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Abstract

Feature plays an important role in pedestrian de-

tection, and considerable progress has been made on

shape-based descriptors. However, color cues have

barely been devoted to detection tasks, seemingly due

to the variable appearance of pedestrians. In this pa-

per, Color Maximal-Dissimilarity Pattern (CMDP) is

proposed to encode color cues by two core operations,

i.e., oriented filtering and max-pooling, which emulate

the functions of primary visual cortex (V1). The exten-

sively experimental results reveal that the biologically-

explainable encoding scheme increases the invariance

of color cues, and outperforms the state-of-the-art color

descriptor in terms of both accuracy and speed.

1. Introduction

Accurate pedestrian detection has immediate and far

reaching impact to applications, such as intelligence

surveillance and driver assistance systems. Yet detect-

ing pedestrians in images is still a challenging task, be-

cause it is difficult to handle variable appearances and

wide range of poses.

Currently gradient cues [1, 2] have been successfully

used as shape information for pedestrian detection, but

color cues barely attract enough attention. Only a few

works [6, 9] have attempt to incorporate color cues.

Schwartz et al. [6] propose a color descriptor called

color frequency, which is captured by the number of

times each color band is chosen, as the similar manners

that HOG [1] choose the orientation of the gradient for

a pixel. Walk et al. [9] introduce a descriptor, termed

CSS, based on self-similarity of color values, i.e., sim-

ilarities between colors in all different sub-regions, as

they observe that colors of pedestrians are globally sim-

ilar, e.g., color of face is similar to the one of hands.

Although these works [6, 9] indicate that color cues

may help pedestrian detection, they do not answer the

following important problems: 1) how to reduce the

variable appearances, i.e., diverse colors of clothing;

2) how to handle the variations caused by poses. In

this paper, we propose a color descriptor called Color

Maximal-Dissimilarity Pattern (CMDP) to these prob-

lems based on biological knowledge.

In the experiments, the INRIA pedestrian dataset and

PASCAL VOC 2007 dataset are served as our primary

testbed. The experimental results on color cues reveal

that CMDP achieves promising results in terms of both

accuracy and speed. Because CMDP can capture some

structure information via localized color distributions,

thus it is independent of the pixel-level color. Moreover,

CMDP is constructed on a hierarchical framework, and

the two core operations, i.e., oriented filtering and max-

pooling, make it invariant to shift and pose variations.

In addition, combining CMDP with shape-based de-

scriptor [1] improves the detecting performance. The

promising results show that color cues are complement

with shape cues and color cues can play an important

role in pedestrian detection.

2. CMDP

In this section, CMDP is inspired by some biological

knowledge to handle the variable appearances and pose

variations of pedestrians.

2.1. Analogues between V1 and CMDP

Humans or primates outperform the best machine vi-

sion systems with respect to almost any measures, so

building features that emulate object recognition in cor-

tex has been an attractive goal. In the primary visual

cortex (V1), the simple cells respond selectively to lines



Figure 1: The analogues between V1 and CMDP. We use oriented

gabor to simulate functions in V1. In (c), dissimilarity values are cal-

culated by each filter in SRF, and we show “135◦” and “90◦” filters

as example. In (d), we indicate the dissimilarity value with different

size and color in eclipses, and the maximal value is selected over CRF.

or edges at particular orientations in a small receptive

fields, termed as Simple Receptive Field (SRF) in this

paper. While, the complex cells tend to have larger re-

ceptive fields (twice as large as simple cells, and termed

as Complex Receptive Field (CRF) in this paper), re-

spond to oriented bars or edges anywhere within their

CRFs. Therefore, the function of complex cells is in-

variant to shift. In addition, SRF could be combined to

form CRF 1.

In essence, there are two key procedures to simulate

the orientation-selective feature detectors: 1) feature fil-

tering; 2) max-pooling.

1. The feature filtering describes the basis of image

wold, for instance, Gabor filters (See S1 in Fig-

ure 1) can well simulate these oriented response in

visual cortex, and thus are widely used in computer

vision [4].

2. The max-pooling (See C1 in Figure 1) not only re-

duces the amounts of information passed to next

visual stage, but also increase the invariant ability

of features [3].

