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Abstract— Person reidentification (reID) by convolutional
neural network (CNN)-based networks has achieved favorable
performance in recent years. However, most of existing CNN-
based methods do not take full advantage of spatial–temporal
context modeling. In fact, the global spatial–temporal context
can greatly clarify local distractions to enhance the target feature
representation. To comprehensively leverage the spatial–temporal
context information, in this work, we present a novel block,
interaction–aggregation-update (IAU), for high-performance per-
son reID. First, the spatial–temporal IAU (STIAU) module is
introduced. STIAU jointly incorporates two types of contextual
interactions into a CNN framework for target feature learning.
Here, the spatial interactions learn to compute the contextual
dependencies between different body parts of a single frame,
while the temporal interactions are used to capture the contextual
dependencies between the same body parts across all frames.
Furthermore, a channel IAU (CIAU) module is designed to model
the semantic contextual interactions between channel features
to enhance the feature representation, especially for small-scale
visual cues and body parts. Therefore, the IAU block enables the
feature to incorporate the globally spatial, temporal, and channel
context. It is lightweight, end-to-end trainable, and can be easily
plugged into existing CNNs to form IAUnet. The experiments
show that IAUnet performs favorably against state of the art
on both image and video reID tasks and achieves compelling
results on a general object categorization task. The source code
is available at https://github.com/blue-blue272/ImgReID-IAnet.

Index Terms— Feature enhancing, interaction–aggregation,
person reidentification (reID), spatial–temporal context modeling.
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I. INTRODUCTION

PERSON reidentification (reID) aims at retrieving partic-
ular persons from nonoverlapping camera views. It has

gained increasing attention due to its importance in many
applications, such as video surveillance analysis and tracking.
Despite much progress has been achieved in recent years
[1]–[6], it remains difficult due to tremendous challenges, such
as occlusion, background clutters, poses variation, and camera
viewpoints variations. Previous approaches mostly focus on
image setting, where the persons from different cameras are
matched by comparing their still images. With the emergence
of video benchmarks [7], [8], the researchers have also started
to utilize video data for reID.

Recently, reID by deep neural networks has attracted
increasing attention. These approaches utilize convolutional
neural networks (CNNs), which typically stacks convolutional
and pooling operations, to develop discriminative and robust
features. With powerful deep networks and large-scale labeled
data sets, CNN-based methods achieve favorable performance
and efficiency.

Despite the significant progress in image person reID, most
existing CNN-based methods do not take full advantage of
spatial context modeling. As point out by Zheng et al. [10],
the final convolutional features of pedestrians usually focus
only on the most representative local regions, which may be
indistinguishable for two persons with similar-looking local
parts. For example, as shown in Fig. 1(a), the upper clothes of
the image pair attract the most attention. However, it is difficult
to distinguish the two pedestrians. Varior et al. [11] demon-
strated that the long-range global spatial context can greatly
help to clarify local confusions. As illustrated in Fig. 1(b), with
the help of the spatial context, the features of upper body parts
can be adaptively changed to distinguish the two pedestrians.
Therefore, it is desirable to automatically capture the global
spatial context for image reID.

For video person reID, current CNN-based methods do not
make the best of spatial–temporal context modeling. The 2-D
convolution operations completely ignore the temporal infor-
mation of the video. Although the 3-D convolution [12] oper-
ations can capture spatial–temporal context, they are limited
to local temporal context modeling [13]. With only the spatial
information, the feature generated for a video is often cor-
rupted by the misdetected frames [14]. McLaughlin et al. [15]
pointed out that the long-range global temporal context
can help to reduce the interference. As shown in Fig. 1(c),
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Fig. 1. Illustration of our motivation. (a) Pair of input images and
activation maps [9]. The upper clothes attract the most attention. However,
they are indistinguishable for the two persons. (b) In spatial context modeling,
different body parts interact and aggregate to form structure features with
spatial contextual knowledge. Here, the upper body feature can be adaptively
updated to distinguish the two persons. (c) In temporal context modeling,
the frames interact and aggregate to generate features with temporal contextual
information. With the temporal context, the corruption from the misdetected
frames can be alleviated.

with the help of temporal context, the features of the misde-
tected frames can be adaptively updated to describe the target
person. Therefore, it is necessary to capture the long-range
spatial–temporal context for video reID.

A recent work [16] proposes an interaction-and-aggregation
(IA) network for image reID. It introduces two modules that
aid CNNs in modeling contextual dependencies. One is spatial
IA, which models the dependencies between the features
of fixed space positions and then aggregates the correlated
features belonging to the same body parts. The other is channel
IA, where the channel features with similar semantics are
aggregated. The incorporation of these modules into a network
gives it the ability to adapt its feature representation to contain
contextual information.

Following [16], we further propose a unified framework
for image and video reID. Compared with [16], the major
changes of methods are twofold. For one thing, different
from [16] that models the spatial dependencies between fixed
geometric positions, we go one step further and perform higher
level context modeling between disjoint and distant body parts
regardless of their shapes. This is conductive to capture longer
term spatial contextual dependencies. For another, video reID
is considered. We design an additional network module to
capture the longer range temporal contexts that can achieve
more robust video feature representations.

In this work, we propose a new network module, spatial–
temporal interaction–aggregation-update (STIAU), to jointly
consider both globally spatial and temporal contexts of the
target person. To be specific, given a video feature map,
a sequence of intermediate convolutional feature maps of all
frames, STIAU generates a spatial–temporal relation map.
The relation map captures two types of interactions between
body parts: spatial interactions that model the dependencies
between disjoint and distant body parts of a single frame and
temporal interactions that model the dependencies between
the body parts with the same semantics across all frames.
In this way, the long-range spatial–temporal context of the
video is captured. Based on the relation map, the features
of different parts across all video frames are aggregated to

generate a spatial–temporal contextual representation. Finally,
the spatial–temporal context is incorporated into each frame
to form a structured spatial–temporal feature.

Similar to STIAU in principle, the channel interaction–
aggregation-update (CIAU) is proposed to further enhance the
feature representation via modeling the semantic contextual
interactions between the channels of the video feature maps.
Especially, for small-scale body parts that easily fade away
in the high-level features from CNNs, CIAU can selectively
aggregate the semantically similar features across all channels
to update and manifest their feature representations.

Both modules are computationally lightweight and impose
only a slight increase in model complexity. They can be
integrated into an interaction–aggregation-update (IAU) block
and readily inserted into CNNs at any depth. In this work,
we add IAU block to ResNet-50 [17] to generate IAU
Network (IAUnet) for person reID. To demonstrate the univer-
sality of the IAU block, we also present results beyond ResNet-
50, indicating that the proposed modules are not restricted to
specific network architecture.

