take cup” may not be correctly

predicted if the object “cup” has not appeared in the observed video

segment. In this paper, we call this phenomenon as “visual gap”.

The visual gap problem results from the inherent uncertainty of

future [34] and adds challenges to the task of egocentric action

anticipation. Since humans can often easily infer what will happen

even though it is difficult to capture correlation between past and

future at visual level, it is worth exploring how to enable the model

to make predictions like humans.

Considering that action prediction from an egocentric perspec-

tive is directly and tightly related to human psychology, we turn

our attention to this field. Inspired by relevant research [6, 12, 25],

we propose an Intuition-Analysis Integrated (IAI) framework to im-

itate humans in performing egocentric action anticipation. These

psychological studies suggest that: 1) intuition and analysis are

two modes of cognition, which are served by interacting but inde-

pendent systems; 2) intuition is a subconscious, habitual process

while analysis is conscious and tends to combine information using

organized principles; 3) intuition is neither the opposite of rational-

ity nor a random process of guessing. Instead, it can outperform

rational analysis in tackling many practical problems. Therefore,

integrating both intuitive and analytical thinking is probably the

most appropriate way to make predictions.

As shown in Fig. 3, our framework mainly consists of three parts:

Intuition-based Prediction Network (IPN), Analysis-based Predic-

tion Network (APN) and Adaptive Fusion Network (AFN). For IPN,

since intuitive mode is automatic, holistic and cannot be easily

articulated explicitly, we model it as an encoder-decoder structure

connected with a classifier, an analogous black-box process that

handles action as a whole. The encoder understands the past visual

information and the decoder produces the future action information

to be classified. More importantly, intuition draws from knowledge

stored in the subconscious, which is named as tacit knowledge

[6]. Considering the visual gap problem, we further introduce pro-

cedural instruction learning implemented by textual pre-training

to enable IPN to acquire tacit knowledge in advance. Particularly,

before sending visual features of xt to IPN, we replace them with

the sequential instructions of the action executed before yt+1 to
pre-train the parameters of IPN, making IPN store considerable

tacit knowledge. For APN, we design a set of rules to implement

analysis-based prediction. Note that egocentric actions are usually

represented as (verb, noun) pairs [5, 9], we divide the analytical

process into three steps. First, we identify the current verb vt and
noun nt based on the observation. Second, we transit from vt and
nt to the futurevt+1 and nt+1 separately depending upon a Markov

assumption. The transition step is necessary in mitigating the visual

gap problem via capturing statistical correlations between past and

future. Finally, we combine vt+1 and nt+1 into yt+1. This combina-

tion is guided by the prior knowledge acquired from prior statistics

on co-occurrence probability between verbs and nouns, which can

greatly avoid generating invalid combinations. Furthermore, since

both intuition and analysis are indispensable in solving complex

problems [25], AFN integrates results from IPN and APN into the

final anticipation result via attention fusion, which enables our IAI

framework to adaptively determine to give more credit to intuition

or analysis by assigning different weights for them.

Considering kitchens witness extensive common daily activities,

including taking containers, washing dishes and cooking recipes,

we evaluate our model on the largest egocentric video dataset EPIC-

Kitchens in the kitchen environment [5]. The experimental results

show the effectiveness of our proposed method. Overall, our key

contributions are summarized as follows:

• To the best of our knowledge, we are the first to jointly intro-

duce both intuition and analysis to imitate humans for egocen-

tric action anticipation, which is expected to provide method-

ological basis for future research in the multimedia.

• We propose one Intuition-Analysis Integrated (IAI) framework

for egocentric action anticipation, where an encoder-decoder

structure is adopted for intuition and a three-step pipeline of

recognition-transition-combination is designed for analysis.

Furthermore, sequential instructions of actions and prior knowl-

edge from co-occurrence statistics are explored to improve the

anticipation performance.
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Figure 3: The concrete architecture of our IAI framework where the three sub-networks are explicitly modeled. Given xt ,
outputs from IPN and APN (i.e., FI (xt ) and FA(xt )) are integrated to obtain the final anticipation result F (xt ) via AFN.