As illustrated in Figure 1, 4 filters are designed in

CMDP, and two of them are selected as example to il-

lustrate the usage and pooling of filters in (c) and (d),

respectively. Thus, CMDP tries to simulate the core el-

ements of orientation-selective feature detectors in V1.

So, CMDP is a particular V1-like feature.

1For more details, please read reference [8].

2.2. Details of CMDP

Now we give implementation details of CMDP and

introduce CMDP in the extraction order as Figure 1

showed.

Cell-histogram Computation. This procedure is im-

plemented by dividing the image window into small

spatially non-overlapped regions (“cell”), showed in

Figure 1(b). For each cell a local color histogram is ac-

cumulated over every color channel. To reduce quanti-

zation effects, trilinear interpolation is applied. Finally,

the histogram representation of each cell is achieved by

concatenating the histograms of different color channels

and then cell-normalization is carried out. So, the out-

put of this procedure is a cell-histogram feature map.

There are some parameters affecting the descriptor’s

performance, including the color space and the his-

togram dimension. Following the conclusions in [5],

CIE-LUV color space and 10-dimensional histogram

per channel are chosen in CMDP.

Oriented Filtering in SRF. In this procedure, we de-

fine four orientated filters (see Figure 1(c)). In our

framework, as an analogue of simple cells, the filters

are designed to capture edge information in the simple

receptive field. And, the size of SRF is determined by

the size of filters.

In each filter, the dissimilarity value is calculated be-

tween two adjacent cells (indicated by the same color in

Figure 1(c)), as:

d(i, j, k) = dissim(celli,j , cellik,jk
), k ∈ {1, 2, 3, 4}

s.t.

{

i1 = i − 1, j1 = j − 1; i2 = i − 1, j2 = j;

i3 = i − 1, j3 = j + 1; i4 = i, j4 = j + 1.

(1)

where celli,j represents an n-dimension color his-

togram for cell in row i and column j. k indicates dif-

ferent filters showed in Figure 1(c). (ik, jk) is the adja-

cent cell’s offset location relative to celli,j for different

filters. And dissim(·) is a function for measuring the

dissimilarity between two different histograms. We ex-

perimented with a number of well-known distance func-

tions including the L1-norm, L2-norm, χ2-distance, and

histogram intersection to calculate the dissimilarity val-

ues. Finally, we choose histogram intersection as the

comparison results suggest.

Max-pooling in CRF. Physiological studies have

shown that suppression effect exists between neurons

in CRF[8]. So in our implementation the corresponding

pooling operation is a Max operation. The max pooling

can increase spatial-invariance of feature.
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Figure 2: Comparisons between CSS and CMDP.

We pool the maximal dissimilarity value in the same

orientation filtering the CRF showed in Figure 1(d). The

max-pooling operation is:

H(i, j, k) = max
m,n

(d(m,n, k)), k ∈ {1, 2, 3, 4}

s.t.











if k = 1,m ∈ {i, i + 1}, n ∈ {j, j + 1};

if k = 2,m ∈ {i, i + 1}, n ∈ {j − 1, j, j + 1};

if k = 3,m ∈ {i, i + 1}, n ∈ {j − 1, j};

if k = 4,m ∈ {i − 1, i, i + 1}, n ∈ {j, j + 1}.

(2)

Local Normalization. The max-pooled histograms

are then normalized in local neighboring cells. Firstly,

the “energy” of each cell is calculated as following [10]:

E(i, j) =
4

∑

k=1

H(i, j, k)2 (3)

Secondly, we can get the “energy” of the local area by

summing all the “energy” of the cells in this area. Then,

the normalized histogram is computed by

N(i, j, k) =
H(i, j, k)

∑i+1
m=i−1

∑j+1
n=j−1 E(m,n)

(4)

The final histogram is truncated by value σ for better

performance. For CMDP, we find that σ=0.2 is a good

choice.

3. Experiments

In our experiments, we will evaluate CMDP on IN-

RIA pedestrian dataset and the challenging PASCAL

VOC 2007 dataset. We utilize the per-window and per-

image evaluation methodologies for the INRIA dataset,

while average precision criterion is adopted for the

PASCAL VOC dataset experiment.