The contributions of this article are summarized as follows:
1) we propose a unified network, IAUnet, for both image
and video person reID; 2) we formulate an STIAU block
for learning context-aware features; it designs the interaction
and aggregation operations that can efficiently capture the
long-range and global context; and 3) we propose a CIAU
block to model the contextual interactions between feature
channels. It can further enhance the feature representation
by aggregating the semantically similar features. To the best
of our knowledge, we are the first to jointly exploit the
spatial, temporal, and channel contexts in reID. Experiments
on five reID benchmarks show the superiority of the proposed
approach. Moreover, IAUnet is effective on general object
categorization tasks as demonstrated on CIFAR-100 [18],
showing its potential beyond person reID.

II. RELATED WORK

A. Image Person ReID

Image person reID has very rich literature and can be
divided into two classes: traditional and deep learning-based
approaches. Traditional solutions generally have two stages:
extracting handcrafted features and designing robust metrics.
Various handcrafted features have been developed. For metric
learning, lots of metric learning techniques have been designed
to decide whether two images are matched or not. On the other
hand, the success of deep learning in image classification has
been inspiring a lot of studies in image person reID [5], [6],
[19]–[25]. A line of the work uses the Siamese network that
takes image pairs or triplets as the inputs. Li et al. [26] input a
pair of pedestrian images to a CNN, and the model is trained
with a verification loss. Hermans et al. [27] further employed a
triplet loss. Another line adopts identity classification models.
Furthermore, Zhang et al. [28] trained the model with a joint
triplet and classification loss, which achieves state-of-the-art
performance.

Spatial Context Modeling: To handle various challenges
in person reID, several algorithms have been proposed to
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impose spatial structure information on target person appear-
ance modeling. The part-based methods that decompose the
target person into several parts have been studied actively. For
example, the human parsing method [29], [30], pose detection
method [31], [32], and body part specific attention model-
ing [16], [33], [34] have been designed to localize body parts
for part-aligned feature extracting and matching. However,
the part-based methods ignore the spatial context between
different parts; thus, the similar-looking local parts may lead to
wrong retrieval results. Recently, Varior et al. [11] employed
long short-term memory (LSTM) to model the spatial correla-
tions between different local parts. The work demonstrates that
the spatial contextual information is beneficial to enhance the
discriminative capability of local features. However, LSTM
cannot explicitly model the interactions between local body
parts. It causes optimization difficulties that need to be care-
fully addressed [35]. In contrast, the proposed IAU block is
lightweight and simple, specialized to model global context in
a computationally efficient manner, and designed to enhance
the discriminative power of features.

B. Video Person reID

Video person reID is an extension of image approaches,
where the sequential data are used instead of an individual
image. Early video reID methods mainly focus on handcrafting
video features. The powerful feature learning ability of CNN
also inspires its application in video reID. To better distill
discriminative information from video, the attention-based
approaches are gaining popularity. Liu et al. [36] predicted a
quality score for each frame to weaken the influence of noisy
samples. Zhou et al. [37] proposed an RNN-based attention
mechanism to select the most discriminative frames from the
video. Furthermore, the works [14], [38] employ a spatial
and temporal attention layer. However, the attention-based
methods usually discard the disturbed frames directly, resulting
in the loss of spatial and temporal information of video data.
In contrast, we explicitly utilize the spatial–temporal context to
alleviate the influence of the disturbed frames, without losing
any spatial–temporal information.

Spatial–Temporal Context Modeling: Recently, many meth-
ods [22], [39]–[41] propose to exploit temporal context on
target sequence appearance modeling. A branch of works [15],
[42] uses the optical flow that provides the motion features.
However, the optical flow only captures the local temporal
context between adjacent frames. Another branch adopts the
RNN [15], [37], [38] to explore the long-range temporal
context. Nevertheless, they can only capture the temporal
contextual relations in the end. Thus, they cannot build a
hierarchical structure. Besides, all the abovementioned meth-
ods ignore the spatial context of videos. On the contrary,
the proposed IAU block captures both spatial and temporal
contextual information and can be added to the earlier part of
CNNs to build a richer hierarchy.

C. Fine-Grained Visual Categorization

Fine-grained visual categorization aims to discriminate sim-
ilar subcategories that belong to the same superclass. Since

the distinctions among similar subcategories are quite sub-
tle and local, existing methods [43]–[46] usually adopt the
features of local parts to represent the images. For example,
He et al. [43] utilized object and part detectors to extract
part features, which is free of using the object and part
annotations. Peng et al. [44] proposed to use a weakly super-
vised method to generate the part proposals. Furthermore,
the works [45], [46] propose a weakly supervised part selection
method with spatial constraints. In this work, we also use
a weakly supervised part division unit to extract the body
part features for input images. However, different from the
abovementioned works, the proposed method further models
the relations between different parts. This can greatly help to
clarify the local confusion caused by seemingly alike parts of
different pedestrians.

D. Spatial–Temporal Context Modeling

Generalization of neural networks to automatically model
spatial–temporal contextual relations has drawn great attention
recently. Xingjian et al. [47] proposed a convolutional LSTM
for spatial–temporal sequence forecasting. Ji et al. [12] devel-
oped a 3-D convolution to capture the motion information for
video action recognition. To model long-range dependencies,
Wang et al. [13] proposed a nonlocal (NL) network to model
the similarity relations between any pairs of positions. Wang
and Gupta [48] further captured the location and similarity
relations between the detected objects for video recognition.
Gao et al. [49] learned a fixed temporal relation between
frames to update the exemplar image for visual tracking.
However, the abovementioned methods usually model the
contextual relations between the fixed geometric positions.
In the proposed approach, we go one step further and perform
higher level spatial–temporal contextual modeling between
disjoint and distant body parts regardless of their shape.
Comprehensive empirical results verify the effectiveness of
the proposed method.

III. PROPOSED METHOD

In this section, we first introduce STIAU and CIAU mod-
ules. Then, the IAU block, which integrates the two modules,
is illustrated. Finally, we present the overall IAUnet for image
and video person reID.

A. STIAU Module

Spatial–temporal context of the target person sequence is
crucial for video person reID. However, most existing meth-
ods either lack the ability of modeling long-range spatial
contextual relationships or overlook the temporal contextual
knowledge, resulting in highly sensitive to the distracting
objects. To this end, we design an STIAU module to form
a structured representation with the spatial–temporal context
of the target person sequence.

As shown in Fig. 2, suppose that a convolutional video
feature map F ∈ R

T ×H×W×D is given, where T , H , W ,
and D denote the frame number, the height, the width,
and the channel number of the feature map, respectively.
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Fig. 2. Architecture of the STIAU module.