• We validate the effectiveness of our IAI framework on the

largest egocentric video dataset EPIC-Kitchens. The qualita-

tive results also demonstrate that our IAI framework is capable

of bridging visual gap between past and future.

2 RELATEDWORK

Egocentric Video Analysis Different from videos recorded in

third person vision where cameras are fixed in the environment,

egocentric videos are captured from the subjects’ own point of view

[23] and explored for different purposes [4], such as object recogni-

tion and tracking [8], hand grasp analysis and gesture recognition

[11, 36], action and activity analysis [19, 24]. Among these, action

analysis plays a connecting role between lower-level tasks (e.g. ob-

ject recognition, hand grasp analysis) and higher-level applications

such as human-robot interaction [16] and health care [3]. While

more attention is paid to egocentric action recognition [19, 24, 31],

some recent works have been devoted to action anticipation in

first person vision [9, 10], which requires understanding the past

and making assumptions about the future. In addition, similar to

third person vision, egocentric video data can also be collected

with multi-sensor wearable devices [4] in different scenes, such as

parks [7], library exhibitions [29] and kitchens [5]. In this paper,

we conduct egocentric video analysis for action anticipation on

the largest egocentric video dataset EPIC-Kitchens [5] in the daily

kitchen environment.

Action Anticipation The task of action anticipation aims at pre-

dicting an action before it is actually executed [17]. One character-

istic “predicting an action before it occurs ” distinguishes this task

from early action recognition where an ongoing action should be

predicted based on partially observed videos [28]. Another charac-

teristic “predicting a short-duration action ” also makes it different

from long-term activity prediction which requires anticipating mul-

tiple actions happening in the future for quite a long time [1] as

well as the task of forecasting the first-person trajectory [27].

Compared with action anticipation in third person vision [16–

18, 34], fewer works focus on egocentric action anticipation. Damen

et al. [5] utilized action recognition models for action anticipation in

the kitchen scenario. Miech et al. [20] proposed a transitional model

to establish an interpretable relationship between past and future,

which is related to our proposedAnalysis-based PredictionNetwork.

Different from [20], we process verbs and nouns separately at first

and combine them afterwards instead of handling them as a whole.

Furnari et al. [9] considered the task as a multi-label classification

problem and studied the design of loss functions. They further

made use of three kinds of visual features by sending them into

Rolling-Unrolling LSTMs [10], which can be viewed as a special

case of our proposed Intuition-based Prediction Network. In order

to bridge visual gap between past and future, we consider multi-

modal information, including both visual features of videos and

sequential instructions of actions, to perform action anticipation

via integrating intuition and analysis.

3 PROPOSED FRAMEWORK

In this section, we will detail the Intuition-Analysis Integrated

(IAI) framework. Given the observed video segment xt , the task of

predicting the label of action which starts one unit of time later

(i.e., yt+1) can be treated as a supervised classification problem

[9], where each xt is a training sample with an annotated ground-

truth label ȳt+1. Therefore, our goal is to find a function F (·) which
leads yt+1 = F (xt ) to approximate ȳt+1 as close as possible. To

implement this, as illustrated in Fig. 3, we first design FI (·) and
FA(·) respectively for Intuition-based Prediction Network (IPN) and

Analysis-based Prediction Network (APN). Then Adaptive Fusion

Network (AFN) takes FI (xt ) and FA(xt ) as its inputs and yields

F (xt ) as the final anticipation result.

3.1 Intuition-based Prediction Network

Given an input video segment xt , we firstly sample a snippet with

L frames and extract visual features of each sampled frame. In our

framework, similar to [10], we consider three kinds of visual fea-

tures, namely RGB features
{
r
1
t , . . . , r

L
t

}
, flow features

{
f
1
t , . . . , f

L
t

}
and object features

{
o
1
t , . . . , o

L
t

}
, where r

i
t , f

i
t and o

i
t are fixed-

length feature vectors of the i-th frame. As discussed earlier, the

key of intuition is to store tacit knowledge. Considering LSTMs



are good at capturing temporal dependencies in sequential data,

we employ them to implement this process. As shown in Fig. 3,

the process of handling three types of visual features is identical.