For INRIA dataset, we use the stochastic optimiza-

tion based linear SVM, i.e., Pegasos [7], to train the

detectors, due to the large number of training exam-

ples. During the training procedure, one round of re-

training (bootstrapping) protocol is utilized as Dalal et

al. suggested in [1]. While for PASCAL VOC dataset,

part based model using latent SVM as Felzenszwalb de-

scribed in [2] is applied.

3.1. Experiments on INRIA Dataset

In this subsection, we will study the performance of

CMDP on INRIA dataset, and draw comparisons with

CSS [9], which is the current state-of-the-art color de-

scriptor on pedestrian detection. Some comparison re-

sults are showed in Figure 2.

Figure 2(a) and 2(b) are the per-window and per-

image results respectively, where the sliding step is 8
pixels and the scale ratio is 1.2. From Figure 2(a)

and 2(b), we can observe that CMDP outperforms CSS.

Moreover, the performance of CMDP is still compara-

tive with CSS when combined with HOG[1].

Table 1: Detailed comparisons between CSS and CMDP (The value

for different steps is the miss rate when FPPI = 1).

Features dimensions step=8 step=12 step=16

CMDP 512 35.8% 35.7% 42.8%

CSS 8128 42.9% 51.8% 60.4%

The comparison result is amazing, because CMDP is

only a 512-dimensional descriptor, while CSS is 8128-

dimensional for a 128 × 64 window. Moreover, the

complexity of CMDP is lower than CSS, because the

times of the similarity calculation of CMDP is far fewer

than CSS. In addition, in order to specify the transla-

tion invariance of CMDP, we visually show the compar-

ison result under different sliding steps in Figure 2(c).

The detailed comparisons between CMDP and CSS is

showed in table1. So, when we change the sliding step,

the performance of CMDP declines much slowly than

CSS. Specially, the performance of CMDP is almost the

same when step=8 and step=12.

In addition, the average feature maps of INRIA

dataset corresponding to the 4 orientations are showed



Table 2: Evaluation results on PASCAL VOC 2007 Dataset.

plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP

V4[2] 28.9 59.5 10 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.28

Proposed 30.6 60.2 11 16.8 25.9 50.5 58.3 20.8 23.5 25.1 24.4 11.7 58 48.7 42.2 13.7 19.9 34.2 46.7 43.2 33.27

in Figure 3. This figure clearly reveals the shift invari-

ance property of CMDP. Because of the max-pooling

technique in the encoding scheme, CMDP can capture

the structure information around pedestrians coarsely to

increase the shift invariance.

Figure 3: The positive mean feature maps of INRIA dataset

In pedestrian detection, HOG is a pixel-level feature,

and it is designed to capture subtle shape information

locally. So, the shape description by HOG is easily af-

fected by “noises” and the robustness of HOG in crowed

environment is relatively low. While CMDP is a patch-

level feature and is less sensitive to “noises”. Conse-

quently, CMDP can complement with HOG well. We

show some false negatives generated by HOG, but suc-

cessfully detected by HOG-CMDP in Figure 4.

Figure 4: Some false negatives eliminated by CMDP.

3.2. Experiments on PASCAL VOC Dataset

In this part of experiment, we choose latent SVM

as our detector. Several versions of latent SVM were

released at Felzenszwalb’s homepage and we use the

latest one called VOC-release4 [2] as V4 shortly. In

addition, we use the following scheme to add CMDP

to the framework of V4: using the single feature HOG

to train root and part, and after we have got the aligned

samples, CMDP is added to the model to retrain. The

comparison results are showed in Table 2.

From Table 2, we can observe that CMDP can im-

prove the detection performance on almost all cate-

gories except “cow” and “motorbike”. The result is

so promising because CMDP has only 4 dimension in

each cell; while, HOG used in V4 is 32 dimensions.

Therefore, we can use CMDP to achieve satisfactory

improvement with little cost.

4. Conclusion

In this paper, we propose a novel biologically-

explainable color descriptor, CMDP, for pedestrian de-

tection. The experimental results show that the orienta-

tion filtering in CMDP can effectively capture the local

structure information, and max-pooling can increase the

invariance of shift. Therefore, CMDP is an useful color

descriptor and color cues indeed play an important role

in pedestrian detection.
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