We first use a part division unit to extract the part features
for each frame. The part features are associated with different
body regions, namely, head, upper body, lower body, and
shoes. Then, we feed the part features into three sequential
operations: interaction, aggregation, and update. Interaction
operation explicitly models the dependencies between the parts
to produce a spatial–temporal relation map. Two types of rela-
tions are considered: spatial relations and temporal relations.
The generated relation map is then used to aggregate correlated
part features in the following aggregation operation, producing
a spatial–temporal context feature. Finally, the context feature
is utilized in the update operation to obtain the feature with
spatial–temporal structure information.

1) Interaction Operation: As illustrated in Fig. 2, the part
division unit takes the video feature map F as inputs and
produces the corresponding video part features P ∈ R

T ×N×D ,
where N is the number of the parts of each frame. The
details of the part division unit will be described later.
To perform spatial–temporal context modeling of the target
person sequence, the interaction operation models the global
contextual relations between the N parts across the T frames,
featuring both spatial and temporal relationships.

Especially, we set P = {pi j |i = 1, . . . , T, j = 1, . . . , N}
consisting of all body parts in a person sequence, where
pi j ∈ R

D is the j th body part feature of the i th frame. Two
types of contextual relations are considered: spatial relations
and temporal relations. The spatial relations represent the part
interactions within the frames. To be specific, we model the
spatial relations between any pairs of body parts of each
frame, producing a spatial relation map S = {Si }T

i=1. Here,
Si ∈ R

N×N is the spatial relation map of the i th frame, which
is defined as

(Si ) j k = W T
r ([|pi j − pik |, u]), where, u = GAP(F)

k �= j (1)

where |.| denotes the absolute value, [., .] denotes concatena-
tion, and Wr is a weight vector that projects the concatenated
vector to a relation scalar. GAP stands for global average
pooling operation. It performs global spatial–temporal average

pooling to the video feature map F to form a coarse global
feature of the video, denoted as u (u ∈ R

D). With the
global feature u, the local relations between body parts can
be estimated in a global view.

The temporal relations represent the part interactions among
frames. In particular, we model the temporal relations of
the body parts with the same semantic across all frames.
It generates a temporal relation map T = {Ti }N

i=1. Here,
Ti ∈ R

T ×T is the temporal relation map of the i th body part,
which is denoted as

(Ti ) j k = W T
r ([|p j i − pki |, u]), where, k �= j. (2)

As shown in (2), the coarse global feature u is also used as
an input to predict the temporal relations.

Finally, we integrate S and T to form the spatial–temporal
relation map R ∈ R

T N×T N

Ri j =

⎧⎪⎨
⎪⎩

(St1)n1n2 , t1 = t2
(Tn1)t1t2, t1 �= t2 and n1 = n2

0, t1 �= t2 and n1 �= n2

(3)

where t1 = i/N + 1, n1 = i(mod N) + 1, t2 = j/N + 1,
n2 = j (mod N)+1, and Rij denotes the relations between the
n1th part of the t1th frame and the n2th part of the t2th frame.
A modified softmax is then used to normalize the relation map

Rij =
⎧⎨
⎩

exp(Rij )∑
k,Rik �=0 exp(Rik )

, Rij �= 0

0, Rij = 0.

(4)

Notably, with the decomposition of spatial and temporal
relations, each body part is related to N + T − 1 parts among
a total of NT input parts, which significantly reduces the
computation cost of the interaction operation.

2) Aggregation Operation: To make use of R in the interac-
tion operation, we follow it with the aggregation operation that
aims to aggregate the input video part features based on the
relation map. As shown in Fig. 1, we first reshape P to RT N×D

and then perform the matrix multiplication between R and P
to obtain the spatial temporal context feature Z S ∈ R

T N×D

Z S = RP. (5)
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Z S is then reshaped to R
T ×N×D to maintain the size of the

input video part feature.
3) Update Operation: With the spatial–temporal context

feature, we can compute updated part features using a part
update unit. It fuses the initial part feature P and part context
feature Z S to produce the adapted feature P̂ ∈ R

T ×N×D

p̂i j = W T
pu

([
pi j , zS

i j

])
(6)

where p̂i j ∈ R
D is the j th part feature of the i th frame of

P̂ , and analogously for zS
i j , and Wpu ∈ R

2D×D computes
per-part update on the concatenated vector and maintains the
input feature dimensionality.

Finally, a frame update unit is applied to each frame to
obtain the spatial–temporal structure feature. It first performs
global average pooling to {P̂i }T

i=1 to generate the global
feature for each frame. Then, it integrates the frame global
feature with the coarse video global feature u to form the
spatial–temporal structure feature E S ∈ R

T ×D

E S
i = W T

fu

([∑
j p̂i j

N
, u

])
(7)

where Wfu ∈ R
2D×D computes per-frame update on the

concatenated vector and maintains the input feature dimen-
sionality.

4) Part Division Unit: To exploit the local part features
for the STIAU module, we should first localize the regions
of different body parts. Existing methods [28], [29], [33],
[50] usually utilize an external part detection network, making
the reID framework too complicated and time consuming.
In contrast, we adopt a simple and lightweight spatial attention
subnet to localize the body parts. Especially, taking the video
feature F as inputs, the subnet uses a convolutional layer to
produce the attention maps A ∈ R

T ×H×W×N associated with
different body parts

A = σ(Wa ∗ F + ba) (8)

where σ denotes the sigmoid function, ∗ is the convolutional
operation, and Wa ∈ R

1×1×D×N and ba ∈ R
N are the weights

and bias of the convolutional filter. We then generate the video
part features P as follows:

pi j =
(∑

hw

Aihw j fihw

)
/(H W ). (9)

However, the attention maps may focus on background
regions. To give a clear clue, we use a body part mask M ∈
R

T ×H×W×N to guide the generation of the attention maps.
In detail, first, we use a trained segmentation model [51] to
generate the part mask M for input sequences. Then, we resize
M to the same size as the attention map. Finally, A and M are
flatted to 1-D vectors, respectively. A binary cross-entropy loss
is adopted between the flatted A and corresponding flatted M

L p = − 1

THWN

B∑
b=1

THWN∑
i=1

[Mi (xb) log(Ai (xb)) + (1−Mi (xb))

× log(1 − Ai (xb))] (10)

where B is the minibatch size, xb is the bth sequence in the
batch, and M(xb) and A(xb) are the part mask and attention
map of xb, respectively.