Taking RGB features for example, we sent
{
r
1
t , . . . , r

L
t

}
into the

first LSTM to encode the past information, where each hidden state

[hit ]e (i = 1, . . . , L) can be computed as:

[hit ]e = LSTMθe (r
i
t , [h

i−1
t ]e )

[h0t ]e = 0
(1)

where LSTMθe represents the encoder with learnable parameters

θe . The last hidden state [hLt ]e is sent to the second LSTM as its

initial hidden state:

[hit ]d = LSTMθd (r
i
t , [h

i−1
t ]d )

[h0t ]d = [hLt ]e
(2)

where LSTMθd plays a role of decoder with learnable parameters θd
and its last hidden state [hLt ]d is viewed as the overall representation

of decoded information. Then we apply a MLP to compute action

scores st ,r with respect to RGB features:

st ,r = Φθs ([h
L
t ]d ) (3)

where Φθs (·) stands for a MLP with learnable parameters θs . Simi-

larly, we can obtain action scores st ,f and st ,o with respect to flow

and object features by replacing
{
r
1
t , . . . , r

L
t

}
with

{
f
1
t , . . . , f

L
t

}
and{

o
1
t , . . . , o

L
t

}
based on Eq. (1)-(3). Action scores from each visual

modality are fused to obtain the predicted result FI (xt ) as in [10].

Procedural InstructionLearning viaTextual Pre-trainingCon-

sidering the visual gap problem where visual information is insuffi-

cient to build up a connection between xt and yt+1, we introduce
textual pre-training to learn procedural instructions. For ȳt+1, sup-
pose its previous annotated action label ȳt is composed ofM words

andw
j
t (j = 1, . . . ,M) is the embedded word vector of the j-th word,

we pre-train IPN by treating
{
w
1
t , . . . ,w

M
t

}
as a training sample

and ȳt+1 as its ground-truth label. All learnable parameters (i.e., θe ,
θd and θs ) can be trained in advance as follows:

[h
j
t ]e = LSTMθe (w

j
t , [h

j−1
t ]e )

[h
j
t ]d = LSTMθd (w

j
t , [h

j−1
t ]d )

FI (xt ) = Φθs ([h
M
t ]d )

(4)

where j ranges from 1 toM and [h0t ]e = 0, [h0t ]d = [hMt ]e . By learn-

ing from procedure instructions in textual form, IPN is expected

to store relevent tacit knowledge ahead, which guides it to make

intuitive predictions when observing the corresponding video.

3.2 Analysis-based Prediction Network

Compared with intuition, analysis-based prediction prefers to per-

formmore interpretable operations under given rules.We divide the

analytical process into three steps, namely recognition, transition,

and combination guided by prior knowledge.

3.2.1 Recognition. As shown in Fig. 3, the whole analyical process

can be regarded as processing information through two branches,

which we call verb-based branch and noun-based branch. This is

because an egocentric action is generally represented as a (verb,

noun) pair [5, 9], and either the number of verb classes Nv or noun

classes Nn is much smaller than action classes Na . To reduce com-

putation complexity, we handle nouns and verbs separately at first

and leverage prior knowledge to combine them afterwards. Consid-

ering object features convey considerable noun information while

RGB and flow features capture appearance and motion indicating

verb-relevant information, we utilize object features for the noun-

based branch and RGB/flow features for the verb-based branch.

Before sending object features to the noun-based branch, we first

obtain an overall representation zt ,o by aggregating the frame-level

features
{
o
1
t , . . . , o

L
t

}
over time:

zt ,o = f (o1t , . . . , o
L
t ) (5)

where f is a temporal aggregation function and we utilize LSTM

for f in our experiments. Similarly, we also obtain zt ,r and zt ,f

from
{
r
1
t , . . . , r

L
t

}
and

{
f
1
t , . . . , f

L
t

}
before sending RGB and flow

features to the verb-based branch in an identical manner. Then we

use MLPs Φv (·) and Φn (·) to separately recognize the verb vt and

the noun nt :

vt = Φv (zt ,r/f ) nt = Φn (zt ,o ) (6)

where v
j
t denotes the j-th (j = 1, . . . ,Nv ) element of vt and its

value P(v
j
t ) represents the probability that vt belongs to the j-th

verb class. The similar meaning also goes for nt .

3.2.2 Transition. Considering that the prediction of the next action

depends upon the recognition results, we model the sequence of

performed actions as a Markov process. Different from [20] which

regarded an action as a whole, we process its verb and noun sepa-

rately. Therefore, at the time point t + 1, the probability that the

verb vt+1 belongs to the j-th class can be computed as:

P(v
j
t+1) =

Nv∑
i=1

P(v
j
t+1 |v

i
t )P(v

i
t ) (7)

where P(v
j
t+1 |v

i
t ) stands for the conditional probability between the

past and the future verb. In other words, P(v
j
t+1 |v

i
t ) is actually at the

(i, j) position of Markov transition matrix Tv which captures the

explicit correlation between the past and the future verb. Similarly,

the transition process from the noun nt to nt+1 is computed as:

P(n
j
t+1) =

Nn∑
i=1

P(n
j
t+1 |n

i
t )P(n

i
t ) (8)

where P(v
j
t+1 |v

i
t ) is at the (i, j) position of transition matrix Tn .

3.2.3 Combination. Suppose the k-th class action ak is composed

of the i-th class verb vi and the j-th class verb nj , which can be

represented as ak = (vi ,nj ), it is conceivable that we cannot obtain

P(yt+1 = ak ) by simply multiplying P(vit+1) and P(n
j
t+1) because

many (verb,noun) pairs are invalid. Therefore, we propose a way to

combine vt+1 and nt+1 guided by prior knowledge:

P(ak ) =
exp

(
η(vi ,ak )P(vit+1) + η(n

j ,ak )P(n
j
t+1)

)

∑Na

k=1
exp

(
η(vi ,ak )P(vit+1) + η(n

j ,ak )P(n
j
t+1)

) (9)



where η(vi ,ak ) represents the prior knowledge that given the

verb category vi , how possible it is to predict the action category

ak , which can be computed as:

η(vi ,ak ) =

∑N
c=1 Ic (a

k )
∑N
c=1 Ic (v

i )
(10)

where N is the total number of training samples, and Ic (a
k ) is

an indicator function reflecting whether ak is in the c-th training

sample. The calculation method also applies to η(nj ,ak ). In this

way, we can avoid generating invalid predictions to a large degree.

Therefore, we can obtain yt+1 = FA(xt ) with its k-th element

P(yt+1 = ak ) finally computed based on Eq. (9).

3.3 Adaptive Fusion Network

Based on psychological studies [12, 25], intuition-based prediction

might be more useful than analysis-based prediction in some cases

and vice versa, which means neither results from IPN (i.e., FI (xt ))
nor APN (i.e, FA(xt )) could be neglected. Therefore, in order to fur-

ther improve the anticipation performance, we adopt an adaptive

integration strategy to effectively exploit both FI (xt ) and FA(xt ).
To be more specific, inspired by previous study on attention mecha-

nism [2], we first send FI (xt ) and FA(xt ) to a MLP Φ(·) to compute

attention scores for them:

s1 = Φ (FI (xt )) s2 = Φ (FA(xt )) (11)

where s1 and s2 are attention scores indicating the relative impor-

tance of intuition or analysis for the final prediction. Thenwe obtain

fusion weights by normalizing the attention scores:

α1 =
exp(s1)

exp(s1) + exp(s2)
α2 =

exp(s2)

exp(s1) + exp(s2)
(12)

where α1 and α2 are fusion weights. This operation ensures that

α1 and α2 sum to one, which considers the complementarity of

intuition and analysis in making predictions. Finally, we obtain the

fused anticipation result F (xt ) by integrating the two parts with a

linear combintion:

F (xt ) = α1FI (xt ) + α2FA(xt ) (13)

In this way, our proposed framework can make predictions by

taking advantage of both intuition and analysis at the same time.