5) Discussion About the Generation of Spatial Relation
Map: In the original conference paper [16], the spatial relation
map is generated by modeling the semantic similarity between
the features of fixed space positions. That is, each position
in the feature map is connected with all others and harvests
semantically similar contextual information. However, there
are two main limits. For one thing, Hou et al. [16] used the
semantic similarity as the correlation. In general, the features
that belong to the same body part have higher semantic
similarity than those belonging to different body parts. Thus,
Hou et al. [16] tend to assign quite low correlations to the
positions belonging to different parts, resulting in the lack
of the ability to model the dependencies between different
body parts. For another, Hou et al. [16] need to generate a
huge relation map to measure the semantic similarity for all
position-pairs of its input. The time and space complexity are
both O(H W × H W ), where H and W denote the height and
width of the input feature map, respectively. Thus, when the
input feature map is with high resolution, SIA [16] would have
high computation complexity and take up huge GPU memory.

In the proposed spatial IAU (SIAU)1 for image reID,
the spatial relation map is generated by modeling contextual
dependencies between disjoint and distant body parts. Com-
pared with SIA in [16], SIAU has the following advantages.

1) It can perform high-level contextual modeling between
different body parts. Different from [16] that mainly
models the dependencies within a body part, SIAU uses
a subnetwork to predict the correlation between different
parts to capture higher level and longer range spatial
contextual dependencies. As shown in Fig. 1(b), for the
two pedestrians with seemingly similar local body parts,
the long-term spatial context can greatly help to clarify
the local confusion and, thus, improve the performance.

2) It is with high computational efficiency and GPU mem-
ory friendly. Modeling relations between body parts
greatly reduces the time and space complexity from
O(H W × H W ) to O(N × N), where N (N � H W ) is
the number of the extracted body parts in each image.

B. CIAU Module

Existing CNN-based methods typically stack multiple con-
volution layers to extract the features of pedestrians. With
the increase of the layer number, the small-scale body parts
(e.g., shoes) easily fade away. However, these small-scale parts
are very helpful to distinguish the pedestrian pairs with tiny
interclass variations. Zhang et al. [52] pointed out that most
channel maps of high-level features show strong responses for
specific parts. Inspired by their views, we build the CIAU
module to aggregate semantically similar context features
across all channels of a video feature map. By incorporating
specific part information from other channel maps, CIAU can
enhance the feature representation of that body part.

1For image reID, STIAU is equivalent to SIAU since there are no temporal
relations for input images.
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Fig. 3. Architecture of the CIAU module.

1) Interaction Operation: As illustrated in Fig. 3, CIAU
module takes a video feature map F as input. In the interaction
stage, CIAU explicitly models the semantic contextual rela-
tionships between different channels of F to produce a channel
relation map. To this end, we first permute and reshape F to
R

T D×H W . Then, we perform matrix multiplication between F
and the transpose of F and normalize the results to obtain the
channel relation map C ∈ R

T D×T D . Especially, the semantic
similarity relation between any two channels is calculated as

Cij = exp
(

f T
i f j

)
∑T D

k=1 exp
(

f T
i fk

) (11)

where fi , f j ∈ R
H W denotes the features in the i th and j th

channels of F , respectively.
2) Aggregation Operation: Based on the channel relation

map, the channel features are then aggregated in the following
aggregation operation. To be specific, a matrix multiplication
between C and F is performed to obtain the aggregated feature
map ZC ∈ R

T D×H W

ZC = C F. (12)

ZC is then reshaped and permuted to RT ×H×W×D to maintain
the input size.

3) Update Operation: We then compute the updated chan-
nel features EC ∈ R

T ×H×W×D based on the aggregated
feature map using a channel update unit. It is implemented
by a simple convolution layer

EC = Wcu ∗ ZC + bcu (13)

where Wcu ∈ R
1×1×D×D and bcu ∈ R

D are the convolutional
filter weights and bias. Note that the resulting feature map
aggregates the contexts of different channels according to the
channel relation map C . It is complementary to STIAU that
aggregates context features of different parts according to the
spatial relation map. Similar to STIAU, CIAU can adaptively
adjust the input video feature map, helping to boost the feature
discriminability.

C. IAU Block Embedding With Networks

We turn STIAU (CIAU) module into STIAU (CIAU) block
that can be easily inserted into existing architectures. As shown
in Fig. 4, the STIAU (CIAU) block is defined as

Y = BN(E) + F (14)

Fig. 4. Architecture of the IAU block.

Fig. 5. Architecture of IAUnet for video reID. SP and TP denote spatial
pooling and temporal pooling, respectively. When the number of frames in
the sequence T is equal to 1, the architecture can be used for image reID.

where F is the input video feature map, E is the output of
STIAU or CIAU modules, and BN is a batch normalization
layer [53] to adjust the scale of E to the input. A residual learn-
ing scheme (+F) is adopted along with the IAU mechanism
to facilitate the gradient flow. Notably, before entering the BN
layer, E S ∈ R

T ×D is broadcasted along the spatial dimension
to R

T ×H×W×D to be compatible with the size of F .
Given an input video sequence, STIAU and CIAU blocks

compute complementary contextual relations. We sequentially
arrange CIAU and STIAU blocks to form the IAU block,
as shown in Fig. 4. IAU block maintains the variable input
size and, thus, can be inserted at any depth of networks.
Considering the computational complexity, we only place it at
the bottlenecks of models where the downsampling of feature
maps occurs. Multiple IAU blocks located at bottlenecks of
different levels can progressively boost the feature discrim-
inability with a negligible number of parameters.

D. IAUnet for Person ReID

The architecture of IAUnet for person reID is illustrated
in Fig. 5. We use ResNet-50 [17] pretrained on ImageNet [54]
as the backbone network and modify the output dimension
of the classification layer to the number of training identities.
Besides, we remove the last spatial downsampling operation in
the backbone network, which has been proven to be effective
for person reID [34]. We denote the architecture as modified
ResNet-50. IAU blocks can be inserted into the backbone
network to any stage. Different from previous works [15], [37],
[38], [42] that only build temporal contextual dependencies in
the end, IAU blocks can capture richer temporal contextual
dependencies in the earlier stages. To obtain a single-feature
representation for the whole sequence, a temporal average
pooling layer is added in the end. Notably, the IAU block
can also be used for image person reID, where the number of
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frames in the sequence is set to 1. For image reID, IAU blocks
are inserted to stage2 and stage3 of the backbone network. For
video reID, we found that a single IAU block added to stage2
gives a comparable result to multiple IAU blocks. Therefore,
we only insert an IAU block to stage2 of the backbone network
for video reID.