Particularly, it is capable of dynamiclly assigning fusion weights for

IPN and APN, which means it can adaptively choose to give more

trust to intuition-based prediction or analysis-based prediction.

4 EXPERIMENT

4.1 Dataset and Evaluation Metrics

We evaluate our proposed framework on the largest dataset in

first person vision: EPIC-Kitchens [5], which consists of 55 hours

of videos collected by 32 participants performing daily activities

in their native kitchen environments. The dataset is very close

to real-world data in that extensive and various cooking-related

actions such as "take cup" and "wash carrot" are recorded from an

egocentric perspective. There are 125 unique verb classes and 352

unique noun classes in total while the number of unique action

categories is 2,513. Similar to [10], we randomly select 232 videos

Table 1: The effect of procedural instruction learning via tex-

tual pre-training on IPN (%).

Method Top1@A Top5@A

Visual(rgb) 12.28 29.38

Textual+Visual(rgb) 12.50 29.76

Improvement +0.22 +0.38

Visual(flow) 6.79 17.54

Textual+Visual(flow) 7.16 18.09

Improvement +0.37 +0.55

Visual(obj) 9.44 28.13

Textual+Visual(obj) 9.68 28.62

Improvement +0.24 +0.49

Visual(rgb+flow+obj) 13.57 32.73

Textual+Visual(rgb+flow+obj) 13.90 33.19

Improvement +0.33 +0.46

with 23,493 segments for training and 40 videos with 4,979 segments

for validation. Test results are obtained from the evaluation server.

Top-1 accuracy and Top-5 accuracy are adopted as evaluation

metrics. For simplicity, we make Top1@N, Top1@V and Top1@A

denote Top-1 accuracy with respect to nouns, verbs and actions,

and similar meaning for Top5@N, Top5@V and Top5@A.

4.2 Experimental Setup

Our task requires predicting the label of action starting at time point

t + 1 based on the observed video segment that ends at time point

t , where 1 represents one second. Similar to [10], we employ three

visual modalities (i.e., RGB, flow and object features). Specifically,

both RGB frames and pre-computed optical flows provided by [5]

are sent to the BN-Inception CNN [14] to obtain 1024-dimensional

feature vectors. The object features are extracted by sending each

frame to the Faster R-CNN object detector [26] with a ResNet-101

backbone [13] to obtain one 352-dimensional feature vector where

each element represents the existence probability of each noun in

the dataset. We sample a snippet with 11 frames for each input. For

textual pre-training in IPN, we use fixed-length vectors to embed

the input words whose dimensions are equal to the corresponding

visualmodality.We set the hidden state size of LSTMθe and LSTMθd
to 1024. The MLPs we use consist of three fully connected layers

with ReLU non-linearities. Our model is trained by minimizing the

standard cross entropy via the SGD optimizer with momentum of

0.9 and a batch size of 128. The learning rate is set to 0.01 initially

and decayed by a factor of 10 after 50 epochs. To regularize the

training and avoid overfitting, dropout with retain probability 0.8

is used. All of our experiments are trained for 200 epochs.

4.3 Effect of Procedural Instruction Learning

To evaluate the effect of procedural instruction learning imple-

mented by textual pre-training in IPN, we report four groups of com-

parative results in Table 1. For the first group, Visual(rgb) denotes

only RGB features are used to train IPN while Textual+Visual(rgb)

means textual annotations of actions are utilized to pre-train IPN.

Similar meaning goes for the second and third groups. For the last

group, Visual(rgb+flow+obj) represents all three visual features are
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Figure 4: The improvement brought by procedural instruc-

tion learning via textual pre-training.

used to train IPN, which is consistent with descriptions in Section

3.1. From Table 1, we can see that: (1) utilizing three visual features

outperforms using single one; (2) introducing procedural instruc-

tion learning via textual pre-traning brings consistent improvement

to simply using visual features to train IPN.