Object Function: Following [55], IAUnet is trained with the
combination of classification and ranking. Cross-entropy loss
is used for multiclass identifies classification

Lcls = −
B∑

b=1

[
log

(
exp(p(y = yb|xb))∑

k exp(p(y = k|xb))

)]
(15)

where B is the minibatch size, xb is the bth input sequence
in the batch, yb is the target label of xb, and p(y|x) is the
probability distribution of predicted label y given input x .

Besides, we adopt a batch hard triple loss [27] for correct
ranking. For each sample in a batch, it only selects the hardest
positive and hardest negative samples within the batch to form
the triples, which is defined as

L tri =
C∑

i=1

K∑
a=1

⎡
⎢⎢⎢⎣m+ max

s=1,...,K
d
(

f i
a , f i

s

) − min
j=1,...,C
t=1,...,K

j �=i

d
(

f i
a , f j

t
)
⎤
⎥⎥⎥⎦

+
(16)

where C is the number of classes (person identities) of the
batch, and K is the number of sequences of each class. f i

j is
the final extracted feature corresponding to the j th sequence
of the i th person in the batch. d denotes the cosine distance,
and m is a margin hyperparameter.

Taking the spatial attention loss in STIAU into considera-
tion, the total loss of IAUnet can be denoted as

Lall = Lcls + λ1 L tri + λ2 L p (17)

where λ1 and λ2 are the hyperparameters to balance the effects
of different loss functions.

E. Discussion With Other Blocks

In this part, we give a brief discussion on the relations
between the proposed IAU block and some existing blocks.
The experimental comparisons can be seen in Section IV-D.

1) Relations to Nonlocal: IAU and NL [13] can both be
viewed as a graph neural network module. Compared with
NL, IAU is more suitable for reID because of the following
advantages.

1) NL is a densely connected graph of all spatial positions
of input feature maps. It requires computing a dense
affinity matrix, which is computationally prohibitive for
large-sized feature maps. In contrast, STIAU always
has N feature nodes regardless of the size of the input
feature map, which is more computationally friendly.

2) NL captures the contextual similarity relations between
the fixed geometric positions. STIAU further per-
forms higher level spatial–temporal contextual mod-
eling between disjoint and distant body parts, which

can alleviate the local ambiguity to better distinguish
similar-looking pedestrians.

3) NL only models the long-range contextual dependencies
between spatial features. On the contrary, the proposed
CIAU attempts to capture contextual knowledge between
the channel features. CIAU is complementary to STIAU
and conductive to highlighting important but small
details or body parts.

2) Relations to Squeeze-and-Excitation: CIAU has some
similarities with squeeze-and-excitation (SE) block [56]. Both
blocks are designed to model the contextual dependencies
between channels to enhance the feature representation power.
However, SE computes the channelwise attention to selectively
emphasize informative features, while it is likely to ignore the
important but small parts. In contrast, CIAU aggregates the
semantically similar contextual features across all channels.
It can manifest the feature representations for all body parts.

IV. EXPERIMENTS

A. Data Sets and Settings

We evaluate the proposed method on three image reID data
sets, Market-1501 [57], DukeMTMC [58], and MSMT17 [59],
two large-scale video reID data sets, MARS [7] and
DukeMTMC-VideoReID [8], and an object category classi-
fication data set, CIFAR-100 [18].

Market-1501 is a large-scale data set that contains 1501
identities. The data set is split into two fixed parts: 12 936
images from 751 identities for training and 19 732 images from
751 identities for testing.

DukeMTMC is a subset of the multitarget, multicamera
pedestrian tracking data set [60]. There are 36 411 images
belonging to 1404 identities. It contains 16 522 training images
of 702 identities, 2228 query images of the other 702 identities,
and 17 661 gallery images.

MTMC17 is the largest image person reID data set,
which contains 126 441 images of 4101 identities. The train-
ing set contains 32 621 images of 1041 identities, and the
testing set contains 93 820 images of 3060 identities. From
the testing set, 11 659 images are randomly selected as query
images, and the others are used as gallery images.

MARS is the largest video reID benchmark with 1261 iden-
tities and 17 503 sequences captured by 6 cameras. It consists
of 631 identities for training and the remaining identities for
testing. The bounding boxes are produced by DPM detector
and GMMCP tracker, such that it provides a more challenging
environment similar to real-world applications.

DukeMTMC-VideoReID is a subset of the tracking data set
DuKeMTMC for video reID. The data set consists of 702 iden-
tities for training, 702 identities for testing, and 408 identities
as distractors. In total, there are 2196 videos for training and
2636 videos for testing.

CIFAR100 is used to show that IAUnet can be also applied
to other general recognition problems. This data set contains
60k images of 100 classes with 600 images in each class,
where 50k images are used for training and the remaining for
testing.
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1) Evaluation Metric: We adopt mean Average Preci-
sion (mAP) and cumulative matching characteristics (CMC)
as evaluation metrics.

2) Part Mask Generating: For each image, we first generate
the part masks corresponding to four body parts: head, upper
body, lower body, and shoes. To be specific, we first use
JPPNet [51]2 pretrained on look into person (LIP) [61] data
set to generate the part masks corresponding to 20 semantics.3

The masks of predictions for different regions are then grouped
together to create four coarse labels4 to guide the part division
unit of the STIAU block.

3) Implementation Details for Image ReID: For image reID,
the input images are resized to 256 × 128. We use random
flipping and random erasing [73] with a probability of 0.5 for
data augmentation. The initial learning rate is set to 0.00035
with a decay factor 0.1 at every 20 epochs. Adam [74]
optimizer is used with a minibatch size of 64 for 60 epochs
training. The margin of triplet loss (m) is set to 0.3, and λ1
and λ2 (17) are set to 1 and 0.5, receptively.

4) Implementation Details for Video ReID: For video reID,
we randomly sample four frames with a stride of eight frames
from the original full-length video to form an input video
sequence. The network is trained for 150 epochs in total, with
an initial learning rate of 0.0003 and reduced it with a decay
rate of 0.1 every 40 epochs. The batch size is set to 32. Other
settings and hyperparameters are the same as those in image
reID.

5) Implementation Details for Object Classification: For
object category classification, we follow the implementation
details of MLFN [67]. The initial learning rate is 0.1 with a
decay factor 0.1 at every 100 epochs. SGD optimization is
used with a 256 minibatch size for 307 epochs training. Other
settings are the same as those in image reID. Notably, since
there are no specific parts in the CIFIR100 images, the part
division unit of STIAU block divides equally the input feature
maps into four patches and performs global average pooling
on each patch to generate the corresponding part feature.