We further show an example to visualize this improvement in

Fig. 4. As shown from (b)→(c), relying only on visual information

may lead to the wrong prediction. Intrinsically, the time distance

between past and future makes visual context discontinuous at

temporal level whereas textual context can be unaffected. Therefore,

seeing from (a)→(b)→(d), by introducing procedural instruction

learning via textual pre-training, IPN is more likely to produce the

accurate result, which can be interpreted as storing tacit knowledge

for intuition in advance.

4.4 Ablation Studies on APN

For APN, it consists of three steps: recognition, transition and com-

bination. To eliminate any interference between modalities, we first

conduct ablation stuides with respect to each step by maintaining

the input visual modality as object features. In addition, we also

evaluate the performance of different combinations used for APN.

Rationality of handling verbs and nouns separately. To ver-

ify the rationality of the two-branch process, which handles verbs

and nouns separately in analysis-based prediction, we compare this

method with three baselines:

• Single branch (V): Single-branch process where only verbs are

recognized, transited and guided to actions by η(v,a).
• Single branch (N): Single-branch process where only nouns are

recognized, transited and guided to actions by η(n,a).
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Figure 5: The necessity of transition in APN.

Table 2: The rationality of processing verbs and nouns sepa-

rately (%).

Method Top1@V Top1@N Top1@A Top5@V Top5@N Top5@A

Single branch (V) 20.16 8.25 3.97 71.94 42.56 18.78

Single branch (N) 19.07 12.79 5.13 70.08 44.31 20.83

Single branch (A) 23.92 19.61 6.88 75.82 45.23 23.71

Two branches (V+N) 22.66 20.17 7.04 76.21 46.17 23.97

• Single branch (A): Single-branch process where actions are rec-

ognized and transited as a whole.

Table 2 lists the performance of different branches. We can see that

our adopted two-branch process outperforms handling verbs or

nouns only. This is easy to understand because whether a verb

or a noun is an indispensable part of an action. Furthermore, the

performance of processing verbs and nouns separately is also better

than processing actions as a whole, which is reflected in both Top-

1 and Top-5 anticipation accuracy on actions (+0.16% and +0.28%).

This is mainly because both Nv (125) and Nn (352) are in a much

smaller scale than Na (2513), which makes addressing verbs and

nouns in a separate way actually lower the per-iteration complexity

by cutting down on the number of parameters.

Necessity of transition. To demonstrate the necessity of transi-

tion process in analysis-based prediction, we maintain the steps of

recognition and combination but remove the transition step from

APN, which means the recognized verbs and nouns are directly

combined guided by prior knowledge. As shown in Fig. 5, the tran-

sition process based on Markov assumption brings considerable

improvement (+0.66% and +2.21% with respect to Top-1 and Top-5

accuracy) to the action anticipation results. This confirms that the

transition process is necessary in mitigating the visual gap problem

via establishing a powerful relationship between past and future.

Superiority of combination guided by prior knowledge. To

assess the role of combination guided by prior knowledge, we

compare our method with a baseline that simply multiplies the

probabilities of verbs and nouns to obtain the probability of ac-

tions. We call it as naive combination, which can be formalized as

P(yt+1 = ak ) = P(vit+1)P(n
j
t+1) based on the description in Section

3.2.3. For a fair comparison, we maintain the process of recognition

and transition. It can be observed from Fig. 6 that combining verbs
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Figure 6: The superiority of combination guided by prior

knowledge.



Table 3: Evaluation on feature combinations used for APN

(%).