B. Comparison With the State-of-the-Art Methods

1) Market-1501 and DukeMTMC: In Table I, we com-
pare IAUnet with the state of the art on Market-1501 and
DukeMTMC data sets. The compared methods are categorized
into three groups, i.e., handcrafted methods, deep learning
methods with global features, and deep learning methods
with part features. IAUnet achieves the best performance on
DukeMTMC and the second-best results on Market-1501. The
following is noted.

1) The gaps between our results and those that only employ
a global feature [58], [64]–[66], [68], [69], [75] are
significant: about 7% mAP improvement. The significant
improvements demonstrate that it is effective to employ
the spatial contextual information for reID.

2The code is in https://github.com/Engineering-Course/LIP_JPPNet/
3Background, Hat, Hair, Glove, Sunglasses, Upper clothes, Dress, Coat,

Socks, Pants, Jumpsuits, Scarf, Skirt, Face, Right-arm, Left-arm, Right-leg,
Left-leg, Right-shoe, and Left-shoe.

4Head, Upper body, Lower body, and Shoes.

TABLE I

COMPARISON WITH THE STATE-OF-THE-ART ON MARKET-1501 AND
DUKEMTMC. THE METHODS ARE SEPARATED INTO THREE GROUPS:

HANDCRAFTED METHODS (H), DEEP LEARNING METHODS ONLY

EMPLOYING GLOBAL FEATURES (G), AND DEEP LEARNING

METHODS EMPLOYING PART FEATURES (P), WHERE *
DENOTES THOSE REQUIRING AUXILIARY PART

DETECTION WHEN TESTING

TABLE II

COMPARISON WITH THE STATE OF THE ART ON MSMT17

2) Some part-related methods incorporate an external part
detection network [28], [29], [31], [72] into the reID
model, which makes the reID model too complicated
and time-consuming. IAUnet puts much fewer overheads
with much better performance on DukeMTMC: about
5% mAP improvement. We argue that the improvement
is due to the alleviation of local confusion by modeling
the global contextual relations between different body
parts.

3) Other attention-centric methods [16], [30], [33], [34],
[71] use lightweight attention subnet to learn discrimina-
tive body parts. IAUnet outperforms these methods with
an improvement of up to 6% on mAP. The superiority
of IAUnet over the attention-centric methods further
verifies the effectiveness of modeling spatial contextual
dependencies among different parts.

2) MSMT17: We further evaluate the proposed method on
a recent large scale data set, namely, MSMT17. As shown
in Table II, the proposed method significantly outperforms
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TABLE III

COMPARISON WITH RELATED METHODS ON MARS. THE METHODS ARE
SEPARATED INTO TWO GROUPS: DEEP LEARNING METHODS ONLY

EMPLOYING GLOBAL VIDEO FEATURES (G) AND DEEP LEARNING

METHODS EMPLOYING TEMPORAL ATTENTION MODULE (A)

TABLE IV

COMPARISONS ON DUKEMTMC-VIDEOREID

existing works [76]–[78] with a top-one accuracy of 20.6%
and mAP of 25.9%. IANet models the intraparts contextual
dependencies to adaptively locate the body parts. IAUnet sig-
nificantly outperforms it with an improvement of up to 13.1%
on mAP, which demonstrates the superiority of interparts
contextual dependencies modeling.

3) MARS: Table III reports the performance of IAUnet and
the current state of the art on MARS. The proposed method
outperforms the best existing methods.

1) The works that only employ global video features
(G) [2], [7], [8], [27], [79] treat each frame of a
video equally, resulting in the corruption of the video
representation by misdetected frames. IAUnet surpasses
these works by up to 10% and 18% on top-one accuracy
and mAP, respectively.

2) Other attention-based works (A) [14], [36], [37], [42],
[80]–[82] leverage a temporal attention network to select
the most discriminative frames, resulting in the loss of
spatial–temporal information of the video. IAUnet out-
performs these works up to 3%. The improvement can
be attributed to the feature enhancement by capturing
richer spatial–temporal contextual dependencies in IAU
blocks.

4) DukeMTMC-VideoReID: As shown in Table IV, the pro-
posed method outperforms the current best result of 1.9%
and 2.3% in top-one accuracy and mAP, respectively,
on DukeMTMC-VideoReID. VRSTC [83] uses a completion
network to recover the appearance of occluded regions as a

TABLE V

OBJECT CLASSIFICATION RESULTS ON CIFAR-100 DATA SET.
* INDICATES RESULTS REPORTED BY MLFN [67]

TABLE VI

COMPARISON TO NL AND SE ON BOTH IMAGE AND VIDEO reID.
(a) IMAGE reID DATA SET MARKET-1501.

(b) VIDEO reID DATA SET MARS

preprocessing. It is orthogonal to IAUnet and can be easily
combined to further improve the performance.

C. Object Categorization Results

In this part, we evaluate IAUnet on a more general object
classification task by experimenting on CIFAR-100. Table V
compares IAUnet with ResNet-50 [84], ResNeXt-50 [85],
DualNet [86], and MLFN [67]. ResNet-50 [84], ResNeXt-
50 [85], and MLFN [67] have similar depth and model sizes
to IAUnet. The improved result over ResNet-50 shows that
IAU blocks bring obvious benefit. IAUnet also outperforms
MLFN [67] that fuses multiscale features. Besides, IAUnet
beats DualNet [86] that fuses two complementary ResNet
branches in an ensemble and has double model size. The
consistent improvements suggest that IAU blocks can be easily
generalized to general recognition problems.

D. Comparison With Related Approaches

In this section, we present the experimental results com-
pared with NL [13] and SE [56] blocks mentioned in
Section III-E. The results are summarized in Table VI.
We adopt the modified ResNet-50 model as the baseline and
replace the IAU blocks in IAUnet with NL, STIAU, SE, and
CIAU blocks representatively.
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TABLE VII

PERFORMANCE COMPARISONS OF BASELINE AND
PROPOSED SCHEMES ON IMAGE reID TASK

1) Comparison STIAU With Nonlocal: As shown in
Table VI, compared with the NL method, STIAU blocks show
higher accuracy under the same model size and less computa-
tion budge. We argue that it is hard for NL to directly reason
the contextual relations between different body parts. Instead,
STIAU blocks are designed to explicitly capture the contextual
dependencies between spatially distant parts regardless of their
shapes. It can provide complementary features that cannot be
easily captured by stacking convolution layers and NL blocks.

2) Comparison CIAU With Squeeze-and-Excitation: As
shown in Table VI, we can observe that CIAU achieves better
accuracy than SE. We use the default hyperparameters in [56]
for SE that leads to marginal improvements. CIAU signifi-
cantly outperforms SE by 1.4% and 2% mAP on Market-
1501 and MARS, respectively. The results indicate that CIAU
can better model the contextual interdependencies between
channels. The significant improvements also demonstrate that
it is more efficient to enhance feature representation power
by aggregating similar channel features than multiplying them
by constants. Furthermore, by combining CIAU with STIAU,
the performance can be further lifted for both image and video
reID tasks.

E. Ablation Study

To investigate the effectiveness of each component in the
IAU block, we conduct a series of ablation studies on two
image reID data sets, Market-1501 and DukeMTMC, and two
video reID data sets, MARS and DukeMTMC-VideoReID.
Tables VII and VIII summarize the comparison results for
different settings. We adopt modified ResNet-50 as the base-
line. If there is no special explanation, the proposed blocks
are inserted into the last residual block of the stage2 layer of
modified ResNet-50.

1) STIAU Blocks: As shown in Tables VII and VIII, STIAU
blocks consistently improve the performance remarkably. For
image reID, the STIAU block brings about 2% mAP improve-
ments over the baseline. We further compare STIAU to SIA
block [16]. As shown in Table VII, STIAU outperforms SIA
by about 1% mAP and top-one accuracy, indicating that
STIAU can better models the spatial relations. For video
reID, we study the effect of STIAU blocks applied along

TABLE VIII

PERFORMANCE COMPARISONS OF BASELINE AND
PROPOSED SCHEMES ON VIDEO reID TASK

TABLE IX

COMPARISONS OF DIFFERENT RELATION CALCULATION
STRATEGIES ON MARKET-1501 AND MARS

spatial, temporal, and spatial–temporal dimensions. For exam-
ple, in the spatial-only version, the contextual dependencies
only happen within the same frame: i.e., R [in (3)] is simply
set to S [in (1)]. Accordingly, the temporal-only version sets
R to T [in (2)]. Table VIII shows that both the spatial- and
temporal-only versions improve over the baseline, and the per-
formance can be further lifted when the spatial and temporal
contextual dependencies are integrated into the STIAU block.

2) CIAU Blocks: We further assess the effectiveness of the
CIAU block by adding it to the baseline. CIAU individually
outperforms the baseline by about 2% and 1% in terms of mAP
and top-one accuracy on image data sets and video data sets,
respectively. The improvements indicate that it is effective to
enhance feature representation power by aggregating similar
features along the channel dimension. When we integrate
STIAU and CIAU blocks to the IAU block, the performance
can be further improved by about 1% on mAP and top-one
accuracy. We argue that the STIAU and CIAU capture the
complementary contextual dependencies, spatial, and channel.
This leads to each block can provide some complementary
features that cannot be easily captured by another block.

3) Relation Calculation Strategy: We exploit another rela-
tion calculation strategy, i.e., L2 distance, for STIAU and
CIAU blocks. First, Table IX compares STIAU and STIAU-L2,
where STIAU and STIAU-L2 use a subnetwork and L2 dis-
tance, respectively, to calculate the relations between differ-
ent parts. We can see that STIAU significantly outperforms
STIAU-L2. We argue that the distance metric only models the
semantic similarity dependencies, while the subnetwork can
model higher level dependencies. For instance, since the head
parts typically have highly accurate pedestrian characteristics,
the subnetwork can learn to assign high relations between
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TABLE X

COMBINING METHODS OF STIAU AND CIAU BLOCKS
ON MARKET-1501 AND MARS

the head part and other body parts. Then, other body parts
can integrate the features of the head part to improve their
discrimination. Second, Table IX also compares CIAU and
CIAU-L2 where CIAU and CIAU-L2 use dot-product and
L2 distance, respectively, to calculate the relations for channel-
pairs. The dot-produce and L2 distance both belong to the dis-
tance metric, but dot product is more implementation-friendly
in deep learning platforms. We can see that CIAU performs
slightly better than CIAU-L2.

4) Arrangement of STIAU and CIAU Blocks: We compare
three different ways of arranging STIAU and CIAU blocks:
sequential STIAU and CIAU blocks (STIAU-CIAU), sequen-
tial CIAU and STIAU blocks (CIAU-STIAU), and parallel use
of both blocks (STIAU + CIAU). As each block has different
functions, the combination mode and order may affect the
overall performance. Table X summarizes the experimental
results on different arranging methods, where CIAU-STIAU
produces the best results on both image and video reID
tasks. We argue that STIAU and CIAU blocks compute com-
plementary contextual relations, where STIAU blocks focus
on “spatial–temporal” and “different parts” modeling, while
CIAU blocks focus on “channel” and “same part” modeling.
The CIAU blocks, which can enhance the representation of
the individual body part, are conducive to the relationship
modeling between different parts by STIAU blocks. Thus,
sequential CIAU-STIAU can achieve the best performance.

5) Efficient Positions to Place IAU Blocks: Table VII com-
pares a single IAU block added to the different stages of
ResNet50. The block is added to right before the last residual
block of a stage. The improvements of an IAU block in stage2
and stage3 are similar but smaller in stage1 and stage4. One
possible explanation is that stage1 has a big spatial size that is
not very expressive and sufficient to provide precise semantic
information. Besides, the visual concepts in stage4 tend to be
too abstract; thus, it is difficult to aggregate context features
in this stage. Therefore, we only consider adding IAU blocks
to stage2 and stage3 layers.

6) Going Deeper With IAU Blocks: Tables VII and VIII also
show the results of more IAU blocks. For image reID, IAU
blocks can consistently lift the accuracy when more blocks
are added. In particular, the model with IAU blocks added
to stage2 and stage3 (IAU-stage23) improves the model with
one IAU block added to stage2 or stage3 (IAU-stage2 or IAU-
stage3) by about 1.5 mAP on Market-1501. We argue that
multiple IAU blocks can perform hierarchical communication,
where each block can provide some complementary relations
that cannot be easily captured by other blocks. For video reID,
we find that adding two IAU blocks does not give significant

TABLE XI

PERFORMANCE GAIN BY ADDING IAU BLOCKS ON DIFFERENT
NETWORKS ON MARKET-1501 AND MARS

TABLE XII

PERFORMANCE GAIN BY ADDING IAU BLOCKS ON THE EXISTING

reID FRAMEWORK ON MARKET-1501 AND DUKEMTMC

gain, as shown in the last three rows of Table VIII. Therefore,
we only add a single IAU block to stage2 of the backbone
network for video reID.