Method Top1@V Top1@N Top1@A Top5@V Top5@N Top5@A

V(R/F/O)+N(R/F/O) 28.19 18.51 10.09 76.41 44.03 26.12

V(R/F/O)+N(O)) 29.38 19.23 10.24 77.69 43.65 26.91

V(R/O)+N(R/F/O) 28.76 19.33 10.15 75.87 43.86 25.90

V(F/O)+N (R/F/O) 27.13 17.57 9.98 72.65 43.51 24.95

V(R/F)+N(R/F/O) 28.94 19.57 10.43 76.19 44.11 26.28

V(R/O)+N(O) 29.04 19.52 10.71 77.43 44.29 27.41

V(F/O)+N(O) 29.01 20.39 10.49 76.05 44.40 26.81

V(R/F)+N(O) 30.39 19.94 10.87 77.16 44.74 27.37

and nouns guided by prior knowledge definitely improves both Top-

1 and Top-5 anticipation accuracy on actions (+1.25% and +3.55%)

as well as verbs (+1.79% and 3.87%) and nouns (+0.88% and +3.52%).

It is understandable that this way of combination fully considers

the co-occurrence probability between verbs and nouns.

Evaluation on feature combinations. To evaluate the perfor-

mance of different feature combinations used for APN, we list sev-

eral cases in Table 3. As shown in the last case, V(R/F) represents

RGB and flow features are used to process verb-based branch while

N(O) represents object features are used to process noun-based

branch. Similar meaning also goes for other cases. From Table 3, we

see that the combination of V(R/F) and N(O) outperforms other com-

binations under many metrics, even though some metrics can not

surpass. It is understandable because object features are extracted

based on noun information while RGB and flow features capture

appearance and motion that indicate verb-relevant information.

4.5 Effect of Adaptive Fusion

In order to evaluate the strategy of attention fusion which adap-

tively integrates anticipation results from IPN and APN, we com-

pare it with two traditional fusion strategies. One is average fusion

that simply averages the anticipation results from two parts while

the other is maximum fusion that takes the larger one as the final

result. We denote them as Fusion-Avg and Fusion-Max in Table 4.

As shown in Table 4, using adaptive fusion (Fusion-Ada) further

improves the performance of both IPN (+0.17% and +0.18%) and

APN (+3.20% and +5.00%) with respect to Top-1 and Top-5 accuracy

on actions, which demonstrates the complementarity between in-

tuition and analysis. We also see that attention fusion outperforms

the other two fusion strategies. Considering that egocentric action

anticipation is a highly complex and uncertain task, it is essential

that our method can dynamically adjust the fusion weights of in-

tuition and analysis instead of generating final results under fixed

principles, which means our proposed framework is more flexible

in making predictions based on different situations.

4.6 Performance Comparison among Models

As shown in table 5, we present the performance comparison be-

tween our proposed method and the following methods: 2SCNN

[30], TSN [35], TSN+MCE [9], Miech et al. [20] and RULSTM [10]

on the unseen test test. From table 5, we can see that our method

exceeds the two action recognition models (i.e., 2SCNN and TSN)

Table 4: The effect of adaptive fusion in our framework (%).

Method Top1@V Top1@N Top1@A Top5@V Top5@N Top5@A

IPN 32.72 22.36 13.90 78.65 50.17 33.19

APN 30.39 19.94 10.87 77.16 44.74 27.37

Fusion-Avg 33.07 22.24 13.97 79.01 50.86 33.23

Fusion-Max 33.31 22.17 13.68 78.91 49.77 33.11

Fusion-Ada 33.33 22.44 14.07 79.15 50.55 33.37

Table 5: Performance of our method and compared ap-

proaches (%).

Method Top1@V Top1@N Top1@A Top5@V Top5@N Top5@A

2SCNN [30] 25.23 9.97 2.29 68.66 27.38 9.35

TSN [35] 25.30 10.41 2.39 68.32 29.50 9.63

TSN+MCE [9] 21.27 9.90 5.57 63.33 25.50 15.71

Miech et al. [20] 28.37 12.43 7.24 69.96 32.20 19.29

RULSTM [10] 27.01 15.19 8.16 69.55 34.38 21.20

Ours-IPN 27.24 14.58 8.06 69.17 34.21 20.21

Ours-APN 24.07 14.65 7.27 68.62 34.45 18.33

Ours-IAI 27.89 14.89 8.57 70.06 35.51 21.41

by a large margin, which demonstrates that methods used for action

recognition are not applicable to action anticipation. Our method

also outperforms two powerful models (i.e., TSN+MCE and Miech

et al.) as well as the state-of-the-art results (i.e., RULSTM), which

further verifies the effectiveness of our method.

4.7 Qualitative Results

Fig. 7 shows some qualitative examples of anticipation results ob-

tained by our proposed framework. For each example, we show

Top-5 predictions with respect to IPN, APN and the whole IAI

framework. The bar next to each predicted reuslt visualizes the

corresponding probability. Specifically, the second and third col-

umn show the results obtained by IPN and APN separately while

the forth column shows the weighted sum of intuition-based and

analysis-based predicted results. Particularly, the correct one is

highlighted in bold and underlined.

For the first example, even if the anticipation object “mug” has

not appeared in the observation, both IPN and APN can predict the

ground-truth action “get mug” with certain probabilities. Through

adaptive fusion, the IAI framework is able to make an accurate

prediction, which shows advantages in mitigating the visual gap

problem. The second and third examples also demonstrate that our

framework can further improve the anticipation performance of

both intuition-based prediction and analysis-based prediction.

It should be noted that our proposed framework fails in the last

example, a more complex case that is uncertain and intractable

in essence. To be more specific, the observed segment reflects the

action of opening the fridge which indicates something unobserved

is likely to be taken from the fridge. However, different from the

first example, the situation in the fridge is much more complicated

than that in the cupboard because the fridge always stores all kinds

of food and drinks while the cupboard only contains limited kinds

of containers such as cups and bowls. As a result, it is still difficult to
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Figure 7: Qualitative examples of the egocentric action anticipation results obtained by our IAI framework.

infer which object will be taken from the fridge from the perspective

of either intuition or analysis. As shown in the last example, the

model tends to anticipate commonly stored objects in the fridge

such as “meat” and “tomato” instead of the “mushrooms” that exist

at a much smaller frequency. This case reveals that the current

information we utilize is still very limited, regardless of the visual

form or the textual form.

4.8 Discussions

In our method, we utilize multi-modal information by introducing

textual modality to mitigate the visual gap problem which is in-

tractable relying only on visual information. However, the current

available textual information only contains annotations of short-

duration actions, making it difficult to have a comprehensive under-

standing of the ongoing activities happening in one special scenario.

Particularly, in the EPIC-Kitchens from the kitchen scenario, it is

worth introducing more information from cooking domain [21],

such as ingredients, sequential cooking instructions as well as food

attributes [22]. For example, if the ingredient information of the

being-prepared dishes is available, the model is more likely to make

a correct prediction in the last case of Fig. 7. Furthermore, in order to

embed more food-related information, the anticipation task should

also be extended from predicting a single short-duration action to

predicting a long-term activity consisting of multiple actions in the

future, similar to [1].

Moreover, our proposed IAI framework is inspired by studies on

the cognitive modes of humans. Admittedly, this kind of simulation

is rough and premature due to the lack of deeper understanding

of the field of psychology. Overall, our work aims to construct

a basic framework, which is expected to expand the boundaries

of relevant research. Therefore, many questions are worth explo-

ration in the future. For example, the task of action anticipation

depends upon the understanding of the past video information so

that studies on related tasks such as video caption [33] and video

question answering [32] may offer significance for reference. More

intrinsically, how to model the process of intuition-based prediction

and analysis-based prediction as well as integrate them in a more

powerful manner requires deeper investigations into psychology.

Furthermore, whether the framework is also applicable to other

tasks (especially first person vision related) needs further study.

5 CONCLUSIONS

In this paper, we have proposed one framework which adaptively

integrates intuition and analysis to imitate humans in perform-

ing egocentric action anticipation. Our work can be extended in

the following three directions: 1) introducing more multi-modal

information from specific domain, such as ingredients, cooking in-

structions and food attributes from cooking domain in the kitchen

environment; 2) extending the task from predicting a single short-

duration action to predicting a long-term activity; 3) optimizing

the design of intuition-based prediction and analysis-based pre-

diction via deeper studies on psychology as well as other video

understanding tasks.
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