7) Effect of the Spatial Attention Constrain L p: To evaluate
the contribution of the proposed spatial attention constrain
L p , we train IAUnet and report the results without spatial
attention constrain L p (IAU-w/o-L p). Experimental results
are presented in Tables VII and VIII. We can observe that
the results of IAUnet consistently outperform that of IAU-
w/o-L p on both image and video reID benchmarks. This con-
firms the effectiveness of using spatial attention constrain in
IAUnet. We argue that without the spatial attention constrain,
the learned multiple attention maps tend to be disorganized and
focus on the same regions, as shown in Fig. 6(b). Therefore,
it is difficult for IAU-w/o-L p to establish global contextual
dependencies between different body parts, resulting in per-
formance degradation.

8) Effectiveness of IAU Blocks Across Different Backbone:
We then investigate the generality of IAU blocks on different
CNNs. We first investigate the effect of combining IAU
blocks with ResNet18 [17] and ResNet34 [17]. The results
are summarized in Table XI, where all baseline results are
reproduced by ourselves using the same training schema for a
fair comparison. We can observe the significant performance
improvement induced by IAU blocks. In particular, ResNet18-
IAU has an mAP of 89.8% on Market-1501, which is superior
to both its direct counterpart ResNet18 (79.1%) as well as
the deeper ResNet34 (89.5%). We further exam the effect
of IAU blocks on the nonresidual network by experimenting
with Inception architecture [76]. We can observe the same
phenomena that emerged in the residual architectures. Overall,
these experiments demonstrate that IAU blocks can consis-
tently boost the accuracy of a wide range of architectures on
both image and video reID tasks.

9) Effectiveness of IAU Blocks Across Existing reID Meth-
ods: Finally, we try another two-person reID frameworks,
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Fig. 6. Learned spatial attention maps. Example images and corresponding
receptive fields for part-specific attention maps when N = 4. (a) Visualization
of the IAUnet. (b) Visualization of the IAUnet trained without spatial attention
constrain L p (IAUnet-wo-L p ).

PCB [34] and CAMA [87], to further verify the generality
of the proposed IAU block. The results are summarized
in Table XII, where the IAU blocks are added to stage2
and stage3 of the backbone of PCB and CAMA to form
PCB-IAU and CAMA-IAUnets, respectively. We can observe
the significant performance improvement induced by IAU
blocks, showing the generality of IAU blocks.

F. Visualizing STIAU Block

In this section, we visualize the learned spatial attention
maps of the part division unit in the STIAU block. Fig. 6(a)
shows the four spatial attention maps generated by IAUnet
for five images. As expected, different spatial attention maps
attempt to focus on different local body parts, i.e., head, upper
body, lower body, and shoes. It is noteworthy that the spatial
attention maps can adaptively localize the body parts under
various challenging situations, such as small scale (the second
row) and motion blur (the fourth row) even dramatic changes
in pose (the last row). Each attention map is used for a
weighted average pooling over the whole image, producing
a single body-part feature for globally spatial–temporal con-
textual dependencies modeling. Without the part features, it is
really difficult for convolution operations to directly model
contextual dependencies between such patterns that might be
spatially distant or ill-shaped.

G. Visualizing Relation Maps of STIAU and CIAU Blocks

In this part, we visualize the learned spatial, temporal, and
channel relation maps, respectively. Fig. 7 visualizes the initial
part features (P in Fig. 2), the updated part features by SIAU
(P̂ in Fig. 2), and the spatial attention maps (S in Fig. 2) of

Fig. 7. Learned spatial relation map. (a) Visualization of the initial part
features P and updated part features P̂ by SIAU for input image pair. The
dimensionality of P and P̂ is reduced to N × 1 (N = 4) by PCA for
visualization. (b) Spatial relation maps S with size N × N .

Fig. 8. Learned temporal relation map. (a) Visualization of the initial
part features P and updated part features P̂ by temporal IAU for the input
sequence. The dimensionality of P and P̂ is reduced to T × 1 (T = 6) by
PCA for visualization. (b) Temporal relation maps T with size T × T .

SIAU. It is clear that, for the two persons with similar upper
clothes, the initial upper body features P are difficult to dis-
tinguish between the two persons. The spatial relation map S
stores global spatial relations. As shown in Fig. 7, for the upper
body part, S assigns larger correlation values to the shoes and
head parts that are highly discriminative for the input two
persons. Therefore, with the feature propagation through S,
the upper body features can be updated to distinguish the two
persons, as shown in Fig. 7. In addition, we can observe that
the head and shoe parts tend to present larger values in S.
We argue that the head and shoe parts usually have more
accurate pedestrian characteristics than body clothes. Thus,
SIAU learns to assign high correlations between the head/shoe
parts and other body parts so that the other body parts can
integrate the features of the head and shoe parts to improve
their discrimination.

Fig. 8 visualizes the temporal relation map (T in Fig. 2)
for the lower body part of the input sequence. It also visu-
alizes the initial lower body part features (P in Fig. 2) and
updated lower body part features ( P̂ in Fig. 2) by temporal
IAU module. It is clear that the detection errors affect the
initial part feature, i.e., the feature substantially changes as
misdetection happens. The temporal relation map stores the
global temporal contextual relations. As shown in Fig. 8, for
the misdetected frames, T assigns more than 50% weights
to the good frames. Therefore, with the feature propagation
through T , the features of misdetected frames can be updated
to describe the target person, as shown in Fig. 8. We can also
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Fig. 9. Learned channel relation map. (a) Visualization of the activation
maps of initial channel features F and updated channel features EC by CIAU
for input image. We randomly select eight channels for clearly visualization.
(b) Channel relation maps C ∈ R

8×8 among the eight channels.

see that the misdetected frames present lower weights in T ,
indicating their features are suppressed during the aggregation
operation and the final video feature is robust to the detection
errors.

Fig. 9 visualizes the channel relation map (C in Fig. 3).
To visualize the channel relation maps, we randomly select
eight channels and visualize their initial features (F in Fig. 3),
updated features by CIAU (EC in Fig. 3), and the relation
maps among the eight channels. As shown in Fig. 9, the chan-
nel features that focus on the same body parts tend to have a
higher correlation. With feature propagation through C , each
channel can incorporate the specific part information from
other channels. As shown in Fig. 9, the channel feature can
focus on more areas of the specific part by CIAU, which
enhances its representational power.

V. CONCLUSION

In this article, we propose an IAU block for globally
context modeling that can be effectively implemented by
interaction, aggregation, and update operations. The IAU block
jointly models spatial–temporal and channel context in a
unified framework. We show that by carefully designing the
STIAU and CIAU, the proposed IAUnet achieves state-of-the-
art results on both image and video reID tasks over some
data sets. In the future, we intend to explore a more advanced
metric learning approach to further improve performance.
Furthermore, we plan to investigate the use of IAU block
beyond person reID and object categorization, such as image
and video segmentation.
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